

08 Fall

h t t p : / / w w w . v i p l u g i n s . c o m

Schley Andrew Kutz <akutz@lostcreations.com>
Revision 1.3 – 2008/03/11

Spring 08

VMware Infrastructure 3.5 Plugin and
Extension Programming Guide

Table of Contents

Disclaimer ... 1

Introduction ... 2

Getting Started ... 2
Styles .. 2
Key Concepts .. 3
Software .. 3
Terminology.. 3

Namespaces ... 4
VMware.VIClient.Plugins ... 4

Interfaces ... 5
Classes ... 6

VimApi ... 6
Vmomi ... 6

Classes ... 7
VmomiSupport ... 7

Classes ... 7
CAPICOM .. 7
VMware.CustomControls ... 7
VpxClientCommon.. 8

VI3.5 SDK 2.5 Extension Management ... 8

Client Plugin Architecture ... 8
File System Layout ... 8
Discovery Process ... 8

Tomcat Architecture ... 9

Database Schema ... 10

Server Extension Architecture ... 10
File System Layout .. 11
Discovery Process .. 11

Creating a Client Plugin ... 11
Define assembly properties ... 12
Implementing the VMware.VIClient.Plugins.Plugin .. 12
Retrieving the Current Session .. 13
Creating Menu Items, Etc. ... 14
Installation.. 16

Installation Program .. 17
Install from a Zip File ... 17
Install from the VI Client... 17

Activation .. 17

Creating a Server Extension ... 17
Registering the Extension .. 17

Logging on to the Server .. 18

Creating Windows Installers .. 23
Client Plugin ... 23
Server Extension .. 23

Client Plugin Examples .. 24
Creating Views .. 24

Creating a New View Object.. 24
Creating the User Control .. 25
Creating the Context Changed Event Handler .. 25
Displaying the View’s Data .. 26

Creating Global Views .. 28

1

Disclaimer
This document is not in any way, shape, form, or measure sponsored, endorsed, or
its content supported by VMware. While the succeeding pages may give the
impression that this paper was written in cooperation with VMware, this work is the
result of hours of using Lutz’s Reflector to peer into VMware’s intermediate
language (IL), Lutz’s Resourcer to figure out where icons come from (it’s not the
icon stork), ProccessMon, FileMon, and RegMon to take a look at things happening
in real time, and finally the Microsoft structured query language (SQL) manager to
explore the new VI 3.5 database schema. In summary, although the knowledge from
these explorations resulted in an idea of the VI plugin architecture and working
plugin, do not consider it to be the final word on anything. We will simply have to
wait for VMware to provide finality to this whole plugin hoopla.

In short, all the information contained in this document may be entirely and
completely wrong. Read it at your own risk. If you find yourself stuck in an infinite
time loop once you finish, remember two things: 1) ice sculptures impress the heck
out of the ladies and 2) you are not god. You may be a god, but not the god. That
honor is left to Mr. Morgan Freeman.

2

Introduction
If you are reading this, then you have shown an interest in creating client plugins
and server extensions for VMware Infrastructure 3 (VI3). VI3 is already a very
capable virtualization solution, and the ability to extend VI3 beyond its original
intent is what makes the plugin architecture so powerful. From incorporating
graphical storage VMotion (SVMotion) functionality in the client to implementing
the first application-level high availability (HA) system, the VI3 plugin architecture
allows third-party developers to customize VI3 into exactly the virtualization
infrastructure that they need.

You may be wondering, if VMware had intended for developers to write plugins and
extensions for VI3, then why have they not releases official documentation for that
purpose? The answer is quite complicated, but the short version is that the plugin
architecture, in its current state, is not something that VMware feels comfortable
sharing with the world. That is not to say that it is not a great architecture. In fact
the engineers at VMware should be commended creating a great set of brand new
application programming interfaces (APIs) for third-party VMware developers to
use. When VMware does make the plugin architecture publically available, there will
be a lot of happy people.

If VMware is not ready to release the architecture, then why write this document?
Well, the answer is simple really. The VI 2.5 client is a powerful administration tool,
but it lacks functionality that takes advantage of some of the VirtualCenter 2.5 and
ESX 3.5 features. It would be painful to see external tools being created to leverage
this server functionality when the VI client already offers such a wealth of common
APIs. So, while VMware created the plugin architecture to fill a need, this document
proposes to fill one as well – provide a useful resource for third-party developers
who wish to create VI3 client plugins and server extensions.

Getting Started
This section details the software and knowledge that one must possess to begin
creating VI client plugins and server extensions.

Styles
The following styles are used in this document.

Command Line Interface (CLI)

Code

CodeComment

CodeSignature

FilePath

3

Note

Key Concepts
The following is handy information to have:

 VI client plugins must be developed with .NET 2.0 because they are loaded
into the same application domain as the VI client, and application domains
are restricted to a single .NET version.

 VI server daemons can be written in whatever language you wish.

 While it may be tempting to simply open your own port for a VI server
daemon, remember that the server administrator may not let
you.Additionally, the remoting protocol you use should be supported on any
OS. So stick with SOAP. HTTP is universal. Except where it’s not.

Software
This is a list of software that was found to be quite necessary when discovering how
to create plugins and extensions, and then doing so.

 Microsoft Visual Studio 2008 – We are Linux and OS X geeks by natures,
but this hands-down the most superb, integrated development environment
(IDE) ever created.

 Lutz’s Reflector – This is the tool that makes reverse-engineering IL a snap.

 Lutz’s Resourcer – Pulls those icons out of compiled resources files like
nobody’s business.

 ProcessMonitor – Whooooo are you, who who, who who. We really want to
know and now we do, thanks to ProcessMonitor. No process’ activity shall
escape our watchful gaze!

 FileMon – See what files are being accessed in order to figure out how what
files need to be opened, altered, and saved. Did that sound dirty to anyone
else?

 RegMon – Just like FileMon, but for the Windows registry.

Terminology
So far this document has used terms like client plugin and server extension. These are
just two terms that this document uses when referring to VI plugin and extension
development. The following is a complete list:

 Client Plugin – A client plugin is installed on computers running the VI 2.5
client. These plugins extend the functionality of the VI 2.5 client. These

http://msdn.microsoft.com/vstudio/
http://www.aisto.com/roeder/dotnet/
http://www.aisto.com/roeder/dotnet/
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896642.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896652.aspx

4

plugins may come in the form of an installer or simply a compressed
container, such as a zip file.

 Server Extension – A server extension is registered on the VC server using
the VI software development kit (SDK) method,RegisterExtension.
Registering a server extension can provide a local server for remote plugins
to contact (such as a state server). A server extension can also register a well-
known client plugin link such that connecting VI clients will see that a new
client plugin is available under “Available Plugins” and have the opportunity
to download it.

 Client-Only Server Extension– A server extension that exists for the sole
purpose of providing an easy way for users to download a VI client plugin.

 Extension key – This is the unique key that identifies an extension. VMware
has adopted the Java naming convention for uniqueness and thus the key
should resemble com.lostcreations.svmotion.

Namespaces
Creating plugins and extensions requires knowing about more than just the SDK
assembly. Not every interface, class, method, property, or field will be mentioned,
and in fact probably 99% of them won’t (we are easing into this white paper). The
first revision of this document will hopefully include enough explanations of the
classes and ilk that you need to know in order to, with confidence, build your own
client plugin and server extension.

Additionally, the best way to truly understand the following libraries is to use the
object browser in VisualStudio or Lutz’s Reflector to take a look inside for
yourselves. In this initial revision of the paper, we are just trying to point you in the
right direction.

VMware.VIClient.Plugins
This is the assembly that contains the interface a class must implement to be
considered a client plugin.The VI 2.5 client uses reflection to peer into assemblies
looking for classes that implement the VMware.VIClients.Plugins.Plugininterface
(shame on you VMware for not following the standard .NET convention of prefixing
interfaces with the capital letter “I”) and load those classes as client plugins.

 Default location: C:\Program
Files\VMware\Infrastructure\Virtual Infrastructure

Client\Plugins\Update Manager\VIPlugins.dll

5

Interfaces

Plugin
This is the interface that a class must implement to be discovered as a plugin and
loaded into the VI client.

Methods

 void Load(VIApp viApp) – This method is when the plugin is manually
loaded or when the VI client is launched. This method is where a plugin’s
initialization should occur, such as creating context menu items, views, and
menu strip icons.

 void Unload() – This method is invoked when the plugin is manually
unloaded or when the VI client is closed. Any resources that were opened by
the plugin, such as database connections, should be closed in this method.

VIApp
This class provides a means of retrieving a minimal amount of information about
the VI client. One of the more important roles of this class is providing the means to
retrieve the currently logged in user session of the VI client so that the plugin can
interact with the VC server or ESX server(s).

Properties

 string ServiceUrl– This is the uniform resource locator (URL)
associated with the currently logged on session.

 System.Net.Cookie SessionCookie– This is the authenticated cookie
of the current session.

 Menus– An array that returns references to the VI client’s main menus,
context menus, and toolbar depending on which one of the TypeStrings’
enumerations is used.

 Views– An array that returns references to the VI client’s views (the tabs on
the right-hand side of the client) depending on which one of the TypeStrings’
enumerations is used.

Menu
This interface implements VMware.VIClient.Plugins.Extension and is used to
represent a menu object.

Extension
This interface provides a very important property named Context.

6

Properties

 Context – This property allows you to access a list of managed object
references that represent all of the items selected at the time the object was
activated. For example, if you right-click on a VM while three others are
selected then the Context property will contain a list of four managed object
references.

Classes

TypeStrings
This class includes child classes that are effectively enumerations of type
System.String. These enumerations are used as the indices for the following arrays:

 VMware.VIClient.Plugins.VIApp.Menus

 VMware.VIClient.Plugins.VIApp.Views

VimApi
This namespace should look familiar to all VI developers. The only difference is that
VMware’s implementation has some class name differences. For example,
VimService is now InternalVimService. That is the biggest change; otherwise you
will feel right at home.

 Default location: C:\Program
Files\VMware\Infrastructure\Virtual Infrastructure

Client\2.5\VimSoapService.25.dll

 Default location: C:\Program
Files\VMware\Infrastructure\Virtual Infrastructure

Client\2.5\VimSoapService.25.XmlSerializers.dll

Vmomi
While it may be possible to build a client plugin entirely with VIPlugins.dll, one
would be remiss not to include a reference to VirtualInfrastructure.25.dll. This
assembly provides the important namespaces Vmomi and Vmomi.Support. Vmomi
either stands for VMware Object Management Interface or VMware Managed Object
Management Interface. Whatever it stands for, the Vmomi namespace provides a
strongly typed class for every ManagedObject type. So instead of invoking the
RelocateVM method from the VimService class, the method is directly attached to a
VirtualMachine class. Nifty, huh?

 Default location: C:\Program
Files\VMware\Infrastructure\Virtual Infrastructure

Client\Plugins\Update

Manager\VirtualInfrastructure.25.dll

7

Classes

ServiceInstanceContent
For VI SDK developers the ServiceInstanceContent class is the Vmomi
representation of the VimApi.ServiceContent class.

VmomiSupport
This namespace contains support classes for the Vmomi classes. One class in
particular stands out.

 Default location: C:\Program
Files\VMware\Infrastructure\Virtual Infrastructure

Client\Plugins\Update

Manager\VirtualInfrastructure.25.dll

Classes

Service
For VI SDK developers, the Service class is an odd combination of the
ServiceContent and VimService classes.

CAPICOM
Now we’re kickin’ it old school. Old like back when you didn’t throw paper or
scissors, because all you had was rock. CAPICOM is of course Microsoft’s component
object model (COM) library of cryptographic APIs, hence CAPICOM. Why must you
still use this library? We have not yet figured out a way to turn off SSL checking from
the VI SDK, and although the Vmomi.Certificate class has a property that tells it to
ignore SSL errors, we have not figured how to log onto VI with just the Vmomi
classes (if you know, please tell us!). Thus, we need CAPICOM to programmatically
add and remove certificates to the system’s local certificate store. You’ll see this
acted out later on when discussing extension registration.

 Default location: C:\Program Files\Common Files\Microsoft
Shared\CAPICOM\CapiCom.dll

For more information on CAPICOM please see Microsoft’s CAPICOM reference. For
an example of how to use CAPICOM please see this document’s section,Creating a
Server Extension.

VMware.CustomControls
This namespace contains many custom user interface elements used by the VI 2.5
client. One such class is ViewEx.

 Default location: C:\Program
Files\VMware\Infrastructure\Virtual Infrastructure

Client\Plugins\Update

Manager\VMware.CustomControls.25.dll

http://msdn2.microsoft.com/en-us/library/aa375732(VS.85).aspx

8

VpxClientCommon
This namespace also contains many VMware user interface classes. This is where
you will find PropViewBase.

 Default location: C:\Program
Files\VMware\Infrastructure\Virtual Infrastructure

Client\Plugins\Update Manager\vpxClientCommon.25.dll

VI3.5 SDK 2.5 Extension Management
The VI SDK 2.5 includes new functionality that enables the enumeration, addition,
and deletion of server extensions. Examples of these methods can be found in this
document’s section,Creating a Server Extension. For more information on VI3.5 SDK
2.5 extension management, please see the online VI3.5 SDK 2.5 reference.

Client Plugin Architecture
Although it may not appear so by the sheer number of individual parts that make up
both, the client plugin architecture is actually far more complex than the server
extension architecture. This is because a server extension’s daemon can run as a
process entirely independent of VC whereas a client plugin is loaded into the same
application domain as the VI client itself. This of course also means that if your client
plugin throws a fatal exception, without proper error handling your plugin could
very well bring the entire VI client to a James Dean’ing halt.

File System Layout
Client plugins are installed in the VI client plugins’ path. This is by default
C:\Program Files\VMware\Infrastructure\Virtual

Infrastructure Client\Plugins.

Discovery Process
How does the VI client discover what plugins are available? The discovery process
searches both the VC server and the local computer for available plugins.The VI
client’s plugin manager invokes a method at
VpxClient.PluginManager.PluginManagerImpl.DiscoverClientPlu

gins(). This method enumerates the contents of the plugins’ folder, searching for
assemblies that implement the VMware.VIClient.Plugins.Plugin interface.

The VpxClient namespace mentioned above belongs to the assembly VIClient.dll

that has a default location of C:\Program
Files\VMware\Infrastructure\Virtual Infrastructure

Client\2.5\VIClient.dll.

This is why it is possible to simply take a compiled .NET class library assembly, stick
it in a folder, and place it in the plugins directory. The VI client will find it. Simplicity
at its finest. No special registration necessary. In fact, when you download an

http://www.vmware.com/support/developer/vc-sdk/visdk25pubs/ReferenceGuide/index.html

9

available plugin from the VI client plugin manager the installer simply places the
folder the new plugin was extracted to into the VI plugin directory, and the VI client
will recognize the new plugin the next time the plugin manager’s discovery method
is invoked.

Tomcat Architecture
Before we can discuss the server extension architecture it would behoove us to first
review how Tomcat is configured on the VC 2.5 server. While it may seem as if the
SDK and various plugin daemons are all being served through a single pair of ports
(80-HTTP and 443-HTTPS), the fact of the matter is that those two ports are simply
dumb proxies. The real servers are running on internal ports, receiving proxied
communication from the front-end instance of Tomcat.

The main Tomcat configuration file can be found at (default location) C:\Program
Files\VMware\Infrastructure\VirtualCenter

Server\tomcat\conf\server.xml.

Check out the file (default location) C:\Documents and Settings\All
Users\Application Data\VMware\VMware

VirtualCenter\proxy.xml. A quick look inside the file reveals that this is the
configuration file that the primary Tomcat instance uses in order to configure its
proxies. For example, the following node configures the SDK proxy:

<e id="3">

 <_type>vim.ProxyService.LocalServiceSpec</_type>

 <accessMode>httpsWithRedirect</accessMode>

 <port>8085</port>

 <serverNamespace>/sdk</serverNamespace>

</e>

It is evident from the extensible markup language (XML) above that a proxy
connection is being configured from port 443 (HTTPS) to a local daemon listening
on port 8085.

Why does any of this matter? Well, because it is the responsibility of your server
extension to provide a daemon that will receive incoming communication from the
client – if such a thing is appropriate. As mentioned, there are some server
extensions that serve only to exist as a mechanism by which VI administrators can
download a client plugin directly from their VI clients.For these types of server
extensions it does not make sense to provide their own back-end proxy. These
server extensions simply need a place to put their client setup files. For this purpose
we recommend creating a directory called plugins under C:\Documents and
Settings\All Users\Application Data\VMware\VMware

VirtualCenter\docRoot\. This directory is the document root for the primary

10

Tomcat server, that is to say that when a user visits
http://YOUR_VC_SERVER/file.foo, file.foo is being served from this directory (for
the purposes of this explanation we will not get into file generation techniques).

Additionally, there is nothing to say that you must use the Tomcat proxy. A remoting
technology such as .NET Remoting is perfectly acceptable, but remember that
whatever means of communication is chosen, it should support the widest range of
clients as possible.

Database Schema
The VC 2.5 installation adds some new tables to the VC database.

 VPX_EXT – This table holds basic information about an extension, including
its unique key (unique by Java naming conventions, e.g.
com.lostcreations.svmotion).

 VPX_EXT_CLIENT – This table holds information about possible clients
associated with a server extension.

 VPX_EXT_PRIVS – This table holds custom privileges associated with a
server extension.

 VPX_EXT_SERVER – This table holds information about a server extension’s
daemon end-point and protocol information.

 VPX_EXT_SERVER_EMAIL – This table holds administrative e-mail
addresses associated with a server extension.

 VPX_EXT_TYPE_IDS– This table holds custom type identifiers associated
with a server extension.

To find out more about these database tables please use the Microsoft SQL manager
to login to your SQL server and browse around. Alternatively you can also read
about the ExtensionManager. This document includes an example of registering a
server extension later on that will help clear up any confusion that may have been
born of this section.

Server Extension Architecture
The server extension architecture is largely defined as four items: database
information, resource files for the server extension, a possible client binary available
for download, and an end-point on the VC server for said client to communicate
with.

http://your_vc_server/file.foo
http://www.vmware.com/support/developer/vc-sdk/visdk25pubs/ReferenceGuide/vim.ExtensionManager.html

11

File System Layout
A server extension exists on the file system in a few places.

Resource Files
A server extension’s resource files are by default located at C:\Program
Files\VMware\Infrastructure\VirtualCenter

Server\extensions\KEY where KEY may equal something like
com.lostcreations.svmotion. The actual resource files exist two levels down in
locales\LOCALE where LOCALE equals something like en. The root directory is
actually a really great place to store any additional utilities that the server extension
may need later on.

Client Setup File
The client setup file that is associated with this server extension (if there is one)
should be placed somewhere in the path of the VC server’s web server. We place our
client setup files in the sub-folder called plugins in the document root path of the
primary Tomcat server: C:\Documents and Settings\All
Users\Application Data\VMware\VMware VirtualCenter\docRoot\.

We used Microsoft Visual Studio 2008’s Setup and Deployment project to create
MSI installers for both our SVMotion client and server extension. The problem is
that the Tomcat server that ships with VC does not support the MSI MIME type. We
tried adding the MSI MIME type as an octet/stream (just as the EXE MIME type is) to
the Tomcat server’s web.xml file, but even after restarting Tomcat the web server
refused to serve the MSI file. In the end we chose to register our server extension
with it telling VI clients to go to our own server lostcreations.com to retrieve the
client setup file. If anyone figures out how to get Tomcat to server MSI files we
greatly appreciate you letting us know.

Discovery Process
The VI client searches for server extensions by invoking the method ArrayList()
VpxClient.PluginManager.PluginManagerImpl.DiscoveServerPlug

ins(). This method uses the VimApi ExtensionManager to get a list of the available
server extensions. If the server extension references a client plugin that does not
exist in the client plugin directory then it will prompt the user to download the
plugin.

Creating a Client Plugin
Creating a client plugin is a process with six distinct steps.

1. Define assembly properties.
2. Create a class that implements VMware.VIClient.Plugins.Plugin.
3. Write code to retrieve the VI client’s session.
4. Create the plugin’s menu items, views, and other graphical objects that users

interact with into the VI client.

12

5. Install the plugin.
6. Activate the plugin.

All the below code examples are from the SVMotion client plugin. If you are having
trouble reading the following code, please visit the SVMotion website to see the code
presented in wide-screen format. Because of the width restrictions of a portable
document format (PDF) file the code comments have been removed or reducedfor
the below examples and not all fields and properties are present either. Again,
please visit the SVMotion website to see an up-to-date and fully commented version
of the source code for examples.

Additionally, the code seen here is a member of a Microsoft Visual Studio 2008 .NET
2.0 Windows Class Libraryproject with references to the usual system assemblies as
well as VIPlugins.dll, VirtualInfrastructure.25.dll, and VimSoapServices.25.dll, and
all the dependencies that these three assemblies require.

Define assembly properties
You need to define some assembly properties on your assembly.

usingSystem.Reflection;

usingSystem.Runtime.InteropServices;

usingSystem.Runtime.CompilerServices;

[assembly: AssemblyTitle("SVMotion")]

[assembly: AssemblyDescription("Adds a graphical SVMotion

 option to the VI 2.5 client.")]

[assembly: AssemblyCompany("l o s t c r e a t i o n s")]

[assembly: AssemblyProduct("SVMotion")]

[assembly: AssemblyVersion("0.0.3.0")]

[assembly: AssemblyFileVersion("0.0.3.0")]

Full Source Code Link – AssemblyInfo.cs

Implementing the VMware.VIClient.Plugins.Plugin
The first step to creating a client plugin is creating a new class file (we will be using
C#). Create the class file and then implement the VMware.VIClient.Plugins.Plugin
interface. An example is seen below:

using System;

usingSystem.Text;

usingSystem.Collections.Generic;

namespace SVMotion

{

 public class SVMotionPlugin

 :VMware.VIClient.Plugins.Plugin

 {

 public void Load(

http://www.lostcreations.com/code/wiki/vmware/viplugins/svmotion
http://www.lostcreations.com/svn/code/trunk/vmware/viplugins/SVMotion/SVMotion/Properties/AssemblyInfo.cs

13

 VMware.VIClient.Plugins.VIAppviApp)

 {

 // Do nothing

 }

 public void Unload()

 {

 // Do nothing

 }

 }

}

Full Source Code Link – SVMotionPlugin.cs

The above class will successfully compile (given the right assembly references) and
be recognized as a valid VI client plugin. However, as you may have noticed, not
much will actually happen beyond a plugin showing up in the list of installed
plugins. We need to add some functionality to the class.

Retrieving the Current Session
It is the first task of the Login method to retrieve the currently logged on session in
use by the VI client. Retrieving the currently logged in session results in obtaining a
reference to the session’s ServiceInstanceContent object.

public void Load(VMware.VIClient.Plugins.VIAppviApp)

{

 // Get a SOAP service end point for the VimService

 // class.

 VirtualInfrastructure.Soap.SoapServiceInfossi = new

 VirtualInfrastructure.Soap.SoapServiceInfo(typeof(

 VimApi.InternalVimService), null);

 // Get a coppy of the currently logged in VI client’s

 // session by passing the URL of the currently logged

 // in session and the cookie with authenticated

 // credentials.

 Service = VmomiSupport.ServiceManager.GetService(ssi,

 new Uri(m_viapp.ServiceUrl.Trim()),

 VIApplication.SessionCookie);

 // Get the server/session unique ID (the suid) of this

 // session’sServiceInstance managed object.

 stringsuid = VirtualInfrastructure.ManagedObject.ToSuid(

 VIApplication.ServiceInstance.WsdlTypeName,

 VIApplication.ServiceInstance.Id);

 // Get a reference to this session’s

 // ServiceInstanceContent object by using the

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/SVMotion/SVMotion/SVMotionPlugin.cs

14

 // Service object’s ManagedObjectIdentifiedBy method and

 // the service content’s unique server/session ID.

 ServiceInstanceContent =

 VirtualInfrastructure.ManagedObject.ToSuid(

 Service.ManagedObjectIdentifiedBy[suid] as

 Vmomi.ServiceInstance).RetrieveContent();

 // This next line is very important. All plugins must

 // make sure that they create a property collector

 // or else they will fail if they are the first

 // plugin to load.

 Service.UpdatesManager.CreatePropertyCollector(

 ServiceInstanceContent.PropertyCollector,

 System.Threading.SynchronizationContext.Current);

}

Full Source Code Link – SVMotionPlugin.cs

Interestingly enough there is a far easier way to get a reference to the current
session’s ServiceInstanceContent, although it is surely not supported by VMware
(more so than this even!). The assembly "VIClient.dll” that is by default installed at
C:\Program Files\VMware\Infrastructure\Virtual

Infrastructure Client\2.5\VIClient.dll has a class named
"VpxClient.Common.Globals.Vmomi". This class has static property accessors for the
current session's Service, ServiceInstance, and ServiceInstanceContent. Although it
is technically possible to simply have your plugin reference VIClient.dll and grab
direct references to the current VI client's session information, it is clearly out of
line with VMware's proposed (from what I can tell) plugin architecture. Stick to
using the code block below and your plugins are more likely to be forward
compatible with future versions of the VI client.

Creating Menu Items, Etc.
Once a reference to the session is obtained, it is time to add some menu items,
views, and perhaps icons to the main toolbar. All these things are accomplished
using the Menus and Views collection in conjunction with specific TypeStrings. The
following is an example of adding context-menu items for specific inventory objects
in the VI client, such as virtual machines (VMs), host servers, cluster compute
resources, and such.

using VMware.VIClient.Plugins;

// Create an array of the inventory items you want to

// attach the context menu item to.

String[] iitems = new String[]

{

 TypeStrings.Inventory.VirtualMachine,

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/SVMotion/SVMotion/SVMotionPlugin.cs

15

 TypeStrings.Inventory.VirtualMachineFolder,

 TypeStrings.Inventory.ResourcePool,

 TypeStrings.Inventory.HostSystem,

 TypeStrings.Inventory.ComputeResourceFolder,

 TypeStrings.Inventory.Datacenter,

 TypeStrings.Inventory.Cluster

};

// Create a new context menu item for each inventory

// object, attaching event handlers for its Created

// and Activated events.

Array.ForEach<String>(iitems, delegate(String item)

{

 VIApplication.Menus[item].Add("-");

 VMware.VIClient.Plugins.Menu menu =

 VIApplication.Menus[item].Add(

 "Migrate storage...");

 menu.MenuItemCreated += new

 VMware.VIClient.Plugins.PluginEvent(

 svmotion_Menu_OnCreate);

 menu.Activated += new

 VMware.VIClient.Plugins.PluginEvent(

 svmotion_Menu_OnActivate);

}

Full Source Code Link – SVMotionPlugin.cs

We learned an interesting little tidbit in our playing around. It turns out that it is
only possible to create menu items inLoad method. Why is this a bummer you ask?
Well, consider the following scenario. Imagine you want to create sub-menu items
for your menu item depending on current state of the inventory item or based on
some external data (such as a database full of third-party applications). You cannot
do it! How annoying. The solution is to create your own ContextMenuStrip object
and display it when a menu item you created at load-time is clicked. For more
information on this problem and a solution please see the Invoke plugin.

Now it is time to define the callback methods that we attached to the
MenuItemCreated and Activated events. We will be referencing the menu’s Context
property, so in case you forgot, go read about how it is used to get a list of managed
object references.

private void svmotion_Menu_OnCreate(object sender)

{

 VMware.VIClient.Plugins.Menu m = sender as

 VMware.VIClient.Plugins.Menu;

 m.MenuItem.Click += new EventHandler(

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/SVMotion/SVMotion/SVMotionPlugin.cs
http://www.lostcreations.com/code/wiki/vmware/viplugins/invoke

16

 svmotion_MenuItem_OnClick);

}

private void svmotion_Menu_OnActivate(object sender)

{

 VMware.VIClient.Plugins.Menu m = sender as

 VMware.VIClient.Plugins.Menu;

 // Attach the associated list of managed object

 // references to the menu item’s Tag property. The Tag

 // property exists for the purpose of attaching

 // associated data so that it may be accessed later on.

 m.MenuItem.Tag = m.Context.Object;

}

private void svmotion_MenuItem_OnClick(

 object sender, EventArgs e)

{

 System.Windows.Forms.MenuItem m = sender as

 System.Windows.Forms.MenuItem;

 SVMotionFormsvmf = new SVMotionForm(

 this, (m.Tag as

 List<VMware.VIClient.Plugins.ManagedObjectReference>

));

 svmf.ShowDialog();

}

Full Source Code Link – SVMotionPlugin.cs

If you add submenu items, it appears that there is a bug such that their Activated
event is not actually fired. We performed ample testing and could not get it to work.

As you can see, when a user clicks on the new context menu item a form is created
and shown to the user as a dialog box. The decision to show the form as a dialog box
is simply to ensure that the user must interact with the form. Describing the form is
out of scope for this document, but you can browse the form’s source online.

Installation
Installing a client plugin occurs in three ways:

1. Install from installation program.
2. Copy a zip file to the correct directory.
3. Install from the VI client.

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/SVMotion/SVMotion/SVMotionPlugin.cs
http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/SVMotion/SVMotion/SVMotionForm.cs

17

However a plugin is installed, its files will be located in (by default) C:\Program
Files\VMware\Infrastructure\Virtual Infrastructure

Client\Plugins\.

Installation Program
Simply follow the instructions that the installation program provides. The end result
will be the installation program placing the plugin’s file in the VI plugin directory.

Install from a Zip File
Unzip the contents of the file. If the contents are loose, that is they unzip to the
current directory, create a directory for them and place them inside of it. Then copy
the new directory to the VI plugin directory.

Install from the VI Client
If a server extension has been registered with an available client plugin download
then the plugin will appear in the “Available Plugins” screen of the plugin manager
in the VI client. Simply click the “Download and Install” button to have the plugin
installed for you.

Activation
Activating a plugin simply requires that you click on the “Installed Plugins” tab of
the VI client plugin manager and check the box next to the plugin. That’s all there is
to it.

Creating a Server Extension
Creating a server extension is important for a few reasons:

 It makes it easy for VI administrators to install plugins directly from the VI
client.

 It allows you to centrally keep track of what plugins you are providing VI
administrators.

 It allows you to define custom types for both you server extension and client
plugin.

Registering the Extension
Registering a server extension is a little tricky. It may seem straightforward, but in
order to accomplish it in a manner that works for all systems the process can get a
little <jamesBrown>fonky</jamesBrown>. A few things to consider:

 You have to consider that SSL is a requirement for their VC installation.

 You have to consider that you may want to install files on the VC server.

The fact is that the latter helps the former. Because a requirement we place on
registering extensions is that you should register them (although this is not

18

required, but we recommend it) from the VC server itself, we can actually manage
the first consideration with some amount of ease.

Registering an extension consists of three distinct steps:

1. Logging on to the VC server.

2. Building the extension object.

3. Registering the extension.

Logging on to the Server
Remember, to log onto a VC server with the VimApi we have to trust the SSL
certificate that is attached to the server. The problem with this is, what if we don’t?
We could prepare the environment manually so that the registration worked, but
where is the fun in that? One of the benefits to running the registration code on the
VC server is that we have access to the VC public certificate. It is located at (default
location) C:\Documents and Settings\All Users\Application
Data\VMware\VMware VirtualCenter\SSL\rui.crt. However, we also
run into another interesting issue; not only must the process registering the
extension trust the certificate that the VC server presents, it must also access port
443 with the host name that the certificate was issued to, which is not guaranteed to
be the name of the server. Luckily, there is a way to manage all of this.

The following code is a little long, but hopefully apparent in its purpose. Here is
what happens in summary:

1. The VC certificate is loaded into an object via CAPICOM.

2. The common name of the certificate is read and then inserted at the end of
the server’s host file that is located at (by default)
C:\windows\system32\drivers\etc\hosts. For those of you who
are not familiar with a hosts file, the hosts file is checked for domain name
service (DNS) resolution prior to hitting a DNS server. This way we can
define DNS registrations locally.

3. Log onto the server.

Although it won’t be shown in the example, the certificate is removed and the hosts
file is restored once the registration is complete. Remember, the full source of the
following examples is online.

// This method adds the VC public certificate to the local
// computer’s certificate store making it possible to

// communicate with VC over SSL.

private void AddVMwareCertificate()

{

http://www.lostcreations.com/code/browser/vmware/viplugins/SVMotion/RegisterSVMotionServerExtension/VCCredentialsForm.cs

19

 // Get the path to VC public certificate.

 stringrui = string.Format(@"{0}\Application

 Data\VMware\VMware VirtualCenter\SSL\rui.crt",

 Environment.GetEnvironmentVariable(

 "ALLUSERSPROFILE"));

 // Use CAPICOM to open the certificate.

 CAPICOM.CertificateClass cert = new

 CAPICOM.CertificateClass();

 cert.Load(rui, null,

 CAPICOM.CAPICOM_KEY_STORAGE_FLAG.

 CAPICOM_KEY_STORAGE_DEFAULT,

 CAPICOM.CAPICOM_KEY_LOCATION.CAPICOM_CURRENT_USER_KEY

);

 // Parse the name of the certificate was issued to. This

 // is the name that will be added to the hosts file.

 m_str_server_name =

 Regex.Match(cert.SubjectName,

 "CN=(?<cn>[^,]*?),",

 RegexOptions.IgnoreCase).Groups["cn"].Value);

 // Open the local computer’s certificate store.

 CAPICOM.StoreClass store = new CAPICOM.StoreClass();

 store.Open(

 CAPICOM.CAPICOM_STORE_LOCATION.

 CAPICOM_CURRENT_USER_STORE,

 CAPICOM.Constants.CAPICOM_ROOT_STORE,

 CAPICOM.CAPICOM_STORE_OPEN_MODE.

 CAPICOM_STORE_OPEN_READ_WRITE);

 // Add the VC certificate and close the store.

 store.Add(cert);

 store.Close();

}

// This method inserts a new hosts file entry that

// points the CN on the VC certificate to localhost.

// This allows us to connect successfully to the localhost

// with SSL.

private void AddVMwareToHosts()

{

 stringhosts_file_path = string.Format(

 @"{0}\system32\drivers\etc\hosts",

 Environment.GetEnvironmentVariable("SystemRoot"));

 m_str_original_hosts_file = System.IO.File.ReadAllText(

20

 hosts_file_path);

 System.IO.File.WriteAllText(hosts_file_path,

 string.Format("{0}{1}127.0.0.1\t{2}",

 m_str_original_hosts_file, Environment.NewLine,

 m_str_server));

}

// These values are used when creating the server extension

// object. Ideally these values should be coming from a

// alocalized resource file, but for the purposes of this

// example we’ll stick with my native tongue, gibberish.

private string m_str_server = GetServerNameFromCert();

private string m_str_original_hosts_file = "";

private string m_str_key = "com.lostcreations.svmotion";

private string m_str_version = "0.3.0";

private string m_str_client_url =

 "http://www.lostcreations.com/downloads/vmware/viplugins/

SVMotionClientSetup.msi";

private string m_str_name = "SVMotion";

private string m_str_description = "Adds a graphical

 SVMotion option to the VI 2.5 client.";

private string m_str_company =

 "l o s t c r e a ta i o n s";

// Add the local VC certificate to the list of trusted

// certificates so SSL connections are accepted.

AddVMwareCertificate();

// Create a local hosts file entry so the SSL

// connection to the local VC server succeeds.

AddVMwareToHosts();

// Logon to the server.

VimApi.ManagedObjectReferencevim_svc_ref = new

 VimApi.ManagedObjectReference();

vim_svc_ref.type = "ServiceInstance";

vim_svc_ref.Value = "ServiceInstance";

VimApi.InternalVimServicevim_svc = new

VimApi.InternalVimService();

// Important. For some reason the internal library times

// very fast if you do not set the timeout to around 5

// seconds.

vim_svc.Timeout = 5000;

vim_svc.Url = "https://" + m_str_server + "/sdk";

vim_svc.CookieContainer = new System.Net.CookieContainer();

21

VimApi.ServiceContent vim_svc_content =

 vim_svc.RetrieveServiceContent(vim_svc_ref);

// Substitute an administrative username and password.

vim_svc.Login(vim_svc_content.sessionManager,

 USERNAME, PASSWORD, null);

// There is no need to register it twice, so see if it

// already exists. Alternatively, if you are registering

// a new version you could choose to unregister the

// existing version here.

if (vim_svc.FindExtension(

 vim_svc_content.extensionManager, m_str_key) != null)

{

 return;

}

// This description object is used later by different

// extension objects.

VimApi.Description d = new VimApi.Description()

{

 label = m_str_name,

 summary = m_str_description,

};

// This object describes the client plugin associated with

// this sever extension.

VimApi.ExtensionClientInfoeci = new

VimApi.ExtensionClientInfo()

{

 company = m_str_company,

 description = d,

 type = "win32",

 version = m_str_version,

 url = m_str_client_url,

};

// Build the values that will be used to create the

// extensionrsource information object.

VimApi.KeyValue kv1 = new VimApi.KeyValue();

kv1.key = m_str_key + ".client.win32.label";

kv1.value = m_str_description;

VimApi.KeyValue kv2 = new VimApi.KeyValue();

kv2.key = m_str_key + ".client.win32.summary";

kv2.value = m_str_name;

VimApi.KeyValue kv3 = new VimApi.KeyValue();

kv3.key = m_str_key + ".label";

22

kv3.value = m_str_name;

VimApi.KeyValue kv4 = new VimApi.KeyValue();

kv4.key = m_str_key + ".summary";

kv4.value = m_str_name;

VimApi.KeyValue kv5 = new VimApi.KeyValue();

kv5.key = m_str_key + ".server.SOAP.label";

kv5.value = m_str_name;

VimApi.KeyValue kv6 = new VimApi.KeyValue();

kv6.key = m_str_key + ".server.SOAP.summary";

kv6.value = m_str_name;

// Create the extension resource information. Ours is

// English, but it could be any language here. This

// resource information is then saved on the server

// to the directoryC:\Program Files\VMware\

// Infrastructure\VirtualCenter Server\extensions\KEY\

// locales\LOCALE\.

VimApi.ExtensionResourceInfoeri = new

 VimApi.ExtensionResourceInfo()

{

 locale = "en",

 module = "extension",

 data = new VimApi.KeyValue[]

 { kv1, kv2, kv3, kv4, kv5, kv6 },

};

// Finally, create the extension object. The only

// property that you should not recognize (that we

// have not done anything with yet) is the

// lastHeartbeatTime property. To tell you the truth,

// we have not figured out what this property is for.

// The database requires the field, so we guess it

// is used for something. Maybe to prop the coffee table

// up. We don’t know.

VimApi.Extension ext = new VimApi.Extension()

{

 version = m_str_version,

 key = m_str_key,

 lastHeartbeatTime = DateTime.Now,

 description = d,

 client = new VimApi.ExtensionClientInfo[] { eci },

 resourceList = new VimApi.ExtensionResourceInfo[]

 { eri },

};

// Register the extension.

23

vim_svc.RegisterExtension(

 vim_svc_content.extensionManager, ext);

Full Source Code Link – VCCredentialsForm.cs

And that’s it. The server extension has been registered and ready to use!

Creating Windows Installers
throw new NotImplementedException(“Nothing to see here,

move along.”);

Client Plugin
throw new NotImplementedException(“Nothing to see here,

move along.”);

Server Extension
The example will be coming later, but we wanted to go ahead and share one of the
problems we ran into when creating a server extension installer. The purpose of the
server extension installer is two-fold: 1) it should put all the right files in all the
right places, but 2) it needs to register the server extension.

There is a problem.

Registering the server extension requires the use of a Custom Action. Custom
Actions can be separate binaries, but they can also be loaded into the installer as a
class inside of a Windows Class Assembly that implements the Installer interface.
Except your custom action must link to the VMware assemblies that are required to
register an extension. Except that those assemblies are not on the computer until
your installer puts them there.

Get it? It is a chicken and egg kind of thing. The custom action will fail to run because
its dependencies are not present when the installer is launched, and it is at that
point that it loads dependencies.

There are two solutions:

1. Strongly type VMware’s assemblies so that they can be loaded into the global
assembly cache (GAC) and then link them. That way the installer will not feel
compelled to bundle them as dependencies and when it is run on the remote
machine it will look for them in the GAC as well. The problem with this is that
these assemblies must actually be in the GAC on the remote computer. You
cannot be sure that they will be, which is why you should rely on the second
solution.

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/SVMotion/RegisterSVMotionServerExtension/VCCredentialsForm.cs

24

2. Instead of writing your custom action as a library, make it an executable. This
way the custom application has its own application domain and when it is
created the appropriate dependencies will be in place. You can see an
example of this online at RegisterSVMotionServerExtension.

For more information on why side-by-side assemblies and custom actions are bad,
and to prove we’re not making stuff up, please see:

 Why a custom action may not run
 Generally though, EXE custom actions are bad.
 Missing dependencies are the exception

Client Plugin Examples
This section will list various client plugin examples.

Creating Views
The tabs on the right-hand side of the VI 2.5 client that appear when an inventory
item is selected are called views. It is possible to create your own view, and this
example will explain how. All the code from this example is from the Console plugin.
Once again, some of the code comments, properties, and fields may be reduced or
removed to make the code more readable inside this document format. To see the
code and its comments in their original format please visit the Console plugin’s
website.

There are four basic steps to creating views:

1. Create a new VMware.VICient.Plugins.View object.
2. Attach a user control to the new view’s Control property.
3. Create a context changed event handler for the view.
4. Display the view’s data.

Creating a New View Object
Creating a new view object is not that different from creating a menu item object.

/*
 * Add a new view to all inventory objects of type

 * HostSystem. This results in a new tab appearing on the

 *right-hand side of the VI client called "Console"

 * (this is not static, it is just what we are naming

 * the view as you can see from the line below).

 */

VMware.VIClient.Plugins.View view = VIApplication.Views[

VMware.VIClient.Plugins.TypeStrings.Inventory.HostSystem

].Add("Console");

Full Source Link – ThePlugin.cs

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/SVMotion/RegisterSVMotionServerExtension/
http://blogs.msdn.com/heaths/archive/2006/07/11/662717.aspx
http://blogs.msdn.com/heaths/archive/2007/10/24/exe-custom-actions-are-bad.aspx
http://blogs.gotdotnet.com/astebner/archive/2007/05/20/2760317.aspx
http://www.lostcreations.com/code/wiki/vmware/viplugins/console
http://www.lostcreations.com/code/wiki/vmware/viplugins/console
http://www.lostcreations.com/code/wiki/vmware/viplugins/console
http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/Console/Console/ThePlugin.cs

25

Creating the User Control
As seen above, creating a new view object is simple. Every view object has a
property named Control. This property is a reference to a
System.Windows.Forms.UserControl class and is what is displayed in the lower-
right-hand corner of the VI 2.5 client. While you may want to stop reading, go create
your own custom UserControl class and get to business, you would be missing out
on more of our sage-like advice if you do not continue reading. So please, for the
sake of rosemary and thyme, keep reading.

/*
 * Set the view's Control property to a new

 * System.Windows.Forms.UserControl(). The Control

 * property is the object that is show in the

 * bottom-right-hand side of the VI client. While it may

 * be tempting to set this property to a new instance of

 * your custom UserControl, *don't*! Having a parent

 * control is helpful as we are about to see.

 */

view.Control = new System.Windows.Forms.UserControl();

/*

 * Setting the parent control's Dock property to Fill

 * and the AutoSize to false and AutoScroll to true

 * results in a nice effect. If for any reason the

 * children of this control are out-of-bounds then scroll

 * bars will automatically appear allowing the user to

 * bring your custom controls back into view.

 */

view.Control.Dock = System.Windows.Forms.DockStyle.Fill;

view.Control.AutoSize = false;

view.Control.AutoScroll = true;

Full Source Link – ThePlugin.cs

Creating the Context Changed Event Handler
When a user clicks on another item in the inventory, the context of this view
changes. This is just a really fancy way of saying that the managed object reference
that it was using has changed. For example, clicking on host B after already looking
at host A would result in a context change. Monitoring these context changes are
important as they allow us to take actions as a result of a new inventory item being
selected. This is very important as we will see in a minute.

// Add an event handler so that whenever a new host is
// selected, that is when the context of this view changes,

//we will know about it.

view.ContextChanged += new

 VMware.VIClient.Plugins.PluginEvent(

 view_ContextChanged);

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/Console/Console/ThePlugin.cs

26

Full Source Link – ThePlugin.cs

Displaying the View’s Data
Displaying the view’s data is the very reason we wanted to create a view in the first
place! It is when you come to this stage that you realize there are actually two very
different types of views:

 Data driven: These views use a single user control to display their data,
having only to refresh their data upon a context change. For example, take a
view that simply displayed the name of the selected host server. The name
would most likely be displayed in a System.Windows.Forms.Label class. Well,
when the context changes, the view’s user control reference does not have to
point to a new user control that contains a new Label with the name of the
new host server. No, the value of the Label would simply be altered.

 User control driven: These views use a separate user control for each
inventory item in order to display their data. For example, take the Console
plugin – it uses a separate ConsolePanel custom user control for each host
server that it connects to because it would be tedious and time consuming to
attempt to switch out the backing SSH connection behind the actually
display. So instead, a separate user control is used for each host server.

This example is using a user control driven view. We will point out what is
necessary to implement these in the following code block:

// This is a list that maintains references to each
// host-specific user control for the Console view.

private Dictionary<string, ConsoleUserControl.ConsolePanel>

 m_consoles = new Dictionary

 <string, ConsoleUserControl.ConsolePanel>();

.

.

.

/// <summary>

/// This is the callback that is invoked when the view's

/// context has changed. Now what that means is quite

/// simply that the user has clicked on another host and

/// the view's managed object reference has been

/// updated.

/// </summary>

/// <param name="sender">

/// The view object.

/// </param>

voidview_ContextChanged(object sender)

{

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/Console/Console/ThePlugin.cs

27

 // Get the view object.

 VMware.VIClient.Plugins.View view =

 sender as VMware.VIClient.Plugins.View;

 /*

 * Get the managed object reference for the updated

 * context. In this case it will be the currently

 * selected host system. I probably do not have

 * toinitmate that the context would be a virtual

 * machine if this was a virtual machine view. And so on.

 */

 VMware.VIClient.Plugins.ManagedObjectReferencemoref =

 view.Context.Object as

 VMware.VIClient.Plugins.ManagedObjectReference;

 // Get the host system from the suid.

 stringsuid = VirtualInfrastructure.ManagedObject.ToSuid(

 moref.WsdlTypeName, moref.Id);

 Vmomi.HostSystem host =

 Service.ManagedObjectIdentifiedBy[suid] as

 Vmomi.HostSystem;

 // Define the variable that will hold a reference to the

 // actualConsole user control.

 ConsoleUserControl.ConsolePanel cp = null;

 // If the console has already been defined, that is, it

 // isin the list of consoles that is global to this

 // class, thenuse that one.

 if (m_consoles.ContainsKey(suid))

 cp = m_consoles[suid];

 // Otherwise create a new console and add it to the list.

 else

 {

 cp = new ConsoleUserControl.ConsolePanel();

 m_consoles.Add(suid, cp);

 }

 // Set the console's hostname / IP address to that

 // of the the currently selected host.

 cp.HostNameOrIPAddress = host.GetName();

 /*

 * Hide the view's parent control while we clear

 * the child controls (our custom controls). Hiding

 * the parent control while we do this prevents

28

 * flickering. Once the child controls are cleared

 * add the custom control that is relevant to this

 * host.

 */

 view.Control.Visible = false;

 view.Control.Controls.Clear();

 view.Control.Controls.Add(cp);

 view.Control.Visible = true;

}

Full Source Link – ThePlugin.cs

Creating Global Views
A global view is visually represented as the icons on the primary tool strip in the VI
2.5 client. The Inventory and Administration buttons or icons, along with the others,
display a global view when pressed. Global views are not that much different than
regular views, except for perhaps visual appearances. Take for instance the
following scenario:

You want to add a new view for VMs so that it will list the last three people to power
cycle the VM. You could create a view called “PowerLog” and then simply add the
appropriate controls and populate them with the necessary data. No special steps
are required to make the view look like it belongs, to make it visually consistent
with other, VMware views. But what if you were asked to create a global view that
displayed the last 10 people that have logged into the server? Although the process
can be identical, doing so results in a visual that rips the user away from the VI 2.5
client because of its stark contrast to the rest of the application.

The question then becomes, “How do we create a global view that is visually
consistent with the rest of the VI 2.5 client? The answer: we steal, er, borrow, from
VMware. VMware has packaged significantly large number of custom controls in the
two assemblies vpxClientCommon.25.dll and VMware.CustomControls.25.dll. We
actually do not want to dig into these libraries, as they are not part of the plugin
architecture. However, to best serve the interest of our users, we must.

These two assemblies contain two classes that we will use to build out global view:
VpxClientCommon.PropViewBase and VMware.CustomControls.ViewEx.

PropViewBase is a container that you are familiar with, even if you do not know
what it is. This class is responsible for displaying the tab views on the right-hand
side of the VI client or on the bottom half of the client in a global view. This is the
class to which you add said tabs. ViewEx is the class that VMware itself uses to
display tabbed content.

The following code examples come from the VI plugin Invoke, of which the entire
source code is available online. If you are having trouble reading the code, please try
to read it online in a wider viewing format.

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/Console/Console/ThePlugin.cs
http://www.lostcreations.com/code/wiki/vmware/viplugins/invoke
http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/Invoke

29

// Create the classes that perimeter container
// (PropViewBase) the content container (ViewEx)

VMware.CustomControls.ViewEx view = new

 VMware.CustomControls.ViewEx();

VpxClientCommon.PropViewBase pview = new

 VpxClientCommon.PropViewBase();

// Add a new tab called "Settings" and configure the tab.

// You’ll notice that third argument to this function is

// a Type class. The function is asking us what type

// of object will this tab display. In our case it is

// a ViewEx object.

pview.AddTabButton("Settings",

 VMware.CustomControls.ViewID.GettingStarted,

typeof(VMware.CustomControls.ViewEx));

pview.SetButtonsTextOptions();

pview.SetDockPadding();

pview.DoAutoArrangeButtons();

// Associate a view with this tab. I just picked a ViewID

// of "Getting Started". It is not really important for our

// purpose.

pview.AddView(view,

 VMware.CustomControls.ViewID.GettingStarted,

 VMware.CustomControls.ViewType.Normal);

// Add a global view called "Invoke" to the icon bar at the

// top. This special global view collection is accessed

// through the special type string of

// "VMware.VIClient.Plugins.

// TypeStrings.Inventory.Global"

VMware.VIClient.Plugins.Viewgview =

 VIApplication.Views[

 VMware.VIClient.Plugins.TypeStrings.Inventory.Global

].Add("Invoke");

// Set the global view's user control to that of the tabbed

// control (the PropViewBase) that we created earlier.

// Did you forget already?

gview.Control = pview;

// Attach a new user control to the ViewEx’s Control

// property. At this point laying out a global view is just

// like laying out a regular view (see the last section).

// Or, at least it is until we figure out something

30

// that contradicts that statement :)

view.Control = new UserControl();

Full Source Link – ThePlugin.cs

http://www.lostcreations.com/code/browser/trunk/vmware/viplugins/Invoke/Invoke/ThePlugin.cs

	Table of Contents
	Disclaimer
	Introduction
	Getting Started
	Styles
	Key Concepts
	Software
	Terminology

	Namespaces
	VMware.VIClient.Plugins
	Interfaces
	Plugin
	Methods

	VIApp
	Properties

	Menu
	Extension
	Properties

	Classes
	TypeStrings

	VimApi
	Vmomi
	Classes
	ServiceInstanceContent

	VmomiSupport
	Classes
	Service

	CAPICOM
	VMware.CustomControls
	VpxClientCommon

	VI3.5 SDK 2.5 Extension Management
	Client Plugin Architecture
	File System Layout
	Discovery Process

	Tomcat Architecture
	Database Schema
	Server Extension Architecture
	File System Layout
	Resource Files
	Client Setup File

	Discovery Process

	Creating a Client Plugin
	Define assembly properties
	Implementing the VMware.VIClient.Plugins.Plugin
	Retrieving the Current Session
	Creating Menu Items, Etc.
	Installation
	Installation Program
	Install from a Zip File
	Install from the VI Client

	Activation

	Creating a Server Extension
	Registering the Extension
	Logging on to the Server

	Creating Windows Installers
	Client Plugin
	Server Extension

	Client Plugin Examples
	Creating Views
	Creating a New View Object
	Creating the User Control
	Creating the Context Changed Event Handler
	Displaying the View’s Data

	Creating Global Views

