
Programmer’s Guide

BCM57710/BCM57711
Highly Integrated Media Access Controller
Programmer’s Guide
57710_57711-PG200-R

5300 Calilfornia Avenue • Irvine, CA 92617 • Phone: 949-926-5000 • Fax: 949-926-5203 09/25/09

REVISION HISTORY

Revision Date Change Description

57710_57711-PG200-R 09/25/09 Initial release.
Broadcom®, the pulse logo, Connecting everything®, the Connecting everything logo, NetXTreme II®, and RemotePHY™
are among the trademarks of Broadcom Corporation and/or its affiliates in the United States, certain other countries and/or
the EU. Any other trademarks or trade names mentioned are the property of their respective owners.

Broadcom Corporation
5300 Calilfornia Avenue

Irvine, CA 92617

© 2009 by Broadcom Corporation
All rights reserved

Printed in the U.S.A.

Programmer’s Guide BCM57710/BCM57711
09/25/09
TABLE OF CONTENTS

Section 1: Introduction..1

Functional Description .. 1

Supported Devices... 2

Abbreviations and Definitions .. 2

Section 2: Hardware Architecture ..5

Theory of Operations ... 5

TCP-Offload .. 7

iSCSI Offload .. 8

Remote PHY ... 11

Basic Operation Between Device and Remote Copper PHY.. 11

SerDes .. 13

MAC .. 15

Receive Front End .. 16

Network Interface Glue ... 16

Arbiter/Filter .. 16

Big Receive Buffer .. 16

Parser ... 16

Searcher ... 17

TSTORM (aka L4 Rx Processor or TCP Rx Processor) .. 17

USTORM (aka L5 Rx Processor or ULP Rx Processor).. 17

XSTORM (aka Tx Processor) .. 18

CSTORM (aka Ack/Completion Processor)... 18

Segmentation and Framing Unit (aka Packet Builder and Framer-PBF) .. 18

Marker and CRC Removal (aka ULP Packet Builder-UPB).. 18

PCIe .. 19

Management Control Processor ... 19

Device Address Space.. 19

Host Bar Memory Map .. 19

MCP Memory Map .. 23

Section 3: NVRAM Configuration ...24

NVRAM Map .. 24
Broadcom Corporation
Document 57710_57711-PG200-R Page iii

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Code Directory ..26

Manufacturing Information ..27

Feature Configuration Information ...35

Virtual Product Data Region ..43

Program Images..43

Calculating the CRC 32 Checksum ...44

Flash Controller ..45

Self Configuration...46

Atmel Page Sizes ..47

Programming the Non-Volatile Memory ...49

Section 4: Data Structures ... 50

Host Memory L2 Data Structures ..50

Virtual Versus Physical Address Views ...50

Buffer Descriptor Chains ...52

RX Buffer Descriptor Format ...53

RX Completion Queue Entry Format...54

Fast Path Rx CQE..54

Ramrod Rx CQE ..55

Next Page Rx CQE ..55

TX Buffer Descriptor Format..56

Tx Parsing Information BD ...57

Next Page Tx BD..58

Status Block Format ..58

Fast Path Status Block ...58

Default Status Block ...58

Section 5: Host Driver Flows.. 59

Device Initialization and Shutdown...59

MCP Interface..60

Heart Beat/Pulse ...61

NIG Drain...62

Hardware Block Initialization and STORM Firmware Download ...62

Host Driver Initialization...62

Ramrod..63

Device Shutdown...65
Broadcom Corporation

Page iv Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Interrupt Handling and Attention .. 65

Interrupt modes... 65

BCM57710/BCM57711 Interrupt generation... 65

Status Blocks .. 66

ISR Mode .. 68

Interrupt Configuration and Control... 68

Host Driver Interrupt Handler Flow.. 69

HC Registers... 71

Attention Signals ... 79

Attention Routing .. 80

Signal Monitoring .. 80

Masking... 80

Dynamic vs. Static Interrupt Groups ... 81

Attention Initialization by the Host Driver .. 81

Handling Attentions in the Host Driver .. 82

L2 Transmit Flow.. 85

ASIC/Firmware Flow ... 85

Driver Flow.. 86

Tx Interrupt Handling ... 88

L2 Receive Flow ... 89

ASIC Flow ... 89

TStorm .. 90

USTORM .. 90

Driver Flow.. 91

Rx Interrupt Handling .. 93

Interrupt Coalescing.. 94

Transparent Packet Aggregation.. 95

Glossary.. 95

Theory of Operations .. 95

How Does Aggregation Work?.. 95

When to Aggregate? ... 96

When to Stop Aggregation?.. 97

Implementation Assumptions.. 97

TPA Implementation .. 97

Required Firmware Version ... 97
Broadcom Corporation
Document 57710_57711-PG200-R Page v

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Firmware Data Structures ..97

USTORM..97

Host Data Structures ..100

Scatter Gather Queue ..100

Scatter Gather Entry...101

Completion Queue Entry ..101

High Level Outline ..102

Initialization...102

Fastpath Operation...102

Large Send Offload...103

Device Statistics ...104

Direct Memory Access Engine (DMAE) ..105

The “Go” Register..105

The Opcode...105

Architecture ...106

Section 6: PCIe .. 108

Introduction...108

Supported Features..109

Configuration Space...111

Required Registers...112

Capabilities Registers..113

Device-Specific Registers..113

Expansion ROM ..113

Operational Characteristics ...113

Section 7: Ethernet Link Configuration... 114

Overview..114

MDIO Interface ..114

Clause 22 Overview ..114

Clause 45 Overview ..115

Accessing PHY Registers ..116

Auto-Polling Mode ...116

Bit-Bang Mode...116

Auto-Access Mode ..116
Broadcom Corporation

Page vi Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Internal PHY .. 120

Appendix A: bxe_hsi.h ..165

Appendix B: Programming the Non-Volatile Memory ..219

NVRAM Access Example Code... 219
Broadcom Corporation
Document 57710_57711-PG200-R Page vii

BCM57710/BCM57711 Programmer’s Guide
09/25/09

Broadcom Corporation

Page viii Document 57710_57711-PG200-R

LIST OF FIGURES

Figure 1: Functional Block Diagram ..6

Figure 2: Data Flow From Application Through Wire ..8

Figure 3: iSCSI Layers ..9

Figure 4: iSCSI Ethernet Frame Encapsulation ..9

Figure 5: iSCSI Architecture..10

Figure 6: Simplified Hardware Architecture...12

Figure 7: Multiplexing b/w XAUI and 1000BASE-KX/2500BASE-KX ..14

Figure 8: BCM57710/BCM57711 BAR Memory Space...22

Figure 9: MCP Memory MAP ..23

Figure 10: Flash Controller State Machine and Interfaces ..45

Figure 11: Virtual Address versus Physical Address View..51

Figure 12: Chain With Multiple Pages ...52

Figure 13: Driver/MCP Handshake ...61

Figure 14: Handle Interrupt Flow...70

Figure 15: Attention States..83

Figure 16: L2 Tx Packet Flow Inside the ASIC..85

Figure 17: L2 Tx Packet Flow..86

Figure 18: Tx Packet Completion ..88

Figure 19: Rx Driver Flow..92

Figure 20: Rx Interrupt Flow..93

Figure 21: Scatter-Gather Queue Structure ..100

Figure 22: 13 BD Sliding Window..104

Figure 23: PCIe Configuration Space..111

Figure 24: PCIe Type 0 Configuration Space Header...112

Figure 25: STA and MMD devices (ffrom the IEEE 802.3-2005 Specification) ...115

Figure 26: Address and Write Management Frames ..118

Figure 27: Address and Read Management Frames ..119

Programmer’s Guide BCM57710/BCM57711
09/25/09
LIST OF TABLES

Table 1: Supported Devices .. 2

Table 2: Abbreviations and Definitions .. 2

Table 3: BCM57710/BCM57711 BAR0 Memory Map ... 19

Table 4: BCM57710/BCM57711 GRC Space Register Offsets... 20

Table 5: NVRAM Map.. 24

Table 6: Boot Strap Region ... 25

Table 7: Code Directory Region .. 26

Table 8: Manufacturing Information ... 27

Table 9: Feature Configuration Region.. 35

Table 10: Virtual Product Data Region .. 43

Table 11: Program Images Region.. 43

Table 12: NVRAM Strapping Table ... 46

Table 13: Default (Slow Path) Status Block... 66

Table 14: TX/RX (Fast Path) Status Block .. 68

Table 15: HC_REGISTERS_CONFIG_0 (Offset: 0x108000; Width: 32)... 71

Table 16: HC_REGISTERS_COMMAND_REG (Offset: 0x108180) - Interrupt Acknowledge Port 0.............. 71

Table 17: HC_REGISTERS_COMMAND_REG (Offset: 0x108184) - Producer Update Port 0 72

Table 18: HC_REGISTERS_COMMAND_REG (Offset: 0x108188) - Attention Bit Update Port 0 73

Table 19: HC_REGISTERS_COMMAND_REG (Offset: 0x10818C) - Attention Bit Set Port 0 74

Table 20: HC_REGISTERS_COMMAND_REG (Offset: 0x108190) - Attention Bit Clear Port 0 74

Table 21: HC_REGISTERS_COMMAND_REG (Offset: 0x108194) - Coalesce Now Port 0 74

Table 22: HC_REGISTERS_COMMAND_REG (Offset: 0x108198) -
Single_isr_multi_dpc With Mask Port 0 ... 74

Table 23: HC_REGISTERS_COMMAND_REG (Offset: 0x10819C) -
Single_isr_multi_dpc Without Mask Port 0 .. 75

Table 24: HC_REGISTERS_COMMAND_REG (Offset: 0x108200) - Interrupt Acknowledge Port 1.............. 75

Table 25: HC_REGISTERS_COMMAND_REG (Offset: 0x108204) - Producer Update Port 1 76

Table 26: HC_REGISTERS_COMMAND_REG (Offset: 0x108208) - Attention Bit Update Port 1 77

Table 27: HC_REGISTERS_COMMAND_REG (Offset: 0x10820C) - Attention Bit Set Port 1 78

Table 28: HC_REGISTERS_COMMAND_REG (Offset: 0x108210) - Attention Bit Clear Port 1 78

Table 29: HC_REGISTERS_COMMAND_REG (Offset: 0x108214) - Coalesce Now Port 1 78

Table 30: HC_REGISTERS_COMMAND_REG (Offset: 0x108218) -
Single_isr_multi_dpc With Mask Port 1 ... 78

Table 31: HC_REGISTERS_COMMAND_REG (Offset: 0x10821C) -
Broadcom Corporation
Document 57710_57711-PG200-R Page ix

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Single_isr_multi_dpc Without Mask Port 1...79

Table 32: Static Attention Routing for Function 0...81

Table 33: Static Attention Routing for Function 1...81

Table 34: VLAN Filtering Rules..90

Table 35: Opcode Format ..105

Table 36: PCIe Features ..109

Table 37: Management Frame Format (See IEEE 802.3-2005 Specification) ...114

Table 38: Clause 45 MDIO Management Frame Formats ...115

Table 39: EMAC_REG_EMAC_MDIO_MODE - (Offset: (GRCBASE_EMAC0 / GRCBASE_EMAC1)
+ 0xB4; Width: 32)..117

Table 40: Internal PHY Clause 45 Register Blocks..120

Table 41: IEEE0 Clause 73 Autonegotiation Control Register
(Offset: 0x0; Width: 16) AKA (CL73_IEEEB0) ...121

Table 42: IEEE0 Clause 73 Autonegotiation Status Register (Offset: 0x1 Width: 16)121

Table 43: IEEE0 Clause 73 Autonegotiation PHY ID MSB Register (Offset: 0x2 Width: 16).........................122

Table 44: IEEE0 Clause 73 Autonegotiation PHY ID LSB Register (Offset: 0x3 Width: 16)..........................122

Table 45: IEEE0 CL73 Autonegotiation Devices in Package 1 Register (Offset: 0x5; Width: 16)122

Table 46: IEEE0 CL 73 Autonegotiation Devices in Package 2 (Offset: 0x6; Width: 16)...............................123

Table 47: CL73_IEEE1_CL73_AUTONEG_ADVERTISE (Offset: 0x1; Width: 16)..123

Table 48: TXALL Status 0 Register (Offset: 0x0000; Width: 16)..124

Table 49: TXALL Control 0 Register (Offset: 0x0007; Width: 16) ..124

Table 50: TXALL MDIO Data 0 Register (Offset: 0x0012; Width: 16)..125

Table 51: TXALL MDIO Data 1 Register (Offset: 0x0013; Width: 16)..125

Table 52: TXALL Status 1 Register (Offset: 0x0014; Width: 16)..125

Table 53: TXALL BG VCM Register (Offset: 0x0015; Width: 16)...125

Table 54: TXALL IBuff 1T2T Register (Offset: 0x0016; Width: 16) ..126

Table 55: TXALL Transmit Driver Register (Offset: 0x0017; Width 16) ...127

Table 56: RXALL Receive Status Register (Offset: 0x0; Width: 16) ..129

Table 57: RXALL Receive Control Register (Offset: 0x01; Width 16) ..129

Table 58: RXALL Receive Timer 1 Register (Offset: 0x02; Width 16) ...130

Table 59: RXALL Receive Timer 2 Register (Offset: 0x03; Width 16) ...130

Table 60: RXALL Receive Signal Detect Register (Offset: 0x04; Width 16) ..130

Table 61: RXALL Receive CDR Phase Register (Offset: 0x05; Width 16) ..130

Table 62: RXALL Receive CDR Frequency Register (Offset: 0x06; Width 16)..131

Table 63: RXALL Receive Equalizer Configuration Register (Offset: 0x07; Width)131
Broadcom Corporation

Page x Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Table 64: RXALL Receive Equalizer Force Register (Offset: 0x08; Width 16).. 131

Table 65: RXALL Receive Control 1G Register (Offset: 0x09; Width 16).. 131

Table 66: RXALL Receive Control PCI Express Register (Offset: 0x0A; Width 16) 132

Table 67: RXALL Receive All Status Register (Offset: 0x0B; Width 16) ... 132

Table 68: RXALL Receive Equalizer Boost Register (Offset: 0x0C; Width 16) ... 132

Table 69: RXALL Receive Ib Data Equalizer Register (Offset: 0x0D; Width 16)... 133

Table 70: RXALL Receive Ib ADC Buffer Register (Offset: 0x0E; Width 16) .. 133

Table 71: XGXS BLOCK 2 RX LANE SWAP (Offset: 0x0; Width 16)... 134

Table 72: XGXS BLOCK 2 TX LANE SWAP (Offset: 0x1; Width 16) ... 134

Table 73: XGXS BLOCK 2 UNI-core Mode (Offset: 0x04; Width 16) ... 134

Table 74: XGXS BLOCK Test Mode Lane (Offset: 0x05; Width 16).. 135

Table 75: GP Status Miscellaneous RX Status Register (Offset: 0x0; Width 16) .. 135

Table 76: GP Status XGXS Status 0 Register (Offset 0x01; Width 16)... 136

Table 77: GP Status XGXS Status 1 Register (Offset 0x02; Width 16)... 136

Table 78: GP Status XGXS Status 2 Register (Offset 0x03; Width 16)... 137

Table 79: GP Status 1000X Status 1 Register (Offset: 0x04; Width 16) ... 137

Table 80: GP Status 1000X Status 2 Register (Offset: 0x05; Width 16) ... 138

Table 81: GP Status 1000X Status 3 Register (Offset: 0x06; Width 16) ... 140

Table 82: GP Status TPOUT 1 Register (Offset: 0x07; Width 16)... 140

Table 83: GP Status TPOUT 2 Register (Offset: 0x08; Width 16)... 140

Table 84: GP Status XGXS Status 3 Register (Offset: 0x09; Width 16)... 140

Table 85: GP Status x2500 Status 1 Register (Offset: 0x0A; Width 16).. 141

Table 86: GP Status Top Autonegotiation Status Register (Offset: 0x0B; Width 16) 141

Table 87: GP Status LP_UP1 Register (Offset: 0x0C; Width 16) .. 142

Table 88: GP Status LP_UP2 Register (Offset: 0x0D; Width 16) .. 142

Table 89: GP Status LP_UP3 Register (Offset: 0x0E; Width 16) .. 143

Table 90: SerDes Digital 1000X Control 1 Register (Offset: 0x0; Width 16) ... 143

Table 91: SerDes Digital 1000X Control 2 Register (Offset: 0x01; Width 16) ... 144

Table 92: SerDes Digital 1000X Control 3 Register (Offset: 0x02; Width 16) ... 145

Table 93: SerDes Digital 1000X Control 4 Register (Offset: 0x03; Width 16) ... 146

Table 94: SerDes Digital 1000X Status 1 Register (Offset: 0x04; Width 16)... 147

Table 95: SerDes Digital 1000X Status 2 Register (Offset: 0x05; Width 16)... 148

Table 96: SerDes Digital 1000X Status 3 Register (Offset: 0x06; Width 16)... 148

Table 97: SerDes Digital CRC Err and Rx Packet Counter Register (Offset: 0x07; Width 16)...................... 148

Table 98: SerDes Digital Miscellaneous 1 Register (Offset: 0x08; Width 16).. 149
Broadcom Corporation
Document 57710_57711-PG200-R Page xi

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Table 99: SerDes Digital Miscellaneous 2 Register (Offset: 0x09; Width 16) ..149

Table 100:SerDes Digital Pattern Generation Control Register (Offset: 0x0A; Width 16)150

Table 101:SerDes Digital Pattern Generation Status Register (Offset: 0x0B; Width 16)................................151

Table 102:SerDes Digital Test Mode Register (Offset: 0x0C; Width 16) ..151

Table 103:SerDes Digital Transmit Packet Count Register (Offset: 0x0D; Width 16).....................................152

Table 104:SerDes Digital Receive Packet Count Register (Offset: 0x0E; Width 16)......................................152

Table 105:Over 1G Digital Control 30 Register (Offset: 0x0; Width 16)..152

Table 106:Over 1G Digital Control 31 Register (Offset: 0x1; Width 16)..152

Table 107:Over 1G Digital Control 32 Register (Offset: 0x2; Width 16)..152

Table 108:Over 1G Digital Control 33 Register (Offset: 0x3; Width 16)..152

Table 109:Over 1G Digital Control 34 Register (Offset: 0x04; Width 16)..153

Table 110:Over 1G Digital Control 35 Register (Offset: 0x05; Width 16)..153

Table 111:Over 1G Digital Control 36 Register (Offset: 0x06; Width 16)..153

Table 112:Over 1G TPOUT 1 Register (Offset: 0x07; Width 16) ...153

Table 113:Over 1G TPOUT 2 Register (Offset: 0x08; Width 16) ...154

Table 114:Over 1G Unformatted Page 1 Register (Offset: 0x09; Width 16) ...154

Table 115:Over 1G Unformatted Page 2 Register (Offset: 0x0A; Width 16)...154

Table 116:Over 1G Unformatted Page 3 Register (Offset: 0x0B; Width 16)...154

Table 117:Over 1G Link Partner Unformatted Page 1 Register (Offset: 0x0C; Width 16)154

Table 118:Over 1G LP_UP 2 Register Offset: 0x0D; Width 16) ...155

Table 119:Over 1G LP_UP 3 Register (Offset: 0x0E; Width 16) ..155

Table 120:MRBE Message Page 5 Next Page Control Register (Offset: 0x0; Width 16)155

Table 121:MRBE Link Timer Offset 1 Register (Offset: 0x01; Width 16) ..155

Table 122:MRBE Link Timer Offset 2 Register (Offset: 0x02; Width 16) ..156

Table 123:MRBE Link Timer Offset 3 Register (Offset: 0x03; Width 16) ..156

Table 124:MRBE OUI MSB Field Register (Offset: 0x04; Width 16) ..156

Table 125:MRBE OUI LSB Field Register (Offset: 0x05; Width 16) ...156

Table 126:MRBE Field Register (Offset: 0x06; Width 16)...156

Table 127:MRBE UD Field Register (Offset: 0x07; Width 16) ..157

Table 128:MRBE Link Partner OUI MSB Field Register (Offset: 0x08; Width 16) ..157

Table 129:MRBE Link Partner OUI LSB Field Register (Offset: 0x09; Width 16) ...157

Table 130:MRBE Link Partner MRBE Field Register (Offset: 0x0A; Width 16) ..157

Table 131:MRBE Link Partner UD Field Register (Offset: 0x0B; Width 16)..157

Table 132:CL73_UserB0 Control 1 Register (Offset: 0x00; Width 16)..158

Table 133:CL73_UserB0 Status 1 Register (Offset: 0x01; Width 16) ...158
Broadcom Corporation

Page xii Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Table 134:CL73_UserB0 MRBE Control 1 Register (Offset: 0x02; Width 16).. 159

Table 135:CL73_UserB0 MRBE Control 2 Register (Offset: 0x03; Width 16).. 159

Table 136:CL73_UserB0 MRBE Control 3 Register (Offset: 0x04; Width 16).. 159

Table 137:CL73_UserB0 MRBE Status 1 Register (Offset: 0x05; Width 16) ... 159

Table 138:CL73_UserB0 MRBE Status 2 Register (Offset: 0x06; Width 16) ... 160

Table 139:CL73_UserB0 MRBE Status 3 Register (Offset: 0x07; Width 16) ... 160

Table 140:AER Address Extension Register (Offset: 0x0E; Width 16) .. 160

Table 141:IEEE_Combo MII Control Register (Offset: 0x0; Width 16)... 161

Table 142:IEEE0 MII Status Register (Offset: 0x01; Width 16).. 161

Table 143:IEEE0 PHY Identifier MSB Register (Offset: 0x02; Width 16) ... 162

Table 144:IEEE0 PHY Identifier LSB Register (Offset: 0x03; Width 16) .. 162

Table 145:IEEE0 Autonegotiation Advertisement Register (Offset: 0x04; Width 16) 163

Table 146:IEEE0 Autonegotiation Link Partner Ability Register (Offset: 0x05; Width 16) 163

Table 147:IEEE0 Autonegotiation Expansion Register (Offset: 0x06; Width 16) ... 163

Table 148:IEEE0 Autonegotiation Next Page Register (Offset: 0x07; Width 16) ... 164

Table 149:IEEE0 Autonegotiation Link Partner Next Page Register (Offset: 0x08; Width 16)....................... 164
Broadcom Corporation
Document 57710_57711-PG200-R Page xiii

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Broadcom Corporation

Page xiv Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Section 1: Introduction

Throughout this document, the term Broadcom® NetXtreme II® refers to the Broadcom BCM57710/BCM57711 Dual Port 10-
Gigabit Ethernet Controllers. The BCM577XX 10-Gigabit Ethernet controllers refer to the Broadcom BCM57710 and the
BCM57711 controllers. The reader is urged to view the Broadcom Open Source FreeBSD or Linux® driver as a code
reference and companion to this document. The Firmware component of the BCM57710/BCM57711 is vital to the
BCM57710/BCM57711 host driver and device functionality. Developers writing custom drivers must be aware of the required
hardware and software interface data structures used in specific versions of driver firmware. Changes in the software and
firmware are evident in the Open Source drivers. This document primarily covers the device layer two and layer three
functionality in host driver software along with an overview of the BCM57710/BCM57711 hardware architecture.

This document includes data structures specific to the device firmware version 4.8.5. See Appendix B “Programming the
Non-Volatile Memory” for an example of data structures common to the host driver and device firmware.

FUNCTIONAL DESCRIPTION

Broadcom NetXtreme II includes dedicated hardware and internal microprocessors to process frames. Four on-chip high-
performance VLIW STate Optimized RISC Microprocessors (also known as STORMs) enable layer four (L4) and layer five
(L5) offload features, including TCP segmentation, full TCP Offload processing, iSCSI offload, and RDMA offload. On the
transmit path, the Broadcom NetXtreme II extracts data directly from application buffer space on the host, executes any
relevant L5 protocol such as the TCP/IP protocol, adds the required TCP/IP, iSCSI 1.0, or RDMA headers and then transmits
the data over the physical medium. On the receive path, the Broadcom NetXtreme II processes the frame up to the highest
supported layer. It removes lower-level headers from the incoming frames received from the physical interface and optionally
places the data directly to application buffer space, again sparing host CPU resources that would otherwise be required for
copying data between user buffers and kernel buffers.

For iSCSI functionality, the Broadcom NetXtreme II provides a hardware offload for the most host-CPU-intensive tasks. For
the transmit data path, the Broadcom NetXtreme II adds framing support and calculates the header and data digest. On the
receive data path, the Broadcom NetXtreme II strips the framing headers and checks CRC, then stores the data in the
designated iSCSI buffers. Broadcom NetXtreme II builds iSCSI command PDUs and processes iSCSI response PDUs,
offloading the host CPU from this task. Broadcom NetXtreme II DMA data directly to/ from application buffers, sparing host
CPU resources that would otherwise be required for copying data between user buffers and kernel buffers.

The Broadcom NetXtreme II also supports other major features like Receive Side Scaling (RSS) for short-lived TCP
connections, guaranteed delivery of management packets, RemotePHY™ functionality, and advanced congestion
management. RSS allows for more balanced load sharing in an SMP server, handling a load of short-lived connections. The
guaranteed delivery of management packets provides QoS for management traffic and allows management applications
running on Remote Management Console (RMC) to talk to BMC even when there is congestion because of CPU inability to
service faster than the incoming traffic. On the transmit side, management traffic coming from BMC takes strict priority over
data coming from the host. The RemotePHY feature allows the local SerDes to interface to a Remote 10/100/1000BASE-T
copper PHY via a backplane and to control and configure the RemotePHY in-band using the SerDes interface supporting
the Broadcom Autonegotiation Mode (BAM) which utilizes the IEEE 802.3 next page capabilities in Clause 37. The advanced
congestion management functionality like Service Aware Flow Control (SAFC) allows flow control and rate limiting per a
given Class of Service.

The integrated 1-Gbps and 10-Gbps MACs are IEEE 802.3-compliant and support 802.1Q VLAN tagging, 802.1p layer 2
priority encoding, and 802.3x full-duplex flow control. The integrated transceivers are fully compatible with the IEEE 802.3
Broadcom Corporation
Document 57710_57711-PG200-R Introduction Page 1

BCM57710/BCM57711 Programmer’s Guide
09/25/09
standard for autonegotiation of speed. Additionally, the device supports real-time tracing, loopbacks, and extensive statistics
for debugging and diagnostic purposes.

SUPPORTED DEVICES

Broadcom Devices with the following PCIE Device IDs are the focus of this document. The PCIE Device ID value is found in
PCIE Configuration space at offset 0x2, or through the GRC address space at PCIE_REG_PCIER_CFG_DEVICE_ID -
(Offset: 0x2002; Width: 16).

ABBREVIATIONS AND DEFINITIONS

Table 2 shows abbreviations and definitions used in this document.

Table 1: Supported Devices

Device PCI Device ID

BCM57710 0x164e

BCM57711 0x164f

Table 2: Abbreviations and Definitions

Abbreviation Definition

ACPI Advanced Configuration and Power Interface

BCN Backwards Congestion Notification

BMC Baseboard Management Controller

CAM Content Addressable Memory

CID Connection ID

CMOS Complimentary Metal Oxide Semiconductor

CNIC Converged NIC

CRC Cyclic Redundancy Check

DDP Direct Data Placement

FIC Fast Input Channel

FOC Fast Output Channel

GMII Gigabit Media Independent Interface

GRC Global Register Controller

GSO Giant Send Offload

JTAG Joint Test Action Group

HBA Host Bus Adapter

IEEE Institute of Electrical and Electronics Engineers

iSCSI internet Small Computers System Interface

iSER iSCSI Extensions for RDMA

IF Interface

IPG Inter Packet Gap
Broadcom Corporation

Page 2 Supported Devices Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
IPMI Intelligent Platform Management

ILAN Interface Local Area Network

LCID Local Connection ID

LFSR Linear Feedback Shift Register

LOM LAN On Motherboard

LSO Large Send Offload

MAC Media Access Control

MCP Management Communication Processor

MDIO Management Data Input Output

MIB Management Information Base

MII Media Independent Interface

MSI Message Signal Interrupt

MSIX-X MSI eXtended

MSS Maximum Segment Size

NIC Network Interface Card

OSI Open Systems Interface

PBF Packet Builder and Framer

PCS Physical Coding Sublayer

PHY Physical Interface

PMA Physical Medium Attachment

QoS Quality of Service

PDU Protocol Data Unit

PCI Peripheral Connect Interface

PCI-X PCI-eXtended

PCIe PCI Express®

RFE Receive Front End

RDMA Remote Direct Memory Transfer

RDMAC RDMA Consortium

RDMAP RDMA Protocol

RMC Remote Management Console

RNIC RDMA capable NIC

ROM Read Only Memory

RSS Receive Side Scaling

SAFC Service Aware Flow Control

SerDes Serializer and Deserializer

SNMP Simple Network Management Protocol

Tuple An ordered set of values.

TCP Tuple A tuple consisting of the source IP address, destination IP address, source TCP port, and destination
TCP port

TSO TCP Segmentation Offload

ULP Upper Layer Protocol

UMP Universal Management Port

Table 2: Abbreviations and Definitions (Cont.)

Abbreviation Definition
Broadcom Corporation
Document 57710_57711-PG200-R Abbreviations and Definitions Page 3

BCM57710/BCM57711 Programmer’s Guide
09/25/09
VLAN Virtual LAN

WoL Wake on LAN

XAUI 10 Gigabit Attachment Unit Interface

XFI 10 Gigabit small Form factor pluggable module Interface

XFP 10 Gigabit small Form factor Pluggable module

XGMII 10 Gigabit Media Independent Interface

XPAK 10 Gigabit Ethernet Pluggable module

Table 2: Abbreviations and Definitions (Cont.)

Abbreviation Definition
Broadcom Corporation

Page 4 Abbreviations and Definitions Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Section 2: Hardware Architecture

THEORY OF OPERATIONS

Figure 1 on page 6 shows the major functional blocks and interfaces of Broadcom NetXtreme II BCM57710/BCM57711 dual
port 10 Gbps Ethernet controller. Each port includes an integrated SerDes device supporting 1000/2500 BASE-X,
10GBASE-CX4, 10GBASEKX4, and XAUI network interfaces and IEEE 802.3-compliant 1/2.5/10 Gbps MACs. Both ports
share common blocks that are tuned for independent packet flows. The device's DMA engine provides DMA transactions
from host memory to the device local storage, and vice-versa. The Broadcom NetXtreme II provides a PCIe v2.0 and v1.1-
compliant bus interface. The RX MAC moves packets from the PHY into the device internal memory. All incoming packets
are checked against a set of rules and then categorized accordingly.

When a packet is transmitted, the TX MAC moves the data from internal memory to the PHY. Both flows operate
independently of each other in full-duplex mode. The device implements 128 KB of internal on-chip receive buffer memory
and 25 KB per port of internal on-chip transmit buffer memory for temporarily storing the data before it is moved in and out
of Ethernet and PCIe interfaces. The internal receive buffer memory is also commonly referred to as big RAM or the Big
Receive Buffer (BRB). The device arbiter controls the access to the on-chip buffer memory.

Four high-performance VLIW RISC processors are implemented at strategic places in the device architecture such that they
can be used in conjunction with other hardware blocks for L2 processing and supporting L4 and L5 offload features, including
TCP segmentation, full TCP Offload, and iSCSI offload. One other RISC processor, referred as the Management Control
Processor (MCP), is implemented to execute the boot-code and the firmware supporting driver initialization and shutdown
synchronization and advanced management functions like IPMI Pass-Through or UMP or NC-SI. All five RISC processors
and the on-chip buffer memory are shared between the two Ethernet ports. For management the UMP interface and SMBus
interfaces are supported to connect a BMC with the Ethernet controller. The UMP uses either MII or RMII signaling. The
SMBus interface block provides a serial interface that operates at clock speed of up to 400 kHz.
Broadcom Corporation
Document 57710_57711-PG200-R Hardware Architecture Page 5

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Figure 1: Functional Block Diagram

The BCM57710/BCM57711 device includes a Serial Flash Controller which implements the Serial Peripheral Interface (SPI)
to connect to the serial flash devices which are used for storing the boot-code, device info, manufacturing info, and other
firmware like PXE Option ROM image, UMP/NC-SI firmware, and IPMI firmware.

The MDIO interface block enables programming and control of the internal PHY (XGXS) and of the external PHY. The LED
Control block implements the logic for controlling and driving various Ethernet link and PCIe link status signals. The GPIO
block controls the four general purpose I/O pins and two special purpose I/O (SPIO) pins per port. Lastly, the JTAG block
implements the IEEE 1149-1compliant JTAG support.

The Broadcom NetXtreme II includes dedicated hardware and processors that process the frames that traverse it and
provide its functionality. On the transmit path, the Broadcom NetXtreme II copies the data directly from the highest hierarchy
of buffers available (in prioritized order of application buffers, ULP buffers, TCP buffers) on the host; executes, when relevant,
the L5 protocols; adds the iSCSI 1.0, or RDMA headers, followed by executing the TCP/IP and adding its headers, relieving
the host CPU from these time-consuming operations. On the receive path, the Broadcom NetXtreme II processes the frame
up to the highest layer of support present in the frame. Further, it removes the lower level headers from the frames it receives
off the wire. It posts the data directly to application buffers, sparing host CPU resources that would otherwise be required for
this activity.

For iSCSI, the Broadcom NetXtreme II provides hardware hooks for the most time-consuming tasks. On transmit, the
Broadcom NetXtreme II copies data directly from the iSCSI buffers, and computes the header and data CRC when used. On
receive, the Broadcom NetXtreme II strips off the framing headers and checks CRC prior to storing the data in the designated
iSCSI buffers.
Broadcom Corporation

Page 6 Theory of Operations Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
TCP-OFFLOAD

The TCP/IP protocol suite is used to provide transport (L4) services for a wide range of applications. File transfer protocols
like CIFS and NFS, to name a few, utilize the services of TCP/IP. For a long time, this protocol suite was run on the host CPU
consuming a very high percentage of its resources and leaving little resources for the applications themselves. The
BCM57710/BCM57711 includes a TCP Checksum Offload (CSO) feature and TCP Segmentation Offload (TSO) features,
also known as Large Send Offload (LSO) that saves host CPU cycles.

The Broadcom NetXtreme II provides an industry-first TCP offload that is carefully architected for integration with the
operating system, unlike many of the standalone TCP offloads. In basic terms, the Broadcom NetXtreme II architecture
allows the operating system to provide control and management functions (such as connection setup, prevention of denial-
of service attack, system resource allocation, selection of the most promising TCP/IP flows for offload, error and exception
handling). The Broadcom NetXtreme II fully owns the data processing of TCP/IP flows offloaded to it. The Broadcom
NetXtreme II is fully compliant with relevant Internet Engineering Task Force (IETF) RFCs and fully supports modern TCP
options like time stamp, window scaling, and so on. The implementation also provides flexibility and robustness against
potential changes to TCP algorithms like congestion control by implementing this functionality in firmware, making changes
easy to manage.

On transmit, the DMA engine fetches data from the host memory, segments it to the size allowed by the network (MSS or
maximum segment size), formats the TCP, IP, 802.2 (Logical Link Control), and Ethernet headers and sends it on the wire.
The TCP/IP context that resides on-chip is updated accordingly (all the TCP/IP state variables and timers). If the frame has
not reached its destination, the Broadcom NetXtreme II retransmits it according to TCP protocol rules. On receive, every
frame is parsed, and if it is a valid frame (i.e., it passes all checks for Ethernet, IP, and TCP frame format and consistency)
and it belongs to one of the connections offloaded to the Broadcom NetXtreme II, it is processed for TCP/IP. The processing
includes the complete TCP/IP protocol state variables, header removal for Ethernet, IP and TCP. The data is either placed
in a temporary anonymous buffer similar to a software stack today or is placed directly at the buffer pre-posted by the
application (for example, Zero Copy), if the application had posted such buffer in advance. The Broadcom NetXtreme II fully
handles out-of-order reception, including placement of data in the buffers (Zero Copy).

The Broadcom NetXtreme II TCP Offload functionality allows simultaneous operation of up to 1 million fully offloaded TCP
connections. The Broadcom NetXtreme II TCP Offload significantly reduces the host CPU utilization while preserving the
rich and flexible nature of the soft implementation of the operating system stack. As the TCP control loop is shorter (ACK
messages and other control functions handled by hardware), TCP data exchange becomes faster and more efficient and
latencies of TCP operation are reduced.

Figure 2 on page 8 shows an example of the basic flow of application data through the networking stack on its way to the
wire. This data flow begins with the application writing a block of data (e.g., 64 KB) to the sockets interface. The application
may insert application layer headers in the data (e.g., every 8192 bytes) and split it into 8 messages or PDUs. The networking
stack further splits this into TCP segments, typically 1500 bytes each (also the typical MTU setting for Ethernet frames) to fit
into standard Ethernet frames. The TCP stack then processes TCP and IP and adds the TCP/IP headers into each packet.
The packet information is then posted to the NIC's output queue, and the NIC fetches the data from the host memory,
calculates checksum and Ethernet CRC, and places it into the NIC buffers for transmission. The NIC transmits the
information to the wire and interrupts the CPU to signal completion of the transaction.

Figure 2 on page 8 also illustrates the differences between the existing technologies of checksum offload and TCP
segmentation, and between TCP Offload and RDMA. With checksum offload, the NIC calculates and appends the TCP/IP
checksum to each outgoing packet, offloading the CPU of this task. TCP segmentation copies the packet header from one
packet to the next in a string of like packets, further offloading the CPU of the creation of each packet header when sending
large segments of data. TCP Offload even further offloads the CPU by allowing the NIC to handle the tasks associated with
reliable transport (windowing, sequence numbers, packet acknowledgements, and so on) and by completely processing the
received segments, placing the data in the buffers instead of the host stack. RDMA provides the ultimate offload by allowing
Broadcom Corporation
Document 57710_57711-PG200-R Theory of Operations Page 7

BCM57710/BCM57711 Programmer’s Guide
09/25/09
the RNIC to communicate directly with the application by bypassing the kernel, taking application data, creating segments,
and handling TCP/IP and lower-layer functions to move the data directly into the receiver's application space. The RDMA's
built-in header and data separation also eliminates the need to strip the application/middleware header.

Figure 2: Data Flow From Application Through Wire

ISCSI OFFLOAD

The IETF has standardized the Internet Small-Computer Systems Interface (iSCSI). The SCSI is a popular family of
protocols that enable systems to communicate with storage devices, using block-level transfer (i.e., address data stored on
a storage device that is not a whole file, unlike file-transfer protocols such as NFS or CIFS). iSCSI maps the SCSI request/
response application protocols and its standardized command set over TCP/IP networks. For further information on iSCSI,
refer to RFC 3720.

As iSCSI utilizes TCP as its sole transport protocol, it greatly benefits from hardware acceleration of the TCP processing
(such as when using a TCP Offload). However, iSCSI as a layer 5 protocol has additional mechanisms beyond the TCP layer.
Figure 3 on page 9 shows the relationship iSCSI has to TCP and to the SCSI layer. As is custom in the SCSI family, the
initiator requests certain operations (e.g., IO read or IO write) from the target in an end-to-end SCSI session using iSCSI.

The iSCSI layer adds several mechanisms above and beyond the TCP transport service. The iSCSI frame shown in Figure 4
on page 9 is an iSCSI PDU embedded as the payload of a standard TCP/IP frame. To further enhance the TCP checksum
mechanism, iSCSI optionally uses header and data digest (such as CRC-32c). As iSCSI exposes the use of a named buffer
to both the initiator and the target, it also facilitates for direct data placement into these named buffers (for example, zero
copy). These mechanisms benefit from hardware acceleration.

The Broadcom NetXtreme II targets best-system performance, maintains system flexibility to changes, and supports current
and future OS convergence and integration. Therefore, the Broadcom NetXtreme II iSCSI offload architecture is unique as
evident by the split between hardware and host processing. Unlike a monolithic implementation on an HBA, the Broadcom
Broadcom Corporation

Page 8 Theory of Operations Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
NetXtreme II focuses mainly on offloading to hardware the time-consuming elements poorly handled by software. A
monolithic implementation offloads the complete iSCSI protocol to the HBA. This adds complexity to the HBA in order to
process the complete control plane, which is better handled by the host CPU, and limits the integration options with a host
operating system (such as when the control plane on the host provides for flexible implementation and robustness against
updates to the iSCSI protocol, allowing for virtually no limit on number of outstanding commands and no limit on number of
connections per session, and so forth). The Broadcom NetXtreme II accelerates in hardware the iSCSI mechanisms that
impact system resource utilization and performance. It supports all of these mechanisms with the support of specially built
hardware circuitry and/or firmware executing on-chip. The Broadcom NetXtreme II provides rich and complete iSCSI HBA
functionality.

Figure 3: iSCSI Layers

Figure 4: iSCSI Ethernet Frame Encapsulation

The Broadcom NetXtreme II supports the iSCSI frame format, header/data separation, insertion and checking of the iSCSI
header and data CRCs, and direct data placement into the named iSCSI buffers. A deep command queue ensures optimal
utilization of the network for maximal bandwidth and a high number of I/O Operations Per Second (IOPS) under significantly
reduced CPU utilization.

Figure 5 on page 10 depicts a typical data flow between an iSCSI initiator and an iSCSI target. The Broadcom NetXtreme II
can be the core of an initiator HBA. The initiator's SCSI driver passes SCSI Control Data Blocks (CDBs) to the iSCSI layer
that sits atop the TCP/IP stack. On the target, a storage device (for example, a SCSI disk) sees SCSI commands and has
no knowledge of the iSCSI layer. The SCSI disk interprets the SCSI commands, executes them, and sends appropriate data
or replies to its local iSCSI layer, which transports them to the iSCSI on the initiator.
Broadcom Corporation
Document 57710_57711-PG200-R Theory of Operations Page 9

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Figure 5: iSCSI Architecture
Broadcom Corporation

Page 10 Theory of Operations Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
REMOTE PHY

The goal of traditional pass-through copper switch modules in a Blade Server environment is to provide the same or similar
functionality as a local copper PHY. Presently, pass-through modules only support a Gigabit Interface Connection (GBIC)
mode of operation. There are several limitations to this approach; The GBIC only supports functionality enabled by the
autonegotiation base page exchange of Clause 37 of the IEEE 802.3; limited to duplex, and pause resolution. The speed of
1 Gbps is assumed. Extended features such as 10 Mbps and 100 Mbps, jumbo frame support, Ethernet at wire-speed, and
so forth, are not supported and not possible.

Remote PHY addresses the need to provide a similar feature set as a local copper PHY. The remote PHY protocol is PHY
vendor independent since all communication is handled via the extension of clause 37 of the IEEE 802.3 specification.
Industry standard mechanisms are used to establish the link. The Remote PHY protocol uses the appropriate 1000BASE-
KX signaling as defined in the IEEE 802.3ap specification for backplane operation.

The Broadcom Remote PHY SerDes Autonegotiation Mode (BAM) utilizes the IEEE 802.3 next page capabilities in Clause
37 to support the Remote PHY feature. The remote copper PHY features are abstracted by mapping these features onto the
exchange of the next pages during the autonegotiation process. Explicit registers and the mapping of features are not
required by the link partner. This lowers the cost of ownership as new features can be easily supported by additional
capabilities and pages on the standardized autonegotiation exchange of pages. The Remote PHY feature set is supported
in hardware in the Broadcom NetXtreme II with the possibility of expanding the feature set under firmware control.

The Broadcom NetXtreme II supports the Remote PHY feature where the SerDes interfaces to a remote 10/100/1000BASE-
T copper PHY via a backplane. Since all the PHY management communication is performed in-band using the SerDes
interface during autonegotiation, no out-of-band Management Data I/O (MDIO) bus is required. Remote PHY supports all
standard functions of a 10/100/1000BASE-T copper PHY such as autonegotiation, forced speeds, Ethernet at wirespeed,
and auto MDIX functions.

A remote copper PHY is a stand-alone copper PHY transceiver that connects to the local MAC via a backplane and
communicates to another copper transceiver via category 5 (CAT5) copper cabling. The copper interface is governed by
Clauses 14, 24, 28, and 40 of IEEE 802.3 for 10T, 100T, autonegotiation, and 1000T, respectively. The SerDes interface is
governed by Clauses 36 and 37 of IEEE 802.3 for 1000-X as well as the Broadcom proprietary SerDes BAM.

BASIC OPERATION BETWEEN DEVICE AND REMOTE COPPER PHY

The remote copper PHY operates with two asynchronous autonegotiation processes running. One operates on the copper
media and is based on clause 28 of the IEEE 802.3 standard. The other operates on the SerDes media or backplane and is
based on Clause 37 of the IEEE 802.3 standard as well as the Broadcom proprietary SerDes BAM. There are some
connections between the two autonegotiation processes that allow one to restart the other.

The copper interface will restart the SerDes interface under the following conditions:

• The copper interface receives advertised abilities from its link partner that are different than the advertised abilities
transmitted on the SerDes interface. This includes 10,100, 1000T half duplex and full duplex, and pause settings.

• The copper link change (goes up or goes down)

• The copper autonegotiation changes from enabled to disabled and the current SerDes transmitted advertised abilities
are different from the register 0x04 SerDes advertisement register.

The SerDes interface will restart the copper interface under the following conditions:

• The SerDes interface receives advertised abilities from its link partner that are different than the advertised abilities
transmitted on the copper interface. This includes 10, 100 and 1000T half duplex and full duplex and pause settings.
Broadcom Corporation
Document 57710_57711-PG200-R Theory of Operations Page 11

BCM57710/BCM57711 Programmer’s Guide
09/25/09
• The SerDes autonegotiation changes from enabled to disabled and the current copper transmitted advertised abilities
are different from the register 0x09 copper advertisement register.

The SerDes interface will exchange autonegotiation base pages between the MAC/switch and the RemotePHY. Following
the base page, the next pages are exchanged.

The remote copper PHY updates all of its control settings from the MAC/Switch on entry to HCD/link (highest common
denominator) determination. The settings are stored internally by the remote copper PHY until one of the following occurs:

• Another sequence of next pages is exchanged after restarting the SerDes autonegotiation for any reason. If the new
next page exchange does not contain a MAC/Switch with remote copper capability, then the remote copper PHY
register settings revert back to the default settings. If it is a MAC/Switch with remote copper capability, then any changes
will be updated by the remote copper PHY.

• The local SerDes autonegotiation is disabled for any reason and detects valid idles from the serdes link partner (i.e.
parallel-detection). The remote copper PHY register settings will revert back to the default settings.

• The RemotePHY SerDes link partner sends SGMII autonegotiation code words and the RemotePHY automatically
changes to SGMII mode (if SGMII/GBIC auto-detection is enabled) and a base page is received without a selector
mismatch. The remote copper PHY register settings will revert back to the default settings.

The simplified hardware architecture is shown in Figure 6.

Figure 6: Simplified Hardware Architecture
Broadcom Corporation

Page 12 Theory of Operations Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
SERDES

The BCM57710/BCM57711 integrates dual XAUI™/10GBASE-CX4/10GBASE-KX4 transceivers to support the 1-/2.5-/10-
Gbps speeds of operation on both the ports. Each of the ports can be individually selected for XAUI or 10GBASE-CX4 or
10GBASE-KX4 or 1000BASE-KX or 2500BASE-KX mode of operation. The XAUI (10-gigabit attachment unit interface) is
referenced in the IEEE 802.3ae specification and it consists of four lanes each running at 2.5 Gbps (3.125 Gbaud) for an
aggregate bandwidth of 10 Gbps. A single lane of the XAUI can be configured to operate at either 1-Gbit or 2.5-Gbit data
rates.

There are two Ethernet ports coincident with the two XAUI ports.

Figure 7 on page 14 illustrates the top level multiplexing of the two XAUI interfaces (Unicore x4 1000/2500). The two 1000/
2500 BASE-KX SerDes interfaces shown are not used in the BCM57710 and are not connected in the BCM57711. The two
Unicore x4 blocks are connected to two instances of the 10-Gbps MAC (also known as Big MAC) via two 2:1 multiplexers.
The 2:1 multiplexers allow connecting any of the two Unicore blocks to any of the two Big MACs. When configured for 1/2.5
Gbps operation, the lane swap logic controls the two Unicore blocks so that a single lane can be controlled by the EMAC.
Broadcom Corporation
Document 57710_57711-PG200-R Theory of Operations Page 13

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Figure 7: Multiplexing b/w XAUI and 1000BASE-KX/2500BASE-KX
Broadcom Corporation

Page 14 Theory of Operations Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
MAC

As shown in Figure 7 on page 14, the BCM57710/BCM57711 implements one EMAC and one Big MAC for each of its two
ports. The EMAC is used for 1-Gbps/2.5-Gbps operation and Big MAC is used for 10-Gbps operation. Both the EMAC and
Big-MAC perform all of the following Ethernet MAC functionalities.

On the receive side:

• Adapts data presented at the frequency of the network clock to that of the system clock.

• Interprets /Idle/, /Start/, /Term/, and /Error/ special control characters.

• Recognizes the start and end of Ethernet packets.

• Recognizes packet framing errors.

• Strips the preamble from packets.

• Checks the FCS field for compliance to the IEEE CRC function.

• Optionally strips the FCS field from incoming packets.

• Eliminates all incoming packets less than 64 bytes in length.

• Truncates incoming packets of greater than a programmable size limit.

• Detects SAFC control frames and transfers them to the transmit processor.

• Eliminates all incoming MAC Control packets, or transfers them to the transmit processor for congestion management
support.

• Asserts an error signal for all packets passed to the system on which errors are detected.

• Recognizes Pause packets and signals the transmit section to hold off data transfers as necessary.

• Detects Link Fault Sequences

On the transmit side:

• Synchronizes data from the system to the network clock.

• Encapsulates the data in a valid Ethernet packet

• Flags outgoing packets of less than 64 bytes in length with an error.

• Truncates outgoing packets of size greater than a programmable limit and flags them with errors.

• As a programmable option per packet, either appends a valid FCS to all packets presented by the system, or keeps the
FCS unchanged, or replaces the FCS with a newly computed value.

• Generates and sends Pause packets as per IEEE 802.3 clause 31 either at the request of the system or upon receiving
a signal from the receive section of MAC.

• Maintains packet statistics

• Transmits Link Fault Sequences

The EMAC also provides the PHY management interface via the MDC/MDIO pins for all 1-/2.5-/10-Gbps speeds. Each of
the EMACs has an MDIO controller. The EMAC has to be out of reset for MDIO to work.
Broadcom Corporation
Document 57710_57711-PG200-R Theory of Operations Page 15

BCM57710/BCM57711 Programmer’s Guide
09/25/09
RECEIVE FRONT END

The Arbiter/Filter, Receive Buffer, Parser and Connection lookup blocks shown in the Figure 6: “Simplified Hardware
Architecture,” on page 12 constitute the Receive Front End (RFE) of the device. The RFE module receives the traffic from
the two ports and the internal loopback port, buffers the data, parses the packet headers, and searches for the connection
in the connection database. All the sub-blocks of RFE module are described below.

NETWORK INTERFACE GLUE

The Network Interface Glue (NIG) receives packets from two 10G MAC cores, and loop-back packets from the transmitter.
This block synchronizes the packets from the MAC cores to the system clock, performs the bus adaptations, and forwards
the packets to BRB. It is also responsible for counting packet length, discarding packets in case of backpressure, maintaining
per port EOP (end of packet) information, and collecting statistics.

ARBITER/FILTER

The arbiter/filter selects the port that gains the access to the BRB, decides whether an incoming packet should be written to
the BRB, the Mgmt Rx Buffer or both, or (in the case of congestion management frames) to the transmit processor and
selects between the Mgmt Tx packet, Host packet, and debug packet for transmission on the wire. It uses the Round Robin
algorithm to provide fairness between all write clients to the BRB.

BIG RECEIVE BUFFER

The Big Receive Buffer (BRB) is used to buffer packets (up to jumbo packet size) from each of the interfaces until they are
parsed and validated by the Parser and the TCP processing engine. The BRB is also used to absorb temporary traffic bursts,
where the input packet rate is higher than the device packet processing rate. The BRB is 128 KB in size and supports a 32-
Gbps input bandwidth and 32-Gbps output bandwidth. It is logically divided in to 256-byte blocks that are managed by link-
lists to optimize utilization.

Every incoming packet is written to the BRB as long as it has space for a new packet coming on a given port. Per port buffer
space guaranteed can be configured, while the remaining buffer space is shared between the two network ports and traffic
coming on the loopback interface from the transmitter. In parallel, the BRB sends a message to the Parser informing about
the new packet and its address in the buffer. The BRB also initiates the Pause frame transmission when it is almost full and
Pause is enabled.

PARSER

For every incoming packet, after the header is received, the BRB sends a message to the Parser with the corresponding port
number, the start block, Flush indication flag and the port tag. This message is queued until it can be handled by the Parser.
The queue is global for all the ports. The parser is responsible for parsing the Ethernet, IPv4, IPv6, TCP and UDP headers,
calculating the TCP/UDP checksum, calculating the MPA CRC assuming single aligned PDU and for building the messages
to the L4 Rx Processor (aka TCP-Receiver). The header parsing includes:

• Ethernet address type recognition

• Validation of version and length fields

• Fragments recognition

• Validation of IP header checksum

• TCP options parsing for time-stamp
Broadcom Corporation

Page 16 Theory of Operations Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
After the header parsing, messages are sent to the Context Fetch Controller (CFC). This unit is also commonly referred to
as a Memory Management Unit (MMU) for connection information, and to the searcher to calculate Hash on the TCP/IP 4-
tuple (for RSS). If the CFC cannot find the connection information in its internal cache, it requests the searcher to do a search
for the connection information in host memory and to load the connection context to its internal cache. Note that the parser
sends the Search message to the CFC only when the parsing is successful and the received packet is a TCP packet. After
the responses are returned from the CFC and the searcher, the Parser builds a message to the TCP-Receiver RISC (aka
TCP-Receiver STORM or L4 Rx Processor). The message mainly includes general parameters, header parsing information,
TCP parameters, some context parameters from the CFC, and the RSS Hash result from the searcher.

For every non-fragmented TCP packet, the TCP checksum is calculated. In addition, for each TCP packet, the MPA CRC is
also calculated simultaneously. The MPA CRC calculation is speculative and it assumes single aligned PDU in the TCP
packet. When checksum and MPA CRC calculations are completed, and the EOP information is received from the NIG, the
Parser generates a second message to the TCP-Receiver STORM, with the packet length, EOP info and the calculation
results. The split of information to TCP-Receiver STORM into two messages is done in order to save latency by starting the
TCP processing after the header is received but before the packet is fully received.

SEARCHER

The searcher is responsible for searching the connection ID of the received packet in the searcher database, in cases that
it is not cached in the CFC cache. The hardware supports up to 1,000,000 connections in the searcher database which is
located in host memory.

The search parameters are:

• IP source address

• IP destination address

• TCP source port

• TCP destination port

The searcher unit supports both IPv4 and IPv6, with different lengths search strings. In both cases it does search on a 4-
tuple comprising of TCP source port, TCP destination port, IP source address, and IP destination address fields. The
searcher supports add, delete and change commands that the host initiates and search commands that the CFC initiates.
In both cases it receives the request from the CFC block and sends the response back to the CFC.

TSTORM (aka L4 Rx Processor or TCP Rx Processor)

The TSTORM is responsible for the TCP processing and for modifying the packet data prior to ULP processing (for example,
header stripping and markers removal) for all the received packets. In the case of L4/L5 packets, it performs delineation, i.e.
identifies the boundaries of the ULP PDUs according to the specific protocol rules. A message is sent to the USTORM when
a complete PDU is ready, containing the ULP header and information about the PDU. In parallel, the TSTORM also removes
markers and validates CRC. The TCP receiver sends complete PDUs to the ULP receiver even if they were not received in
order. It also sends TCP information to CSTORM which uses that information to calculate the transmission window as well
as data to be sent to the far end in the transmitted TCP packets. In the case of L2 packets, it performs classification of the
packet into one out of up to 16 receive queues per port.

USTORM (aka L5 Rx Processor or ULP Rx Processor)

The USTORM receives the messages about new PDUs from TSTORM and is responsible for the ULP processing with the
flexibility to support different ULP protocols such as RDMA and iSCSI. The ULP processing includes validation of the packet
and identifying the address for placing the data over the PCI-E to the host memory. The data is moved from BRB to the
calculated address allowing direct data placement to the application buffer without need for additional Host CPU copy. Pre-
Broadcom Corporation
Document 57710_57711-PG200-R Theory of Operations Page 17

BCM57710/BCM57711 Programmer’s Guide
09/25/09
fetching data as part of the context load and centralized caching techniques are used to place the data with minimum latency.
The ULP processing is done even when the ULPs were received out of order.

XSTORM (aka Tx Processor)

The XSTORM is responsible for the ULP processing, TCP processing, and preparing a transmission command to the PBF
(Packet Builder and Framer) unit for all transmit packets. This unit works in conjunction with the Doorbell Queue (DQ) and
Timers blocks. The XSTORM is triggered by a doorbell that the host CPU rings with information about additional work. The
doorbell address can be mapped to user space application allowing kernel bypass. The DQ processes the doorbell and
updates the connection context (after loading the context thorough the cache controller). Decision rules are applied to decide
whether the new information should trigger STORM processing (for example, checking the TCP transmission credit). If so,
the connection ID enters a queue of connections that wait for processing. The XSTORM will process the connection
according to TCP and the ULP protocol of the connection. The XSTORM will then build and send a command to PBF with
the information of transmit packet data location in the host memory and how to build ULP and TCP/UDP headers.

CSTORM (aka Ack/Completion Processor)

The CSTORM is responsible for receiving the TCP acknowledge updates received from the far end, calculating the TCP
transmission window updates for the transmit unit, calculating which host work requests are completed, and sending
completion notifications to the host accordingly. The CSTORM is triggered by the TSTORM upon receiving the TCP
acknowledge updates. The CSTORM does TCP processing for calculating the transmission window and updates the
Transmitter unit. The CSTORM also sends messages to the transmitter for retransmission and for initiating the necessary
TCP protocol related timers. The CSTORM also notifies the Host about completion of tasks (for example, when confirming
that data of the write RDMA request was received by the far end) using the appropriate notification mechanism according to
the protocol (for example, when generating Completion Queue Element in RDMA and iSCSI, or advancing the transmit ring
consumer pointer in L2 and TOE).

SEGMENTATION AND FRAMING UNIT (AKA PACKET BUILDER AND FRAMER-PBF)

The PBF reads data from host buffers through PCIe, segments it to upper layer PDUs such as RDMA or iSCSI and TCP
segments, builds the headers, inserts the headers, markers and CRC, and finally transmits the packets. The PBF uses the
per connection context only for CRC calculation in parts. This is required for larger than TCP window ULP messages. The
PBF also implements the following functions.

• TCP and UDP checksum offload with any size of TCP/IP/Ethernet header of up to 254 bytes.

• Automatic TCP segmentation of large TCP packets when the TCP/IP/Ethernet header size is limited to 254B. This
automatic segmentation is also supported for the IPv6 header without options.

• Setting TCP Push flag on the last segment of a PDU.

• Automatic segmentation mode for segmentation of iSCSI PDUs and TOE segments. Single command will generate
multiple segments.

• Automatic RDMA DDP slicing in hardware. In this mode the PBF will duplicate the ULP header and advance the offset
between the different ULP slices (DDPs).

MARKER AND CRC REMOVAL (AKA ULP PACKET BUILDER-UPB)

The ULP packet builder is a generic packet manipulation unit. It can be used to verify CRC and remove markers, VLAN tags,
and CRC from the incoming network traffic. This block is used by the USTORM.
Broadcom Corporation

Page 18 Theory of Operations Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
PCIE

The PCIe bus is a high-bandwidth serial bus providing a low-pin count interface. The PCIe block implements the x8 PCIe
end-point interface and fully complies with PCIe specification v1.1. The PCIe block is also compliant with PCIe v2.0. The
PCIe block is responsible to serve memory access requests to the external host memory through PCIe bus. These can be
simple read/write requests or Context-Fetch requests. This block supports configurable address mapping for different
functionalities (e.g. doorbells and communication with STORMs). This block can be also used for intra-chip communication
between STORM processors. Refer to PCIe section of this document for more details on the PCIe interface and supported
features.

MANAGEMENT CONTROL PROCESSOR

The Management Control Processor (MCP) is an on-chip high performance RISC processor which executes the boot code
for chip initialization and configuration and any optional management firmware to support IPMI Pass-Through or UMP. On
every chip reset (soft reset or PCIe reset), the MCP will execute on-chip ROM code which loads the boot code from an
external NVRAM to the on-chip MCP scratchpad memory and starts executing the boot code. The boot code initializes and
configures some of the chip parameters for proper operation. If the device advanced management feature is enabled, the
boot code will also load the management firmware from the external NVRAM and starts executing it. The IPMI Pass-Through
firmware uses the SMBus interface to provide a pass-through interface to the BMC on the mother board. For UMP or NC-
SI, a 10/100 Mbps MAC is used and MII/RMII interface is supported for connection to BMC. The MCP also supports DMA
operations for data transfers between the UMP MAC FIFOs and the Ethernet MAC FIFOs. There are reserved buffers for
management packets to/from the external network and this ensures guaranteed delivery of management packets even when
there is congestion because of Host traffic.

DEVICE ADDRESS SPACE

This section provides the details of Host memory map and the internal MCP memory map of BCM57710/BCM57711
Ethernet Controller.

HOST BAR MEMORY MAP

The BCM57710/BCM57711 Ethernet Controllers support two BARs (see Figure 8 on page 22). The BAR0 memory map
includes all the device registers and memory space while the BAR1 memory map is the doorbell address space which
depends on the number of connections. Table 3 shows the BAR0 memory map. The GRC space of 4087 KB is expanded in
Table 4 on page 20. See the BCM57710/BCM57711 Register Definitions Document for details on various registers
supported in the BCM57710/BCM57711 Ethernet Controller.

Table 3: BCM57710/BCM57711 BAR0 Memory Map

Region Size Address

Reserved 8 KB 0x000000–0x001FFF

PCI configuration space (1) 1 KB 0X0020000–0X0023FF

Global Register Control (GRC) space (1) 4087 KB 0x002400–0x3FFFFF

USTORM internal memory (2) 64 KB 0x400000–0x40FFFF

CSTORM internal memory (2) 64 KB 0x410000–0x41FFFF

XSTORM internal memory (2) 64 KB 0x420000–0x42FFFF

TSTORM internal memory (2) 64 KB 0x430000–0x43FFFF
Broadcom Corporation
Document 57710_57711-PG200-R Theory of Operations Page 19

BCM57710/BCM57711 Programmer’s Guide
09/25/09
IGU internal memory (2) 64 KB 0x440000–0x44FFFF

Reserved 3.68 KB 0x450000–0x7FFFF

Table 4: BCM57710/BCM57711 GRC Space Register Offsets

Region Starting Address

Reserved 0x000000

PCI registers 0X002400

EMAC0 registers 0x008000

EMAC1 registers 0x008400

DBU registers 0x008800

MISC/AEU registers 0x00A000

DBG registers 0x00C000

NIG registers 0x010000

XCM registers 0x020000

PRS registers 0x040000

SRCH registers 0x040400

TSDM registers 0x042000

TCM registers 0x050000

BRB registers 0x060000

MCP registers 0x080000

UPB registers 0x0C1000

CSDM registers 0x0C2000

USDM registers 0x0C4000

CCM registers 0x0D0000

UCM registers 0x0E0000

CDU registers 0x101000

DMAE registers 0x102000

PXP registers 0x103000

CFC registers 0x104000

HC registers 0x108000

PXP2 registers 0x120000

PBF registers 0x140000

XPB registers 0x161000

Timer registers 0x164000

XSDM registers 0x166000

QM registers 0x168000

DQ registers 0x170000

TSEM registers 0x180000

CSEM registers 0x200000

XSEM registers 0x280000

Table 3: BCM57710/BCM57711 BAR0 Memory Map

Region Size Address
Broadcom Corporation

Page 20 Theory of Operations Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
See the "BCM57xx Register Definitions Document" for a detailed description of the registers available through this space.

USEM registers 0x300000

Note: The layout of internal memory space is defined by firmware running on the appropriate processor. This
information is not defined in this document and is subject to change.

Table 4: BCM57710/BCM57711 GRC Space Register Offsets

Region Starting Address
Broadcom Corporation
Document 57710_57711-PG200-R Theory of Operations Page 21

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Figure 8: BCM57710/BCM57711 BAR Memory Space
Broadcom Corporation

Page 22 Theory of Operations Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
MCP MEMORY MAP

The MCP memory map is shown in Figure 9. The MCP scratch pad in the BCM57710/BCM57711 Ethernet Controller starts
at 0x08000000 and its size is 64 KB, so the unused space following the MCP scratch pad starts at 0x08010000.

Figure 9: MCP Memory MAP

The MCP can access the device registers through the Register space, which starts at 0x60000000 and ends at 0x603FFFFF.
The Unused space following the Register space starts at 0x60400000. The Fast IO space starts at 0x80000000 and ends
at 0x8007FFFF.
Broadcom Corporation
Document 57710_57711-PG200-R Theory of Operations Page 23

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Section 3: NVRAM Configuration

NVRAM MAP

The NVRAM contains the following information:

• Boot strap

• Code directory

• Manufacturing Information

• Feature configuration information

• VPD-R information

• Licensing information

• Programs (PXE or management firmware images)

The base address for these regions is described in Table 5.

Table 5: NVRAM Map

Base Address Description

0x0000: 0x0013 Boot strap

0x0014: 0x00FF Code directory

0x0100: 0x044F Manufacturing Information

0x0450: 0x053F Feature Configuration Information

0x0540: 0x063F VPD

0x0640: 0x0817 Licensing Information (384*2 ports = 768 bytes)

0x0818: TBD Program Images (Bootcode, PXE, IPMI/UMP firmware, and so on)

– Reserved
Broadcom Corporation

Page 24 NVRAM Configuration Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
There is up to 1 KB of ROM code in the Broadcom NetXtreme II family that is executed by the Management Processor (MCP)
when the device is removed from reset. The major function of this ROM code is to load the initial boot strap from the NVRAM
to the scratch pad of the MCP and execute it.

Note: NVRAM parameters are stored in Big Endian format.

Table 6: Boot Strap Region

Offset Size (Bytes) Description

0x00 4 Magic number 0x669955AA that is used by the ROM code to identify valid boot strap.

0x04 4 CPU scratch pad physical address where boot strap will be copied to and execute.

0x08 4 Boot strap code len in DWORD. This length includes the 4-byte CRC-32 stored at the end of
the boot strap code. This is the length of first phase boot code when 2phase boot code is
used. The length of second phase bootcode is available in the header at the beginning of
second phase bootcode.

0x0C 4 Offset within NVRAM where boot strap code is found. This should be a physical address as
ROM loader code operates only on physical addresses.

0x010 4 CRC-32 of the Boot Strap header (offset 0x00 to 0x0F inclusive). This field should be
updated with correct CRC-32 value whenever any of the fields in Boot Strap region is
changed.
Broadcom Corporation
Document 57710_57711-PG200-R NVRAM Map Page 25

BCM57710/BCM57711 Programmer’s Guide
09/25/09
CODE DIRECTORY

The code directory is a table of executable binaries. Each binary may be loaded onto one of the embedded RISC processors
or it may be used by the host CPU. The executable images are located in the NVRAM map region (see “Program Images”
on page 43). The code directory region contains 16 directories of code with 12 bytes in each directory.

Table 7: Code Directory Region

Offset Size (Bytes) Description

0x14 4 Directory #0 Code SRAM address, relative to the designated CPU (see attribute field at
offset 0x18).

0x18 4 Directory #1 image type, attributes, and length:

Bit 31-28: Image Type. Following values for image types have been defined.

• 0x0: BC2 (2nd phase bootcode)

• 0x1: MBA (multiple boot agent host software)

• 0x3: UMP (Universal management port firmware)

• 0x8: IPMI_INIT (intelligent platform management initiative initialization firmware)

• 0x9: IPMI_SERV (IPMI service firmware)

• 0xD: ISCSI_BOOT (iSCSI Boot firmware)

• 0xE: BC1 (1st phase bootcode)

• Others: Reserved

Bit 27-24: Target CPU

• 0x0: None

• 0x1: Host

• 0x2: MCP

• 0x3–0xf: Reserved

Bit 23–2: Indicates the length of the image (plus the 4-byte CRC-32). It implies that the
maximum size per directory entry is 16 MB.

Bit 1–0: Reserved

0x1C 4 Directory #1 NVRAM Offset to image

0x20 12 Code Directory #2

0x2C 12 Code Directory #3

0x38 12 Code Directory #4

0x44 12 Code Directory #5

0x50 12 Code Directory #6

0x5C 12 Code Directory #7

0x68 12 Code Directory #8

0x74 12 Code Directory #9

0x80 12 Code Directory #10

0x8C 12 Code Directory #11

0x98 12 Code Directory #12

0xA4 12 Code Directory #13

0xB0 12 Code Directory #14
Broadcom Corporation

Page 26 Code Directory Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
MANUFACTURING INFORMATION

0xBC 12 Code Directory #15

0xC8 12 Code Directory #16

0xD4 20 Reserved

0xE8 20 Spare part number (similar to the PN field in the VPD)

0xFC 4 CRC-32 of the code directory (offset 0x14 to 0xFB inclusive)

Table 8: Manufacturing Information

Parameter Bytes Address Address (hex) Comments

Format revision 1 256 0x0100 Manufacturing format revision in ASCII. The current
version is ‘A’.

Reserved 1 257 0x0101 Reserved

Length of manufacturing
information

2 258 0x0102 Length of manufacturing information. It is set to 0x400.

Shared Hardware
Configuration

Bytes Address Offset Structure is described below.

Part Number 16 260 0x0104 This field is identical to PN in VPD-R region.

Configuration 4 276 0x0114 Bit 0:Mdio_voltage
0 – 1.2V
1 – 2.5V
MDIO voltage
 1.2V (default)

Bit 1: Reserved
Bit 2:Port swap
0 – Disabled
1 – Enabled
Port swap
0 – do not swap (default)
1 – swap
Bootcode will check port swap SPIO and XOR the value
of this parameter with the value read from SPIO (set by
BIOS according to BIOS menus) and sets the XOR
result to the NIG register
Reason:
There two scenarios for port swap:
1. Statically rename port 0 and port 1 - a board
parameter
2. Disable function 0 on BIOS menu. In this case, PCI
function 1 becomes the new function 0.
These two scenarios can co-exist, which is the reason
for the XOR.

Table 7: Code Directory Region (Cont.)

Offset Size (Bytes) Description
Broadcom Corporation
Document 57710_57711-PG200-R Manufacturing Information Page 27

BCM57710/BCM57711 Programmer’s Guide
09/25/09
config Bit 3:Beacon WOL_Enabled
0 – Disabled
1 – Enabled

Beacon in WoL
0 – Disabled (default)
1 – Enabled

Bits 7-4:reserved
Bits 10-8: Management Firmware selection type
0 – Default
1 – NC_SI
2 – UMP
3 – IPMI
4 – SPIO4_NC_SI_IPMI
5 – SPIO4_UMP_IPMI
6 – SPIO4_NC_SI_UMP

MFW select
0 – Default (default)
1 – NC-SI
2 – UMP
3 – IPMI
4 – SPIO4 (0-NC-SI, 1-IPMI)
5 – SPIO4 (0-UMP, 1-IPMI)
6 – SPIO4 (0-NC-SI, 1-UMP)
7 – Reserved
Bits 15–11: reserved

Table 8: Manufacturing Information (Cont.)

Parameter Bytes Address Address (hex) Comments
Broadcom Corporation

Page 28 Manufacturing Information Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
config Bits 19-16:Led Mode
0 – MAC1
1 – PHY1
2 – PHY2
3 – PHY3
4 – MAC2
5 – PHY4
6 – PHY5
7 – PHY6
8 – MAC3
9 – PHY7
10 – PHY9
11 - PHY11
12 - MAC4
13 - PHY8
block LED mode register:
0 – MAC1
1 – PHY1
2 – PHY2
3 – PHY3
4 – MAC2
5 – PHY4
6 – PHY5
7 – PHY6
8 – MAC3
9 – PHY7
10 – PHY9
11 – PHY11
12 – MAC4
13 – PHY8
14 – PHY1 (unused)
15 – PHY1 (unused)

config Bits 23-20:reserved
Bits 29-24:Autonegotiation type Enabled bitmask (6
bits)
Bit 24:CL37
Bit 25:CL73
Bit 26:BAM
Bit 26:Parallel Detection
Bit 28:SGMII Fiber Auto Detect
Bit 29:RemotePHY
Bit 0: CL37 AN enable mask
Bit 1: CL73 AN enable mask
Bit 2: BAM enable mask
Bit 3: Parallel detection mask
Bit 4: SGMII / fiber auto detect mask
Bit 5: Remote PHY enable mask

Note: If 0, not used when AN is enabled
Bits 31-30:reserved

Table 8: Manufacturing Information (Cont.)

Parameter Bytes Address Address (hex) Comments
Broadcom Corporation
Document 57710_57711-PG200-R Manufacturing Information Page 29

BCM57710/BCM57711 Programmer’s Guide
09/25/09
config2 4 280 0x0118 Bits 7–0: Reserved.

Bit 8: PCI Gen2
0 – Disabled
1 – Enabled
Enables PCIE gen 2. This option is not applicable to
BCM57710.
Bits 11-9: reserved
Bit 12: SMBus Timing
0 – 100 kHz
1 – 400 kHz
SM Bus timing configuration:
0 – 100 kHz
1 – 400 kHz
Bit 13: Hide port1
0 – Disabled
1 – Enabled

Bit 14: reserved
Bit 15: SPIO4 follows PERST

0 – Disabled
1 – Enabled
Use SPIO4 as output pin to follow PERST assertion
(output low if PERST is asserted)

config2 Bits 18 –16: PCIE Gen2 preemphasis
0 – HW
1 – 0dB
2 – 3_5dB
3 – 6_0dB
Set PCIE Gen 2 Preemphasis. This option is not
applicable to the BCM57710.
Bits 20-19: Fan Failure Enforcement
0 – PHY type
1 – Disabled
2 – Enabled

The fan failure mechanism is usually related to the PHY
type since the power consumption of the board is
determined by the PHY. Currently, a fan is required for
most designs with SFX7101, BCM8727 and BCM8481.
If a fan is not required for a board which uses one of
these PHYs, this field should be set to Disabled. If a fan
is required for a different PHY type, this option should
be set to Enabled.

Bits 22–21:ASPM Support
0 – L0s L1 enabled
1 – L0s disabled
2 – L1 disabled
3 – L0s L1 disabled
ASPM Power Management support
Bits 31–23:reserved

Table 8: Manufacturing Information (Cont.)

Parameter Bytes Address Address (hex) Comments
Broadcom Corporation

Page 30 Manufacturing Information Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
power_dissipated 4 284 0x011C Bits 15-0: reserved
Bits 23–16: Power management scale
0 - Unknown
1 – 0.1W
2 – 0.01W
3 – 0.001W
Bits 31–24: Power dissipated by common logic

ump_nc_si_config 4 288 0x0120 Bits 1–0: MII mode
0 – MII MAC
1 – MII PHY
2 – RMII
UMP/NCSI MII mode
Bits 7–2:reserved
Bits11–8: Reserved

Bits 31–12:reserved

board 4 292 0x0124 Bits 15–0: reserved
Bits 23–16: Board revision
Bits 31–24: Board version

Reserved 4 296 0x0128

Port Hardware
Configuration

Bytes Address Offset Structure is described below

pci_id 4 300 0: 0x012C
 1: 0x02BC

Bits 15–0: Vendor Device ID
PCI Device ID
MCP updates this field to PCIE-IP
Bits 31–16:Vendor ID
PCI Vendor ID
MCP updates this field to PCIE-IP

pci_sub_id 4 304 0: 0x0130
 1: 0x02C0

Bits 15–0:Subsystem Vendor ID
PCI Subsystem Vendor ID
MCP updates this field to PCIE-IP
Bits 31–16:Subsystem Device ID
PCI Subsystem Device ID
MCP updates this field to PCIE-IP

Power Dissipated
(D3:D2:D1:D0)

4 308 0: 0x0134
 1: 0x02C4

Note that data scale is at 0.1.
MCP updates this field to PCIE-IP

Power Consumed
(D3:D2:D1:D0)

4 312 0: 0x0138
 1: 0x02C8

Note that data scale is at 0.1.
MCP updates this field to PCIE-IP

Table 8: Manufacturing Information (Cont.)

Parameter Bytes Address Address (hex) Comments
Broadcom Corporation
Document 57710_57711-PG200-R Manufacturing Information Page 31

BCM57710/BCM57711 Programmer’s Guide
09/25/09
MAC Address 8 316 0: 0x013C

1: 0x02CC

Primary MAC address. The upper two bytes are unused
and must be 0.

iSCSI MAC Address
(Upper 16 bits are
unused)

8 324 0: 0x0144

 1: 0x02D4

The iSCSI MAC address.
The upper two bytes are unused and must be 0.

RDMA MAC Address
(Upper 16 bits are
unused)

8 332 0: 0x014C
 1: 0x02DC

The RDMA MAC address.
The upper two bytes are unused and must be 0.

SerDes configuration
matrix for forced/AN
mode (Tx pre-
emphasis:Rx equalizer)
(16 bits each)

4 340 0: 0x0154
 1: 0x02E4

16 bits for each direction (Tx/Rx) - currently not
supported by SW

Reserved 64 344 0: 0x0158
1: 0x02E8

XGXS backplane Rx
equalizer matrix coef.
(lane4:lane3:lane2:lane
1) (16bits for each lane)

8 408 0: 0x0198
 1: 0x0328

Option 75 must be enable so this option will have effect.
4 times 16 bits for all 4 lanes. In case external PHY is
present (not direct mode), those values will not take
effect on the 4 XGXS lanes. For some external PHYs
(such as 8706 and 8726) the values will be used to
configure the external PHY – in those cases, not all 4
values are needed.

XGXS backplane Tx
pre-emphasis matrix
coef.
(lane4:lane3:lane2:lane
1) (16bits for each lane)

8 416 0: 0x01A0
 1: 0x0330

Option 75 must be enable so this option will have effect.
4 times 16 bits for all 4 lanes. In case external PHY is
present (not direct mode), those values will not take
effect on the 4 XGXS lanes. For some external PHYs
(such as 8706 and 8726) the values will be used to
configure the external PHY – in those cases, not all 4
values are needed.

Reserved 256 424 0: 0x01A8

 1: 0x0338

lane_config 4 680 0: 0x02A8

 1: 0x0438

Bits 15–0:Lane swap configuration (16 bit)
0x1B1B – 01230123
0x1BE4 – 01233210
0xD8D8 – 31203120
0xE4E4 – 32103210
XGXS lanes order
Bits 31–16:reserved

Table 8: Manufacturing Information (Cont.)

Parameter Bytes Address Address (hex) Comments
Broadcom Corporation

Page 32 Manufacturing Information Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
external_phy_config 4 684 0: 0x02AC

 1: 0x043C

Bits 7–0:XGXS external PHY address (8 bits)
The external PHY MDC/MDIO address
Bits 15–8:XGXS external PHY type
0 – Direct
1 – BCM8071
2 – BCM8072
3 – BCM8073
4 – BCM8705
5 – BCM8706
6 – BCM8726
7 – BCM8481
8 – SFX7101
9 – BCM8727
10 – BCM8727_NOC
255 – Not Connected

Value of the external XGXS (four lanes) PHY. This will
determine the PHY driver, including register set
Bits 23–16:SerDes external PHY address (8 bits)
The external PHY MDC/MDIO address
Bits 31–24:SerDes external PHY type
0 – Direct
1 – BCM5482
255 – Not connected
value of the external SerDes (5th lane) PHY. This will
determine the PHY driver, including register set

speed_capability_mask 4 688 0: 0x02B0

 1: 0x0440

Bits 15–0: Speed capability mask (for D3) (2 bytes)
Bit 0:10M FULL
Bit 1:10M HALF
Bit 2:100M HALF
Bit 2:100M FULL
Bit 4:1G
Bit 5:2.5G
Bit 5:10G
Bit 6:12G
Bit 8:12.5G
Bit 9:13G
Bit 10:15G
Bit 11:16G
Bitmap of supported speeds. These values will be used
by bootcode (for WoL and Management)

speed_capability_mask Bits 31–16:Speed capability mask (for D0) (2 bytes)
Bit 16:10M FULL
Bit 17:10M HALF
Bit 18:100M HALF
Bit 18:100M FULL
Bit 20:1G
Bit 21:2.5G
Bit 21:10G
Bit 22:12G
Bit 24:12.5G
Bit 25:13G
Bit 26:15G
Bit 27:16G
Bitmap of supported speeds. These values will be used
by the drivers.

Table 8: Manufacturing Information (Cont.)

Parameter Bytes Address Address (hex) Comments
Broadcom Corporation
Document 57710_57711-PG200-R Manufacturing Information Page 33

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Reserved 8 692 0: 0x02B4

 1: 0x0444

Reserved

Checksum 4 1100 0x044C

Table 8: Manufacturing Information (Cont.)

Parameter Bytes Address Address (hex) Comments
Broadcom Corporation

Page 34 Manufacturing Information Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
FEATURE CONFIGURATION INFORMATION

Table 9: Feature Configuration Region

Shared Hardware Features Size (Bytes) Offset (d) Offset (h) Structure Description

config 4 1104 0x0450 Bit 0:BMC loopback mode
0 – Disabled
1 – Enabled
Enables BMC firmware to operate in loopback
mode (default: 0).
When this bit is set, MFW implements a
loopback on BMC packets till first command.

Bit 1: Override pre-emphasis configuration
0 – Disabled
1 – Enabled
Use the values from options 47 and 48
instead of the HW default values

Bit 2: reserved
Bit 3: NCSI Package ID assignment method
0 – SPIO
1 – NVRAM

Bits 5–4: NCSI Package ID
Bits 7–6: Reserved
Bits 10–8: Forces SF Mode
0 – MF allowed
1 – Forced SF
2 – SPIO4

Port Hardware Features

config 4 1108 0: 0x0454
 1: 0x04C8

Broadcom Corporation
Document 57710_57711-PG200-R Feature Configuration Information Page 35

BCM57710/BCM57711 Programmer’s Guide
09/25/09
config Bits 7–0: BARS size (Bar2: Bar1)
0 – Disabled
1 – 64K
2 – 128K
3 – 256K
4 – 512K
5 – 1M
6 – 2M
7 – 4M
8 – 8M
9 – 16M
10 – 32M
11 – 64M
12 – 128M
13 – 256M
14 – 512M
15 –1G

BAR size according to the following decoding
for BAR size (bytes):
0 – BAR is disabled
1 – 64K
2 – 128K
3 – 256K
4 – 512K
5 – 1M
6 – 2M
7 – 4M
8 – 8M
9 – 16M
10 – 32M
11 – 64M
12 – 128M
13 – 256M
14 – 512M
15 – 1G

Table 9: Feature Configuration Region (Cont.)

Shared Hardware Features Size (Bytes) Offset (d) Offset (h) Structure Description
Broadcom Corporation

Page 36 Feature Configuration Information Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
config Bits 23–8: Reserved
Bit 24: Magic Packet WoL
0 – Disabled
1 – Enabled

Out of the box Wake on LAN enable/disable
Bit 25: MBA
0 – Disabled
1 – Enabled

MBA enable/disable
Bit 26:Mgmt Firmware
0 – Disabled
1 – Enabled
Management firmware enable/disable
Bit 27: Forces expansion ROM advertise
0 – Disabled
1 – Enabled
If this bit is set, advertises expansion ROM
even if MBA is disabled
Bit 28: Reserved

config Bits 31-29: Optic Module Vendor
Enforcement
0 – No enforcement
1 – Disable Tx laser
2 – Warning message
3 – Power down

Table 9: Feature Configuration Region (Cont.)

Shared Hardware Features Size (Bytes) Offset (d) Offset (h) Structure Description
Broadcom Corporation
Document 57710_57711-PG200-R Feature Configuration Information Page 37

BCM57710/BCM57711 Programmer’s Guide
09/25/09
wol_config 4 1112 0: 0x0458

 1: 0x04CC

Bits 3 – 0: Reserved
Bit 4: Enabled WoL on ACPI matching
management pattern
0 – Disabled
1 – Enabled

The bit configures whether packets that
match both ACPI patterns and management
filtering rules should generate WoL or not.
1=if match on both WoL and management -
set power_on; 0=if match on both WoL &
management - don't set power_on.
Bits 31-5: Reserved

mba_config 4 1116 0: 0x045C

 1: 0x04D0

Bits 2–0: MBA Boot Protocol
0 – PXE
1 – RPL
2 – BOOTP
3 – iSCSI Boot
7 – None
Boot agent
00b: PXE
01b: RPL
10b: BOOTP
11b: iSCSI boot

Bits 9–3: Reserved
Bit 10: MBA hide setup prompt
0 – Disabled
1 – Enabled

Enable setup prompt message
Bit 11: MBA Setup Hot Key
0 – Ctrl S
1 – Ctrl B
Hot-key selection – If it is 0, the hot-key is Ctrl-
S; otherwise, it is Ctrl-B.

Table 9: Feature Configuration Region (Cont.)

Shared Hardware Features Size (Bytes) Offset (d) Offset (h) Structure Description
Broadcom Corporation

Page 38 Feature Configuration Information Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
mba_config Bits 19-12:Expansion ROM size
0 – Disabled
1 – 2K
2 – 4K
3 – 8K
4 – 16K
5 – 32K
6 – 64K
7 – 128K
8 – 256K
9 – 512K
10 – 1M
11 – 2M
12 – 4M
13 – 8M
14 – 16M
15 – 32M

Expansion ROM according to the following
decoding for BAR size (bytes):
 0 – BAR is disabled
 1 – 1K
 2 – 2K
 3 – 4K
 4 – 8K
 5 – 16K
 6 – 32K
 7 – 64K
 8 – 128K
 9 – 256K
 10 – 512K
 11 – 1M
 12 – 2M
 13 – 4M
 14 – 8M
 15 – 16M

mba_config Bits 23–20: MBA Delay Time (0-15)
Message timeout (in seconds).

Bits 25–24: MBA Boot Type
0 – Auto
1 – BBS
2 – Int18h
3 – Int19h

BIOS bootstrap methods
00b: Auto Detect
01b: BBS
10b: INT18h
11b: INT19h

Table 9: Feature Configuration Region (Cont.)

Shared Hardware Features Size (Bytes) Offset (d) Offset (h) Structure Description
Broadcom Corporation
Document 57710_57711-PG200-R Feature Configuration Information Page 39

BCM57710/BCM57711 Programmer’s Guide
09/25/09
mba_config Bits 29-26: MBA Link Speed
0 – Auto
1 – 10M Full
2 – 10M Half
3 – 100M Half
4 – 100M Full
5 – 1G
6 – 2.5G
7 – 10G CX4

MBA link configuration
0: MBA_LINK_SPEED_AUTO
1: MBA_LINK_SPEED_10HD
2: MBA_LINK_SPEED_10FD
3: MBA_LINK_SPEED_100HD
4: MBA_LINK_SPEED_100FD
5: MBA_LINK_SPEED_1GBPS
6: MBA_LINK_SPEED_2_5GBPS
7: MBA_LINK_SPEED_10GBPS_CX4
8: MBA_LINK_SPEED_10GBPS_KX4
9: MBA_LINK_SPEED_10GBPS_KR
10: MBA_LINK_SPEED_12GBPS
11: MBA_LINK_SPEED_12_5GBPS
12: MBA_LINK_SPEED_13GBPS
13: MBA_LINK_SPEED_15GBPS
14: MBA_LINK_SPEED_16GBPS
15: Reserved

mba_config Bits 31–30: Reserved

Reserved 4 1120 0: 0x0460

1: 0x04D4

mba_vlan_cfg 4 1124 0: 0x0464

1: 0x04D8

Bits 15–0: MBA VLAN value (16 bits)
VLAN value

Bit 16:MBA VLAN
0 – Disabled
1 – Enabled
Enable VLAN
Bits 31–17:reserved

Reserved 4 1128 0: 0x0468

1: 0x04DC

smbus_config 4 1132 0: 0x046C

 1: 0x04E0

Bits 7-0: SM Bus Address {one byte even hex
value (for example, b0=0)}
Bit 0: Reserved
Bits 7–1: Address value of the bus
Bits 31–8:reserved

Reserved 4 1136 0: 0x0470

 1: 0x04E4

Table 9: Feature Configuration Region (Cont.)

Shared Hardware Features Size (Bytes) Offset (d) Offset (h) Structure Description
Broadcom Corporation

Page 40 Feature Configuration Information Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
link_config 4 1140 0: 0x0474

 1: 0x04E8

Bits 7–0:reserved
Bits 10–8:Flow control
0 – Auto
1 – Tx
2 – Rx
3 – Both
4 – None
5 – SAFC Rx
6 – SAFC Tx
7 – SAFC Both
Driver default values

Bits 15–11:reserved
Bits 19–16:Link speed
0 – Auto
1 – 10M Full
2 – 10M Half
3 – 100M Half
4 – 100M Full
5 – 1G
6 – 2.5G
7 – 10G CX4
Driver default speed

Bits 23–20: Reserved

link_config Bits 25–24:Switch connected configuration
0 – 1G switch
1 – 10G switch
2 – auto detect
3 – one-time auto detect
Driver default HW interface (10G=XGXS=4
lanes, 1G=SerDes=5th lane)

Bits 31–26: Reserved

Table 9: Feature Configuration Region (Cont.)

Shared Hardware Features Size (Bytes) Offset (d) Offset (h) Structure Description
Broadcom Corporation
Document 57710_57711-PG200-R Feature Configuration Information Page 41

BCM57710/BCM57711 Programmer’s Guide
09/25/09
mfw_wol_link_cfg 4 1144 0: 0x0478

 1: 0x04EC

Bits 7–0: Reserved
Bits 10–8: Mfw Wol Flow control
0 – Auto
1 – Tx
2 – Rx
3 – Both
4 – None
5 – SAFC Rx
6 – SAFC Tx
7 – SAFC Both

Bits 15–11:reserved
Bits 19–16:Mfw Wol Link speed
0 – Auto
1 – 10M Full
2 – 10M Half
3 – 100M Half
4 – 100M Full
5 – 1G
6 – 2.5G
7 – 10G CX4

Management and Wake on LAN link speed
Bits 23–20:reserved

mfw_wol_link_cfg Bits 25–24: Mfw Wol Switch connected
configuration
0 – 1G switch
1 – 10G switch
2 – auto detect
3 – one-time auto detect

Management and Wake on LAN HW interface
(10G=XGXS=4 lanes, 1G=SerDes=5th lane)

Bits 31–26:reserved

Reserved 76 1148 0: 0x047C

1: 0x04F0

CRC of the feature
configuration information
block

4 1300 0x053C

Table 9: Feature Configuration Region (Cont.)

Shared Hardware Features Size (Bytes) Offset (d) Offset (h) Structure Description
Broadcom Corporation

Page 42 Feature Configuration Information Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
VIRTUAL PRODUCT DATA REGION

PROGRAM IMAGES

The boot code, option ROM firmware, and other value added optional firmware (such as UMP firmware and IPMI firmware)
are stored in the Program Images region of NVRAM. All entries in this region are subject to relocation, provided that their
corresponding entries in the Code Directory region are appropriately updated. Table 11 shows the Program Images region.

Table 10: Virtual Product Data Region

Virtual Product Data (VPD) Size (bytes) Offset (d) Offset (h) Structure Description

Read only VPD string +
VPD-R

128 1304 0x0540 Read-Only field contains NULL-
terminated product name string.
See note1
Read only VPD string is up to 48 bits

Note1: supported fields:
Product Name: The default value is
Broadcom NetXtreme II Ethernet
Controller.

VPD-W 128 1432 0x05C0 VPD-R.

Table 11: Program Images Region

Offset Size (bytes) Description

0x808 Up to 256,000–0x818
bytes

This region contains bootcode, PXE binary, IPMI firmware, UMP
firmware, and so forth.
Broadcom Corporation
Document 57710_57711-PG200-R Virtual Product Data Region Page 43

BCM57710/BCM57711 Programmer’s Guide
09/25/09
CALCULATING THE CRC 32 CHECKSUM

The following shows the C code for calculating the 32 bit CRC of given data in Manufacturing_Info[] array.

typedef unsigned long u32;
#define MANUFACTURING_INFO_SIZE140
#define CRC32_POLYNOMIAL 0xEDB88320
char Manufacturing_Info[MANUFACTURING_INFO_SIZE];

void main()
{
u32 crc;
crc = ~util_gen_crc(Manufacturing_Info, MANUFACTURING_INFO_SIZE - 4, 0xffffffff);
*((u32 *)&Manufacturing_Info[MANUFACTURING_INFO_SIZE - 4]) = crc;
}
u32 util_gen_crc (
char *pcDatabuf, // Pointer to data buffer
u32 ulDatalen, // Length of data buffer in bytes
u32 ulCrc_in) // Initial value
{
char data;
u32 idx, bit, crc;
crc = ulCrc_in;
for (idx = 0; idx < ulDatalen; idx++) {
data = *pcDatabuf++;
for (bit = 0; bit < 8; bit++, data >>= 1)
{
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CRC32_POLYNOMIAL : 0); } } return crc;
}

}
}

Broadcom Corporation

Page 44 Calculating the CRC 32 Checksum Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
FLASH CONTROLLER

The Broadcom NetXtreme II device has a flexible non-volatile memory system that supports up to 20 MHz Serial Flash
through a dedicated four-signal SPI interface. The Flash Controller state machine provides software access to the external
Serial SPI Flash memory device. Reads and writes to the Flash memory device are performed by reading and writing
MCP_REG_MCPR_NVM_COMMAND registers in the device register space. Figure 10 shows the block diagram of the
Flash controller state machine and its interfaces.

Figure 10: Flash Controller State Machine and Interfaces

The main features of this interface include the following:

Provides automated sequencing FSM that implements the following commands:

• 32-bit Word Write

• 32-bit Word Read

• 32-bit String Read

• Page Erase

Provides native support for listed parts with strap pin selection of power-up defaults.

Provides a direct bit-bang control over interface pins.

Note: For a list of the serial Flash devices supported by a given device, please refer to its latest data sheet.
Broadcom Corporation
Document 57710_57711-PG200-R Flash Controller Page 45

BCM57710/BCM57711 Programmer’s Guide
09/25/09
SELF CONFIGURATION

A feature of the Flash controller is that it is self-configuring on reset, using pull-up and pull-down straps on the external SPI
pins. Two Flash device vendors are natively supported: Atmel and ST Microelectronics. However, other vendors may be
supported using bit-bang accesses. Configuration is automatically performed upon reset for the natively supported Flash
devices.

Software does not need to setup any registers inside Flash device before usage. Device type and device commands are
au tomat ica l l y con f igured based on s t rap va lues. The de tec ted s t rap va lues a re re f lec ted in the
MCP_REG_MCPR_NVM_RECONFIG register. The Flash controller hardware will automatically configure device size by
issuing a read of the device's status or ID register upon exiting reset. The configured device size can be read from the
MCP_REG_MCPR_NVM_CFG4 register. Both CFG4 and RECONFIG registers allow the default auto-configuration settings
to be over-ridden by software or firmware. Table 12 shows the NVRAM strapping table. Although there are four straps,
allowing for sixteen configurations, these are broken down into only two modes of functional timing and command words,
one for each vendor (flash_straps[3:0] (SO,SI,CS,SCLK) = 4'b1XXX = Atmel; flash_straps[3:0] (SO,SI,CS,SCLK) = 4'b0XXX
= ST).

Table 12: NVRAM Strapping Table

SO SI CS SCLK Device

0 0 0 0 Reserved

0 0 0 1 Reserved

0 0 1 0 Reserved

0 0 1 1 Reserved

0 1 0 0 Reserved

0 1 0 1 Reserved

0 1 1 0 ST M45PE10

ST M45PE20

ST M45PE40

ST M45PE80

0 1 1 1 Reserved

1 0 0 0 Reserved

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Atmel AT45DB011B

Atmel AT45DB021B

Atmel AT45DB041B

Atmel AT45DB081B

Atmel AT45DB161D

Atmel AT45DB321C

Atmel AT45DB642D

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved
Broadcom Corporation

Page 46 Self Configuration Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
ATMEL PAGE SIZES

Atmel pages are typically 264 Bytes (for devices 8 Mbit or less) whereas ST pages are 256 bytes, and therefore Atmel
accesses require special consideration. The Flash controller state machine supports two modes of reads and writes for these
devices, selectable via the MODE_256 bit in the MCP_REG_MCPR_NVM_COMMAND register. One mode of access is
used to limit the pages size to 256-byte pages. The other mode is a legacy mode used to support the full 264-byte pages.

MODE_256

When using the 256-byte mode (MODE_256 bit set to 1) with Atmel devices, the address provided in the ADDRESS[23:0]
register is broken down into 16 bits of page address (i.e., ADDRESS[23:8]) and 8 bits of byte address (i.e., ADDRESS[7:0]).
Since these devices require 9 bits of byte address; the Flash controller hardware will automatically set the ninth bit (i.e., bit[8])
to 0. When writing to the Atmel device, software must ensure the LAST bit is set when writing to byte location 0xFF. When
reading from the Atmel device, hardware will automatically close the page after reading from location 0xFF and then open
the next page; this will be transparent to software. Larger Atmel devices, up to 64 Mbits are supported. The 16 Mbit and 32
Mbit Flash devices use 528-byte pages; but the page sizes will be limited to 512 bytes in this mode (hardware will always set
the bit[9] to 0). Similarly, the 64 Mbit Atmel devices use 1056 Byte pages; but the hardware will always set the bit[10] to 0.
The bits 5:4 of the MCP_REG_MCPR_NVM_CFG4 register indicate and control which address bit will be set to 0.

Legacy Mode

When using the 264 Byte legacy mode (MCP_REG_MCPR_NVM_COMMAND.MODE_256 bit set to 0) with Atmel devices,
the address provided in the ADDRESS[23:0] register is broken down into 15 bits of page address (i.e., ADDRESS[23:9]) and
9 bits of byte address (i.e., ADDRESS[8:0]). This ADDRESS is basically passed through to the device. To use Legacy mode,
it is required to support a logical addressing scheme that allows all supported Flash devices to be accessed in a consistent
manner through a single, contiguous range of addresses. An example is provided below illustrating the holes that will be
created in the NVRAM physical address map because of page size not aligning to any power of 2.

Example: The Atmel® AT45DB011B is organized into 512 pages with 264 bytes per page. It uses nine address bits to
reference an individual page (A17 to A9) and nine address bits to access an individual byte within a page (A8 to A0). This
means that byte addresses 0 to 263 access actual data while addresses 264 to 511 do not, creating a hole in the address
map. (The byte address actually wraps around to 0).

Implementing the logical addressing scheme as discussed above requires logical to physical address mapping. Listed below
is the C code for logical to physical address mapping that is required when Legacy Mode is used for accessing the Atmel
Flash devices whose page size is not aligned with any power of 2.

Logical to Physical Address Mapping Example Code

The following code is used to translate between logical and physical addresses for the Atmel AT45DB011B Flash device
when Legacy Mode is used (MCP_REG_MCPR_NVM_COMMAND.MODE_256 bit set to 0).

/* Buffered Atmel Flash (Atmel AT45DB011B) address mapping functions */
#define BUFFERED_FLASH_PAGE_POS 9
#define BUFFERED_FLASH_BYTE_ADDR_MASK ((1<<BUFFERED_FLASH_PAGE_POS) - 1)
#define BUFFERED_FLASH_PAGE_SIZE 264
#define BUFFERED_FLASH_PHY_PAGE_SIZE 512

typedef unsigned int u32;

/* Convert a given Logical Address to Physical Address */
u32 nvram_LogicaltoPhysicalAddress (u32 address) {
Broadcom Corporation
Document 57710_57711-PG200-R Atmel Page Sizes Page 47

BCM57710/BCM57711 Programmer’s Guide
09/25/09
u32 ad = address / BUFFERED_FLASH_PAGE_SIZE;
return (ad << BUFFERED_FLASH_PAGE_POS) + (address % BUFFERED_FLASH_PAGE_SIZE);
}

/* Convert a given Physical Address to Logical Address */
u32 nvram_PhysicaltoLogicalAddress (u32 address) {
return (address >> BUFFERED_FLASH_PAGE_POS) * BUFFERED_FLASH_PAGE_SIZE + (address &
BUFFERED_FLASH_BYTE_ADDR_MASK);

Bit Bang and Pass Modes

A manual bitbang mode is supported. Using this mode, software can directly control the SPI pins to the flash via register
writes. This includes toggling SCLK. Software must be cautious of the page boundaries when using bitbang mode. The
bitbang mode is enabled by setting the MCP_REG_MCPR_NVM_CFG1:BITBANG_MODE bit to 1. When bitbang mode is
enabled , the b i t s [3 :0] o f MCP_REG_MCPR_NVM_WRITE, MCP_REG_MCPR_NVM_ADDR, and
MCP_REG_MCPR_NVM_READ registers are used to control the SPI signals.

A semi-automatic pass mode is also supported. This is a more automated version of the bitbang mode. Using this pass
mode, software can send a serial stream of bits to the flash via register writes. As in normal operation, hardware will
deassert/ assert the CS_L based on the FIRST/LAST bits in the MCP_REG_MCPR_NVM_COMMAND register and will
toggle the clock. However, unlike normal operation in which hardware issues the command/address/data to the device,
hardware instead will serially shift out an 8 bit value written by software. The pass mode is enabled by setting the
MCP_REG_MCPR_NVM_CFG1:PASS_MODE bit to 1.

Note: All of the NVRAM addresses listed in the Code Directory are given as logical addresses. It is up to the
application to convert these logical addresses to physical addresses if the NVRAM device requires such
translation. The only exception to this rule is the offset field in the NVRAM Bootstrap region. This offset is given
as a physical address to reduce the size and complexity of the ROM code executed by the management processor
(MCP) when the reset is de-asserted.
Broadcom Corporation

Page 48 Atmel Page Sizes Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
PROGRAMMING THE NON-VOLATILE MEMORY

Access to the non-volatile memory interface is controlled through internal configuration, command, and status registers in
the NVRAM register block. The NVRAM can be accessed with automated 32-bit read and write commands or configured for
bit-bang operation through the NVM control registers. A semaphore register (MCP_REG_MCPR_NVM_SW_ARB) allows up
to four software entities to share access to the NVRAM device.

Note: Request level 0 is the highest priority arbitration request level and is reserved for BCM57710/BCM57711
firmware/ boot code. See the Broadcom Linux or FreeBSD drivers for an example of NVRAM Access code.
Broadcom Corporation
Document 57710_57711-PG200-R Programming the Non-Volatile Memory Page 49

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Section 4: Data Structures

HOST MEMORY L2 DATA STRUCTURES

This section describes the device data structures that need to be maintained by the L2 device driver in host memory. These
data structures are subject to change, and correspond to the firmware version of the device. As an example, see Appendix
D "bxe_hsi.h". All host memory structures that are used to pass data between the Broadcom NetXtreme II and the driver
must be in locked system memory. Locking prevents memory from being swapped to disk or being moved so that it maintains
a consistent physical memory address from the device's point of view. The L2 data structures are defined for use between
the host driver software, the device firmware and the device hardware.

VIRTUAL VERSUS PHYSICAL ADDRESS VIEWS

Data buffers are used to store payload data that is moving between the Ethernet controller, driver, host operating system,
and application. These are always allocated by the operating system. On host operating systems that provide virtual memory,
the allocated memory will appear to exist at different addresses (and may even appear to be fragmented) depending on the
point of view. In Table 10: “Virtual Product Data Region,” on page 43, the driver sees a single, contiguous virtual memory
block, while the Broadcom NetXtreme II sees the same memory as four discrete physical memory blocks, because the host
operating system will allocate multiple pages (for example, 4 KB on many systems). For the data buffer to be accessible by
the Broadcom NetXtreme II hardware, it must be locked into host physical memory and converted into a list of one or more
physical address/length pairs. Normally, this physical view of a data buffer is carried in a Buffer Descriptor Chain (BD Chain),
which is described in “Buffer Descriptor Chains” on page 52.
Broadcom Corporation

Page 50 Data Structures Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Figure 11: Virtual Address versus Physical Address View
Broadcom Corporation
Document 57710_57711-PG200-R Host Memory L2 Data Structures Page 51

BCM57710/BCM57711 Programmer’s Guide
09/25/09
BUFFER DESCRIPTOR CHAINS

A given number of pages will be allocated by the driver and linked together to form a page chain. Each page will hold an
integer number of fixed size records (usually 16 bytes), called BDs (Buffer Descriptors). All pages in a chain will be used for
storing and passing the BDs between the driver and the device and hence these chains are referred to as BD chains
throughout this document. The last BD in each page will point to the first BD in the next page, where the last BD in the last
page will point to the first BD of the first page. The motivation for this chain structure is in order to not force allocating a big
chunk of contiguous physical memory, but to allow the pages to reside on different physical areas. Figure 12 shows a linked
list of free pages, a chain (chain#1) of 3 pages, and another chain (chain#2) of 1 page.

Figure 12: Chain With Multiple Pages
Broadcom Corporation

Page 52 Host Memory L2 Data Structures Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Because the Broadcom NetXtreme II supports bus-mastering, it is able to update chains independently of the driver. The
driver maintains one or more Tx BD chains for transmit packets and one or more Rx BD chains for receive packets. In the
case of packets being sent out onto the Ethernet, the driver adds BDs to the Tx chain and the device consumes the BDs
from Tx chain. In this case, the driver is referred to as a writer and the device is referred to as a reader. In the receive
direction, these roles are reversed and the device becomes the writer of the Rx chain while the driver takes on the role of a
reader. Because a reader and writer may access a chain independently of each other, the writer will maintain a producer
index (also known as the head) that points to the next entry to be written, while the reader will maintain a consumer index
(also known as the tail) that will track the next entry to be read. When the producer and consumer indices are the same, the
chain is empty. At reset, all indices are 0, and they increment by 1 for every record passed in the chain. If records are skipped
at the end of a chain page, the index will be incremented to account for this. The record offset within a chain page can always
be determined from the index (index MOD records_per_page). The driver allocates the Rx and Tx BD chains, statically, once
at initialization time. They do not shrink or grow dynamically at runtime. A BD chain can be implemented with an array of
page pointers. For each BD chain implemented by the driver, the driver should maintain the virtual and physical addresses
of all the pages, the producer and consumer indices of the chain, a pointer to hardware updated consumer or producer index
of the chain in status block, and other parameters like number of BDs used.

RX BUFFER DESCRIPTOR FORMAT

The firmware today assumes only 1 Rx BD to be used for receiving a single packet. This may change in the future to facilitate
the header and data of a packet to be DMAed to separate buffers. With the restriction of 1 Rx BD for a packet, it is required
that the host buffer associated with an Rx BD is large enough to receive an Ethernet MTU-sized packet. So, when Jumbo
Frames are supported, each host buffer should be a single contiguous buffer of size larger than 9600 Bytes. The Rx BD
structure in little endian format is as follows:

struct eth_rx_bd
{
uint32_t addr_lo;
uint32_t addr_hi;
};

addr_lo: The lower 32-bits of the 64-bit physical address of host memory buffer.

addr_hi: The upper 32-bits of the 64-bit physical address of host memory buffer.

Next Page Rx BD

The last BD in each page of the Rx BD chain, used to point to the address of the next BD at the beginning of the next page
of the BD chain, has the following format.

struct eth_rx_next_bd

{

uint32_t addr_lo;

uint32_t addr_hi;

uint8_t reserved[8];
};

addr_lo: The lower 32-bits of the 64-bit physical address of first BD of the next page in Rx BD chain.

addr_hi: The upper 32-bits of the 64-bit physical address of first BD of the next page in Rx BD chain.
Broadcom Corporation
Document 57710_57711-PG200-R Host Memory L2 Data Structures Page 53

BCM57710/BCM57711 Programmer’s Guide
09/25/09
RX COMPLETION QUEUE ENTRY FORMAT

The BCM57710/BCM57711 supports the Rx Completion Queue for indicating the Rx completions (both fast path
completions and slow path completions) to the driver. The RCQ (Rx Completion Queue) is also a page chain with each page
in the chain containing multiple entries called CQEs (Completion Queue Entries). The device is the writer (producer) to this
chain and the driver is the reader (consumer) of this chain. A received packet will consume an Rx BD from the Rx BD chain
and produces a fast path CQE in the Rx Completion Queue. A posted slow path request (also referred to as ramrod in this
document) by the driver, is processed by the device firmware and completion of the processing is indicated back to the driver
by producing a ramrod CQE in the Rx Completion Queue. The number of CQEs in RCQ is usually maintained the same as
the number of Rx BDs in the RX BD chain in order to provide completion indications for all the packets that have consumed
an Rx BD. For L2, the size of CQE and the size of Rx BD are the same, and hence the number of pages in the RCQ is the
same as the number of pages in the Rx BD chain. The structure of Rx CQE in little endian format is described below.

The CQE can be either a fast path CQE or ramrod CQE or the next_page CQE and hence the below union definition for the
Rx CQE.

union eth_rx_cqe

{
struct eth_fast_path_rx_cqe fast_path_cqe;
struct common_ramrod_eth_rx_cqe ramrod_cqe;
struct eth_rx_cqe_next_page next_page_cqe;

};

Fast Path Rx CQE

This fast path CQE is for indicating the completion of an Rx packet. The structure of fast path CQE in little endian format is
described below.

struct eth_fast_path_rx_cqe {
uint8_t type_error_flags;
uint8_t status_flags;
uint8_t placement_offset;
uint8_t queue_index;
uint32_t rss_hash_result;
uint16_t vlan_tag;
uint16_t pkt_len;
uint16_t len_on_bd;
struct parsing_flags pars_flags;
uint16_t sgl[8];

};

type: error_flags: Bit 0 indicates a fast path rx entry when it has a 0 value.

status_flags: See the Appendix of this document for a list of bit definitions.

placement_offset: This field specifies the placement offset in bytes from the start of the Rx buffer.

rss_hash_result: This field is the RSS Toeplitz hash result. Used only when RSS is enabled.

vlan_tag: This field is the Ethernet VLAN tag stripped from a tagged packet. Valid only VLAN tagged packets.
Broadcom Corporation

Page 54 Host Memory L2 Data Structures Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
pkt_len: This field is the length of the received packet in bytes, including the headers and Ethernet CRC.

tcp_csum: This field is the TCP checksum value as calculated by the Parser state machine.

parsing_flags: This field specifies the parsing information for a given Rx packet.

struct parsing_flags
{
u16_t flags;
};

Ramrod Rx CQE

The ramrod CQE indicates completion of a posted slow path event (ramrod) to the device. The structure of ramrod Rx CQE
in little endian format is described below.

struct common_ramrod_eth_rx_cqe

{
uint8_t ramrod_type;
uint8_t conn_type;
uint16_t reserved1;
uint32_t conn_and_cmd_data;
struct ramrod_data protocol_data;
uint32_t reserved2[4];
};

ramrod_type: This indicates whether this entry is a fast path CQE or ramrod CQE.

conn_type: This indicates the connection type. Listed below are the defined connection types. Note that only the last 3 bits
of this field are used. For all L2 packets, the conn_type is ETH_CONNECTION_TYPE.

protocol_data: This field specifies the protocol specific data. For Ethernet packets, this field provides the information as
specified in the eth_init_ramrod_data structure below.

Next Page Rx CQE

The next page CQE is used for chaining the pages of RCQ. It points to the first CQE of the next page in the RCQ.

struct eth_rx_cqe_next_page

{
uint32_t addr_lo;
uint32_t addr_hi;
uint32_t reserved [6];

};

addr_lo: The lower 32-bits of the 64-bit physical address of first CQE of the next page in RCQ.

addr_hi: The upper 32-bits of the 64-bit physical address of first CQE of the next page in RCQ.
Broadcom Corporation
Document 57710_57711-PG200-R Host Memory L2 Data Structures Page 55

BCM57710/BCM57711 Programmer’s Guide
09/25/09
TX BUFFER DESCRIPTOR FORMAT

The device supports scatter-gather DMA mechanism by supporting the use of 1 or more BDs for transmitting a given packet.
The structure of Tx BD in little endian format is described below.

struct eth_tx_bd
{

uint32_t addr_lo;

uint32_t addr_hi;

uint16_t nbd;

uint16_t nbytes;

uint16_t vlan;

struct eth_tx_bd_flags bd_flags;

uint8_t general_data;
};

addr_lo: The lower 32-bits of the 64-bit physical address of host memory buffer.

addr_hi: The upper 32-bits of the 64-bit physical address of host memory buffer.

nbd: The total number of BDs, including the parse BD, used for a given Tx packet. This field is only relevant in the first BD
(also called start BD) of a Tx packet.

nbytes: The size of the Tx buffer in Bytes.

vlan: The 16-bit VLAN Tag information for a given Tx packet. The LSB 12 bits are the VLAN ID, the next MSB bit is the CFI,
and the next 3 MSB bits are the 802.1p priority bits.

bd_flags: This structure defines the following BD flags.

struct eth_tx_bd_flags
{

uint8_t as_bitfield;
};
Broadcom Corporation

Page 56 Host Memory L2 Data Structures Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Tx Parsing Information BD

This Parsing Information BD is required only when either the checksum is offloaded or an LSO/GSO packet is being
transmitted. This BD carries the necessary header parsing information of a given Tx packet to aid the device to quickly
calculate the required IP/TCP checksums and/or some of the TCP/IP header fields for LSO/GSO packets. The structure of
this parsing information BD in little endian format is given below.

struct eth_tx_parse_bd

{

uint8_t global_data;

uint8_t tcp_flags;

uint16_t ip_hlen; uint8_t_cs_offset;

uint16_t total_hlen;

uint16_t lso_mss;

uint16_t tcp_pseudo_csum;

uint16_t ip_id;

uint32_t tcp_send_seq;
};

global_data: This field carries the global parsing information of a given Tx packet. Listed below are the various bit fields
embedded in this field.

tcp_flags: This field specifies TCP parsing information to the device and is relevant only when a given packet is an LSO
packet.

ip_hlen: This field specifies the length of IP header, including IP options, in WORDs.

total_hlen: This field specifies the length of Ethernet, IP, and TCP headers.

lso_mss: This field specifies the MSS (Maximum Segment Size) for TCP segmentation. This is relevant only for LSO/GSO
packets.

tcp_pseudo_csum: This field carries the pseudo header checksum value calculated with the length field as zero.

ip_id: This field specifies the IP identifier in the IP header of the given packet. Used only with the LSO packet.

tcp_send_seq: This field specifies the TCP Send Sequence Number in the TCP header of the given packet. Used only with
the LSO packet.
Broadcom Corporation
Document 57710_57711-PG200-R Host Memory L2 Data Structures Page 57

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Next Page Tx BD

The last BD in each page of the Tx BD chain, used to point to address of the next BD at the beginning of the next page of
the BD chain, has the following format.

struct eth_tx_next_bd

{

uint32_t addr_lo;

uint32_t addr_hi;

uint8_t reserved[8];
};

addr_lo: The lower 32-bits of the 64-bit physical address of first BD of the next page in Tx BD chain.

addr_hi: The upper 32-bits of the 64-bit physical address of first BD of the next page in Tx BD chain.

STATUS BLOCK FORMAT

There are a total of 17 status blocks per function: 16 status blocks for fast path, and 1 default status block for slow path. Each
of these 16 fast path status blocks contains a USTORM structure and a CSTORM structure. The default status block contains
structures for all the 4 STORMs (USTORM, CSTORM, TSTORM, and the XSTORM). In addition, it contains the attention
bits. Each of the 17 status blocks has its own status_block_id which is a unique identifier for each port/RSS (if any)/ STORM
combination.

The driver allocates the host memory for the status block and configures the device with the physical address of the status
blocks in host memory. The device updates the status block in host memory upon the triggering of an event like link status
change or the host coalescence triggering upon Rx and/or Tx packet completions. Each of the status blocks contains an
index which will increment by 1 with every update of that status block in host memory. The driver also maintains a local copy
of each of the status blocks and compares the local copy index with the index in the device status block in order to determine
if there are any new events that need to be serviced. The driver checks for updates in the status blocks either at regular
intervals in case of polling mode or upon interrupt.

Note that each status block supports multiple protocols. For example; the status block for CPU_ID 3 can support operations
for a L2 NIC, an L4 stream and iSCSI operations at the same time.

Fast Path Status Block

The BCM57710/BCM57711 supports up to 16 fast path status blocks. Each of these status blocks has updates from the
USTORM and CSTORM. Refer to "bxe_hsi.h" in the appendix, or in the open source driver. Note that the reserved fields are
used for alignment purposes. The name "fast path" implies that these status blocks are used within the critical time context
of transmitting and receiving packets.

Default Status Block

There is only one default status block per function. The structures are defined in the "bxe_hsi.h" found in the appendix. Note
that the fields marked as reserved are used for alignment purposes. The name "slow path" is used to imply tasks including
the default status block, which are not as time critical as the network traffic tasks.
Broadcom Corporation

Page 58 Host Memory L2 Data Structures Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Section 5: Host Driver Flows

This section describes the data flows of L2 and L4 traffic through the chip and driver.

DEVICE INITIALIZATION AND SHUTDOWN

Use the Broadcom Open Source Linux or FreeBSD drivers as a companion reference for this section.

The BCM57710/BCM57711 device is initialized in roughly three phases. The first phase occurs before the driver loads and
is mentioned here only for reference. The final two phases are controlled by the host driver using the Management Control
Processor (MCP) to help in the synchronization of the four device internal STate Optimized RISC Microprocessors
(STORM)s and the device firmware.

The first phase occurs after a PCIE reset to the device. It includes the loading of the device boot code from the NVRAM and
the boot code writing configuration parameters to the device shared memory in the MCP memory space. The loading of the
MCP firmware from non-volatile memory into MCP memory and MCP code execution is also included in this phase.

The second phase begins with the loading of the host driver and includes the host driver writing initialization values to each
of the device hardware block registers. This phase also includes the host driver writing the device firmware to STORM
memory and should include the host driver/operating system initialization steps and host driver memory allocation for device
specific structure initialization. Since the BCM57710/BCM57711 shares common resources between two ports, the second
phase also includes the initialization of the device common resources.

The third and final phase begins when the host driver posts a command to the STORM firmware referred to as the initial
ramrod command. This is the operation that primes the device to use the host driver allocated memory structures and
connection context. Included in this phase is the posting of subsequent ramrod commands for port or function MAC address
configuration and multi queue support. The physical layer (PHY) initialization is included in this last phase. For both the
device initialization and the device shutdown, the MCP is used as a handshake interface for each step.
Broadcom Corporation
Document 57710_57711-PG200-R Host Driver Flows Page 59

BCM57710/BCM57711 Programmer’s Guide
09/25/09
MCP INTERFACE

The host driver uses the device Management Communication Processor (MCP) to synchronize the communication between
the host driver, the device firmware and the device STORMs during the device initialization process. When the host driver is
loaded into host memory, the MCP firmware should already be up and running and available for the host driver to use during
the device initialization process.

The host driver can interact with the MCP when using the MCP interface. The interface to the MCP consists of four command/
request and response mailboxes located in the device shared memory where pre-defined request values can be written for
the MCP and pre-defined responses can be read for the host driver.

Per Device port the Shared Memory contains one mailbox for requests from the host driver to the MCP and another mailbox
for responses from the MCP. The shared memory also contains two additional a pulse mailboxes per port for a heart beat
handshake between the host driver and MCP.

To verify that the MCP firmware has loaded properly, the host driver must find the shared memory address by reading from
the MISC_REGISTERS_SHARED_MEM_ADDR(0xA2B4) register.

An example of the device shared memory region is defined in the bxe_hsi.h file in the appendix. The MCP/ firmware is not
running if the shared memory address read from the MISC_REGISTESR_SHARED_MEM_ADDR is 0 or 0xf.

The defined values used by the host driver to verify the validity of the shared memory are found in the bxe_hsi.h sample file
found in the appendix.

Once the shared memory is determined to be valid, the MCP mailbox interface can be used and the device initialization can
continue.

Besides being a location for the MCP mailbox interface, the device shared memory contains device parameters loaded from
the NVRAM for use during initialization and available to the host driver.

The host driver and the MCP synchronize the initialization process by a sequence of commands and responses or hand-
shakes. The command mailbox is written by the host driver and read by the MCP. The response mailbox is written by the
MCP and read by a driver.

The command mailbox is composed of 32-bit message location in device shared memory. The format is described in the
following table:

The response mailbox is composed of 32-bit message located in device shared memory. The format is described in the
following table:

The host driver initiates a device initialization handshake to the MCP by writing a command to the MCP command mailbox.
The MCP writes a response to the response mailbox before the host driver begins the initialization process.

D31 D16 D15 D0

Command Sequence number

D31 D16 D15 D0

Response Sequence number
Broadcom Corporation

Page 60 Device Initialization and Shutdown Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Each command includes an incremental sequence number. The response also includes a sequence number field and a
value that matches the command sequence number.

The host driver must not post a new command until an MCP response is posted for the previous command by the MCP.

To begin the device initialization process the driver must send a command to the MCP to signal the start of the device
initialization process with a value that represents the command for Driver Load (see bxe_hsi.h in the appendix).

The BCM57710/BCM57711 shares internal device resources with multiple ports/functions, so depending on if the shared
resources have already been initialized or not, the MCP will respond to the Driver Load command with the response of Load
Common or Load Port or Load Function.

The Load Common response from the MCP requires the host driver to begin to initialize the device common resources. The
device common resources include all of the device hardware blocks and the device STORMs.

The Load Port or Load Function response from the MCP requires that the driver limit the initialization process to the port or
function initialization. The port or function resources are specific entries in the device NIG block and the EMAC and BMAC
device blocks as well as the external PHY.

After the host device driver has completed the common and port or function initialization, the host driver writes a command
of Load Done. The MCP response of Load Done completes a portion of the initialization process.

Figure 13: Driver/MCP Handshake

HEART BEAT/PULSE

The heart beat or pulse handshake between the host driver and MCP is used to inform the MCP that the host driver is loaded
and running on the device. This allows the MCP to take control the network link should the host driver become unstable and
unable to send a pulse or communicate with the MCP. The pulse handshake mailboxes have the same format as the
command and response mailboxes.

To disable the driver pulse mechanism, a flag can be set to indicate to the MCP that the host driver is always alive. See the
FreeBSD BCM57710/BCM57711 driver.

MCP Driver Init

Driver Load

Load Common, Port, Function

MCP Driver Done

Driver Done
Broadcom Corporation
Document 57710_57711-PG200-R Device Initialization and Shutdown Page 61

BCM57710/BCM57711 Programmer’s Guide
09/25/09
NIG DRAIN

The drain mode register of the NIG block (0x10060) is used to flush the device of outgoing packets. When the drain mode
bit is set, then the drain is activated and the device will not transmit packets. This bit is controlled by both the MCP firmware
and by the host driver. When the controlling software entity services a link–up event it will clear this bit. This bit is set when
the controlling software entity services a link–down event.

It is important that all the MCP handshake mechanisms are used properly so that the host driver, MCP and device firmware
function in unison.

HARDWARE BLOCK INITIALIZATION AND STORM FIRMWARE DOWNLOAD

The MCP Load Common response received by the host driver from the MCP requires that the host driver begin initialization
of all the device hardware blocks which includes downloading the firmware for all device STORM s. Most of the common
initialization values for each hardware block are pre-defined and tightly coupled with the version of firmware downloaded into
the device STORMS.

The device STORM firmware written to STORM memory can be read back for verification of a successful download. The first
host driver loaded to use the device always receives the MCP response of Load Common because the first driver loaded
must initialize the portion of the device that is used in common by both ports. The first host driver loaded also initializes the
first port and function of the device without requesting a Load Port command from the MCP.

When a second host driver is loaded it initiates the Driver Load command to the MCP just like the first host driver, however,
the MCP response is always the Load Port response since the common portion of the device is already initialized by the
previously loaded driver on the initial port. A second host driver load initializes only the second port or function and not the
common part of the device.

The initialization of the device hardware blocks and device STORMS by the host driver is the second phase of the device
initialization. The host device driver allocates memory for software structures used by the host driver, device firmware. The
physical address of the host memory structures passed to some of the device hardware blocks. The final step of the device
initialization occurs in phase three of the device initialization process where the device uses the host driver allocated
structure values to validate the initial port setup.

HOST DRIVER INITIALIZATION

The BCM57710/BCM57711 depends on the host driver to allocate host memory for device operations. The host driver must
allocate memory and initialize the structures that are needed by the device. This includes the TX and RX buffer descriptor
chains and descriptors, the Receive Completion Queue (RCQ) and status block structures and other structures.

The context structure is a very important part of the initialization process. This is a single memory structure that the device
needs to establish a context between the STORMS and the host driver to establish a network connection.

The context structure is the only host memory structure required to be on a 4K memory address alignment and it is initialized
by the host driver with necessary context data such as the base physical address of the TX/RX descriptor base and other
parameters. This context structure is named the eth_context structure found in the example code.

The host driver should allocate the RX descriptors and receive buffers in 16-byte aligned memory address.
Broadcom Corporation

Page 62 Device Initialization and Shutdown Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
RAMROD

A dictionary definition for the word Ramrod reads: a rod for ramming home the charge in a muzzle-loading firearm. This word
is also used to describe a BCM57710/BCM57711 device mailbox method of passing the index of a command structure in
memory directly to the device STORM firmware.

The host driver communicates with the device STORM firmware via mailbox commands called ramrod commands, also
known as slow-path commands. A slow-path or ramrod command is used to send a device configuration change to the device
STORM firmware. It is called a slow-path because the The new configuration information is sent to each device STORM
processor and to the device STORM related hardware blocks. The device STORM response to a ramrod command is a
completion status message posted to host memory usually as a completion queue entry (CQE) in the receive completion
queue (RCQ). Most of the responses are posted in the RCQ, however the statistics ramrod and the delete port ramrod are
completed on the default status block

Before using the ramrod interface, the host driver must first allocate a 4K byte block of memory where the ramrod command
descriptor can be placed in host memory. The ramrod descriptors contain fields that are used for various slow path tasks.
The host driver initializes a location in the STORM memory with the physical base address of this slow path queue and the
starting producer index. The address locations for the slow path queue and producer index in the example code are the
following:

XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PAGE_BASE_OFFSET

XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET

To post a slow path command, the host driver writes the index to STORM memory of a slow path command descriptor which
has been modified with command information. This slow path producer index is placed in STORM memory to initiate the slow
path command.

BAR_XSTORM_INTMEM + XSTORM_SPQ_PROD_OFFSET

The device firmware preserves spaces on an internal fast-path ring for ramrod completions and the host driver must keep a
count of posted ramrods. When there are not sufficient resources to post new ramrods the host driver must queue the ramrod
request until resources become available. Currently the maximum number of slow path commands that can be queued at
any time is eight.

The device firmware will consume one CQE for each slow path completion and will not consume a BD. The CQE contains a
flag that indicates if the entry is for a ramrod completion or a fast path completion.

The final phase in the device initialization includes posting a ramrod command to the STORM firmware called a port setup
ramrod command. The port setup ramrod command causes the device to use information found on the ramrod initialized by
the host driver and to DMA completion data to the receive completion queue. This slow path command completion occurs
on the fast path completion queue.

The port setup ramrod operation must be the first slow path command posted by the host driver after the firmware download
and hardware block initialization completes and after writing the DRV_MSG_CODE_LOAD_DONE handshake command to
the MCP.

The port setup ramrod initializes the first or leading connection of the port (cid == 0). It is the first ramrod to be sent on each
port after the host driver initialization is finished. It loads the context to the chip, locks it, and initializes all storms.
Broadcom Corporation
Document 57710_57711-PG200-R Device Initialization and Shutdown Page 63

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Ironically, the completion of this slow path command or ramrod operation completes on the fast path receive completion
queue (RCQ). ASTORM puts the completion queue entry (CQE) on the RCQ of the leading connection. The command field
of the ramrod completion entry is the same as the posted command when the operation completes successfully.

Only after the port setup ramrod completes successfully, can other ramrod operations take place and only sequentially. There
can only be one ramrod command pending per function.

Here is a list of all the supported ramrods:

RAMROD_CMD_ID_ETH_PORT_SETUP

Used to setup the leading connection on a port. Completes on the Receive Completion Queue (RCQ) of that port

RAMROD_CMD_ID_ETH_CLIENT_SETUP

Used to setup an additional connection on a port. Completes on the RCQ of the multi-queue/RSS connection being initialized

RAMROD_CMD_ID_ETH_STAT_QUERY

Used to force the storm processors to update the statistics database in host memory. This ramrod is sent on the leading
connection CID and completes as an index increment of the CSTORM on the default status block

RAMROD_CMD_ID_ETH_UPDATE

Used to update the state of the leading connection, usually to update the RSS indirection table. It completes on the RCQ of
the leading connection

RAMROD_CMD_ID_ETH_HALT

Used when tearing down a connection prior to driver unload. It completes on the RCQ of the multi-queue/RSS connection
being torn down. Do not use this on the leading connection

RAMROD_CMD_ID_ETH_SET_MAC

Sets the Unicast/Broadcast/Multicast used by the port. It completes on the RCQ of the leading connection

RAMROD_CMD_ID_ETH_CFC_DEL

Used when tearing down a connection prior to driver unload. It completes on the RCQ of the leading connection (since the
current connection has been completely removed from controller memory)

RAMROD_CMD_ID_ETH_PORT_DEL

Used to tear down the leading connection prior to driver unload. It completes as an index increment of the CSTORM on the
default status block

RAMROD_CMD_ID_ETH_FORWARD_SETUP

Used for connection offload. It completes on the RCQ of the multi-queue RSS connection that is being offloaded.
Broadcom Corporation

Page 64 Device Initialization and Shutdown Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
DEVICE SHUTDOWN

The process of shutting down the BCM57710/BCM57711 includes communicating with the MCP in a similar manner as the
initialization process. The host driver informs the MCP of a shutdown by sending a Driver Unload request to the MCP. The
MCP responds to the host driver with an acknowledgement of Common Unload, Port Unload or Function Unload. The
following steps are required for the host driver to properly shutdown the BCM57710/BCM57711 device.

• Set the device receive filter to not receive packets

• Clear all MAC addresses from the CAM using the SET_MAC ramrod

• Reset the network link to drain the transmit queue

• Issue the HALT ramrod

• Issue the ETH_CFC_DEL ramrod for each queue connection that is not the leading connection

• Issue the ETH_PORT_DEL ramrod for the leading connection

• Disable device interrupts

• Issue the Driver Unload request to the MCP firmware

• Use the response from the MCP firmware to determine if a common reset or port reset is required

• Reset the common or port resources to a known state

INTERRUPT HANDLING AND ATTENTION

This is a high level description of how to manage BCM57710/BCM57711 interrupts in a host software device driver. Some
of the BCM57710/BCM57711 registers and memory locations referenced in this section are subject to change. See the Linux
BCM57710/BCM57711 driver or FreeBSD BCM57710/BCM57711 driver for the latest BCM57710/BCM57711 device
register address offsets and hardware and firmware dependent memory structures.

INTERRUPT MODES

The BCM57710/BCM57711 supports three interrupt modes: The INTx# mode, Message Signaled Interrupt (MSI) mode and
the eXtended Message Signaled Interrupt (MSI-X) mode. The support for these interrupt modes are determined by the
system architecture and operating system. Some systems may support all three modes and would allow for the selection
and user preference of the interrupt mode. The 57xx supports up to 16 MSI-X vectors and up to 4 MSI vectors.

BCM57710/BCM57711 INTERRUPT GENERATION

Interrupts are generated from two main areas in the BCM57710/BCM57711 which are the attention block and the internal
STate Optimized RISC Microprocessor (STORMs) CPUs. The attention block generates interrupts based on configuration
settings written to the attention block at device initialization time. The attention interrupts (attentions) are placed mainly on
the slow path interrupt. The STORMs generate interrupts when an update of an index register in a status block occurs. Each
status block index update may generate an interrupt. These interrupts can be placed on both the slow path and fast path.
The slow path and fast path are described below.
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 65

BCM57710/BCM57711 Programmer’s Guide
09/25/09
STATUS BLOCKS

All status blocks are grouped into two main status blocks: The default status block and TX/RX status blocks. The status
blocks are allocated in host memory by the host driver and the device hardware is initialized with a pointer to the physical
base address of the status blocks during device initialization time.

The default status block is made up of five different status blocks also referred to as status block segments. These are the
Attention, XSTORM, USTORM, TSTORM and CSTORM status block segments. The BCM57710/BCM57711 uses one
default status block per port or function. The default status block is also known as the slow path status block (see Table 13
on page 66).

The TX/RX status block which is also referred to as the fast path status block or non-default status block is made up of 2
types of status blocks or status block segments called the USTORM and CSTORM status blocks. The USTORM status block
segment is associated with packet receive interrupts and receive interrupt coalescing and the CSTORM status block
segment is associated with packet transmit completions and transmit interrupt coalescing (see Table 14 on page 68).

The BCM57710/BCM57711 can support up to 16 fast path status blocks per port or function. This amount of status blocks
are used by the BCM57710/BCM57711 to manage up to 16 queues or host CPUs in the BCM57710/BCM57711 Multi-Queue
or Receive Side Scaling (RSS) feature.

Each status block segment has a status index field that is incremented after each update from the device. The status index
update signifies that an event occurred and needs to be serviced. The host driver must maintain a copy of the hardware
status block segments status index to determine which status block segment status index has changed or what event needs
to be serviced, When there is a change between the host driver copy and the status index within a status block segment then
the status block has changed and the driver must service the event for that particular status block segment.

When the device is passing traffic, the status index value within a status block segment will continually be updated. Each
STORM independently updates the status index of a status block segment, therefore the driver must check for index updates
after each loop within an ISR.

Table 13: Default (Slow Path) Status Block

31 24 23 16 15 8 7 0

Attention Bits

Attention Bits Acknowledge

Attention Bits status index Reserved Status block id

USTORM STATUS BLOCK

USTORM status index Reserved Status block id

CSTORM STATUS BLOCK

CSTORM status index Reserved Status block id
Broadcom Corporation

Page 66 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
XSTORM STATUS BLOCK

XSTORM status index Reserved Status block id

TSTORM STATUS BLOCK

TSTORM status index Reserved Status block id

Table 13: Default (Slow Path) Status Block

31 24 23 16 15 8 7 0
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 67

BCM57710/BCM57711 Programmer’s Guide
09/25/09
ISR MODE

There are two ISR mode settings in the BCM57710/BCM57711. One setting is referred to as the single ISR mode, which is
when the device combines all the interrupts from each of the status block interrupts into one. The default status block plus
the potentially sixteen fast path status blocks interrupts are funneled into one single interrupt in the single ISR mode.

The non-single ISR mode allows each status block to independently interrupt the host. For the driver to support this mode
each MSI or MSI-X vector must be initialized by the host driver to service a separate status block.

To configure the ISR mode on the BCM57710/BCM57711 the host driver must set the appropriate bit in the
HC_REGISTERS_CONFIG_ register during driver initialization for the duration of the driver instance.

INTERRUPT CONFIGURATION AND CONTROL

The BCM57710/BCM57711 device uses HC_REGISTERS_CONFIG_0/1 (0/1 depending on the port or function) register
that is used to enable and disable interrupts, and to enable the interrupt type during device initialization. For example, to use
an INTA# mode ISR configuration in port/function 0, the host driver must clear the MSI_ATTN_EN_0 bit, clear the
MSI_MSIX_MEMORY_EN_0 bit, set the SINGLE_ISR_EN_0 bit and set the INT_LINE_EN_0 bit (see Figure 14 on
page 70).

Control for allowing and disallowing INTA interrupts generated by function 0 can be done by the setting and clearing the
INT_LINE_EN_0 bit respectively.

For the host driver use of MSI or MSI-X type interrupts, the MSI_MSIX_MEMORY_EN_0 bit and the MSI_ATTN_EN_0 bit
should be enabled.

Allowing and disallowing these interrupts can be controlled using the MSI_MSIX_INT_EN_0 bit (see Figure 14 on page 70).

Table 14: TX/RX (Fast Path) Status Block

31 24 23 16 15 8 7 0

USTORM STATUS BLOCK

USTORM status index Reserved Status block id

CSTORM STATUS BLOCK

CSTORM status index Reserved Status block id

Note: In the BCM57710/BCM57711 when setting the INT_LINE_EN_x (bit3 in HC_REGISTERS_CONFIG_x) bit,
the MSI_MSIX_INT_EN_x (bit 2 in HC_REGISTERS_CONFIG_X) bit must be set to 1 then cleared.
Broadcom Corporation

Page 68 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
HOST DRIVER INTERRUPT HANDLER FLOW

The host driver should take the following steps within the ISR:

1. To serialize the interrupts and ensure no other interrupt occurs during the ISR servicing thread, the interrupt generation
of all interrupts from the BCM57710/BCM57711 on the current port can be suppressed by disabling the specific bit in the
HC_REGISTERS_CONFIG register.

2. The host driver must check to determine if the status index of a status block differs from the host driver copy of the status
index by f i rst reading the in terrupt s ta tus register. To do th is the host dr iver must f i rst read the
HC_REGISTERS_COMMAND_REG single_isr_multi_dpc_wmask_ port0 register. This register returns a 32 bit value of
which the first 17 bits correspond to events posted on the single default status block and event posted on the up to 16
fast path status blocks. Bit 0 corresponds to a default status block event and bits 1-16 corresponds to an event in fast
path status blocks 1-16.

3. When the single_isr_multi_dpc_wmask register is read, the asserted bits are automatically cleared and masked off to
disable corresponding interrupts on the device. There is also a single_isr_multi_dpc w/o mask register which
automatically clears the asserted bit when read, but the active interrupt is not disabled. In single_isr mode, only two of
the 32 bits are valid: bit 0 and bit 1. Bit 0 corresponds to the default status block and bit 1 corresponds to the fast path
status block. When the single_isr mode is disabled, bit 0 (default status block) and bits 1-17 (fast path status blocks) are
valid.

4. The main reason the non- single_isr mode is used in a driver is to allow for servicing or queuing of multiple independent
interrupt tasks. The single_isr_multi_dpc register with mask is part of the HC_REGISTERS_COMMAND_REG register
(see Figure 14 on page 70).

5. The following steps can be if the ISR is calling a task queue within a Linux NAPI type driver or a DPC within a Windows
miniport driver:

6. Service each event by comparing the driver status index with each storms status block index.

7. Update the index saved by the driver with the one from the status block.

8. Acknowledge the status blocks by updating the consumer index of all the status blocks and set the interrupt enable bit
on the last status block to be updated. Setting the interrupt enable bit on the status block allows an interrupt to be
generated from that status block the next time the storm updates the index of that status block. The consumer index of
a status block and the interrupt enable bit are written to the HC_REGISTERS_COMMAND_REG register.

9. If the interrupts were suppressed in the HC_REGISTERS_CONFIG_ register, then they must be set to allow interrupts
before returning from the ISR, Windows DPC or Linux NAPI task.
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 69

BCM57710/BCM57711 Programmer’s Guide
09/25/09
A flow diagram of the driver interrupt handler is shown in Figure 14.

Figure 14: Handle Interrupt Flow

Check interrupt status
(HC_REGISTERS_COMMAND:

single_isr_multidpc w/mask)
This will mask off the status block

segment interrupt generation in non-
SINGLE_ISR_EN_ mode and will
mask off all staus block interrupt

generation in SINGLE_ISR_EN mode

Is there an event to
service

?

Service each
event

Update the driver copy of
each status block

segment status_index
value & set a driver flag if

a difference is found

Were
status_index

values changed
?

Update the status block
segment status_index, &

clear the status block
segment mask bit

(see
HC_REGISTERS_COMM

AND_REG interrupt
acknowledge register)

Y

N

Y

N

Enter

Exit
Broadcom Corporation

Page 70 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
HC REGISTERS

HC_REGISTERS_CONFIG_0 (Offset: 0x108000; Width: 32)

HC_REGISTERS_COMMAND_REG (Offset: 0x108180) - Interrupt Acknowledge Port 0

Table 15: HC_REGISTERS_CONFIG_0 (Offset: 0x108000; Width: 32)

Bits Name Description Access
Mode

Reset
Value

31:13 RESERVED RO 0x0

12 MSI_MSIX_MEMORY_EN_0 Configuration register function 0; msi/msix memory is
enable; if clear rd/wr to/from msi/msix memory is disable.

RW 0x1

11 STATISTIC_COUNTER_EN_0 Configuration register function 0; statistic counters
enable; if clear rd/wr to/from statistic counters is disable.

RW 0x0

10:9 MAILBOX_COUNTER_0 2 bits for statistic counters configuration: 00 = no
counting; 01 = count only producer updates; 10 = count
only consumer updates; 11 = Count both producer and
consumer updates.

RW 0x0

8 MSIX_ATTN_EN_0 UNUSED. RW 0x0

7 MSI_ATTN_EN_0 Configuration register function 0; when this bit is set the
msi_attn (form PCIE bar) is enable.

RW 0x1

6 COALESCE_NOW_EN_0 UNUSED. RW 0x0

5 NOT_DURING_INT_EN_0 UNUSED. RW 0x0

4 ATTN_BIT_EN_0 Configuration register function 0; if clr no attention msg
will be send.

RW 0x0

3 INT_LINE_EN_0 Configuration register function 0; if clr interrupt line (INTA)
is disable.

RW 0x0

2 MSI_MSIX_INT_EN_0 Configuration register function 0; if clr no msi/msix msg
will be send.

RW 0x0

1 SINGLE_ISR_EN_0 Configuration register function 0; if set HC work in single
ISR mode.

RW 0x0

0 BLOCK_DISABLE_0 Configuration register function 0; block enabled; if set the
block is disabled; only rd/wr from direct register is
enabled when this bit is set.

RW 0x0

Table 16: HC_REGISTERS_COMMAND_REG (Offset: 0x108180) - Interrupt Acknowledge Port 0

Bits Name Description Access
Mode

Reset
Value

31:27 Reserved WO 0x0

26:25 tmp_dis_enable_cmd If tmp_dis_enable_cmd == 0, set mask bit for
tmp_cmd_status_id. If tmp_dis_enable_cmd == 1, clr mask bit
for SB tmp_cmd_status_id. Else - ignore

WO 0x0

24 tmp_upd_index_cmd If set the tmp_index_val value will be written to the appropriate
consumer according to (tmp_cmd_storm_index and
tmp_cmd_status_id) .

WO 0x0
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 71

BCM57710/BCM57711 Programmer’s Guide
09/25/09
HC_REGISTERS_COMMAND_REG (Offset: 0x108184) - Producer Update Port 0

23:21 tmp_cmd_storm_index Status block idx table
Status block idx: 0
Status block name: First status block

Status block idx: 1
Status block name Second status block

.

.

.

Status block idx: 15
Status block name: 16th status block
Status block idx: 16

Status block name: Default status block

WO 0x0

20:16 tmp_cmd_status_id STORMs/Attn idx table

STORMs index: 0
STORM name: USTORM

STORMs index: 1
STORM name: CSTORM

STORMs index: 2
STORM name: XSTORM (default SB only!)

STORMs index: 3
STORM name: TSTORM (default SB only!)

STORMs index: 4
STORM name: Attn (default SB only1)

STORMs index: 5-7
STORM name: Reserved

WO 0x0

15:0 tmp_index_val The consumer index WO 0x0

Table 17: HC_REGISTERS_COMMAND_REG (Offset: 0x108184) - Producer Update Port 0

Bits Name Description Access
Mode

Reset
Value

31:27 RESERVED WO 0x0

26:25 tmp_dis_enable_cmd If tmp_dis_enable_cmd == 0, set mask bit for
tmp_cmd_status_id. If tmp_dis_enable_cmd == 1, clr mask bit
for SB tmp_cmd_status_id. Else - ignore

WO 0x0

Table 16: HC_REGISTERS_COMMAND_REG (Offset: 0x108180) - Interrupt Acknowledge Port 0

Bits Name Description Access
Mode

Reset
Value
Broadcom Corporation

Page 72 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
HC_REGISTERS_COMMAND_REG (Offset: 0x108188) - Attention Bit Update Port 0

24 tmp_upd_index_cmd If set the tmp_index_val value will be written to the appropriate
producer according to (tmp_cmd_storm_index and
tmp_cmd_status_id).

WO 0x0

23:21 tmp_cmd_storm_index Status block idx table
Status block idx: 0

Status block name: First status block

Status block idx: 1

Status block name Second status block
.
.

.
Status block idx: 15
Status block name: 16th status block

Status block idx: 16
Status block name: Default status block

WO 0x0

20:16 tmp_cmd_status_id STORMs/Attn idx table

STORMs index: 0

STORM name: USTORM

STORMs index: 1

STORM name: CSTORM

STORMs index: 2

STORM name: XSTORM (default SB only!)

STORMs index: 3

STORM name: TSTORM (default SB only!)

STORMs index: 4

STORM name: Attn (default SB only1)

STORMs index: 5-7

STORM name: Reserved

WO 0x0

15:0 tmp_index_val The producer index WO 0x0

Table 18: HC_REGISTERS_COMMAND_REG (Offset: 0x108188) - Attention Bit Update Port 0

Bit(s) Name Description Access Mode Reset Value

31:16 RESERVED WO 0x0

15:0 tmp_index_val The attention bit value WO 0x0

Table 17: HC_REGISTERS_COMMAND_REG (Offset: 0x108184) - Producer Update Port 0 (Cont.)

Bits Name Description Access
Mode

Reset
Value
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 73

BCM57710/BCM57711 Programmer’s Guide
09/25/09
HC_REGISTERS_COMMAND_REG (Offset: 0x10818C) - Attention Bit Set Port 0

HC_REGISTERS_COMMAND_REG (Offset: 0x108190) - Attention Bit Clear Port 0

HC_REGISTERS_COMMAND_REG (Offset: 0x108194) - Coalesce Now Port 0

HC_REGISTERS_COMMAND_REG (Offset: 0x108198) - Single_isr_multi_dpc With Mask Port 0

Table 19: HC_REGISTERS_COMMAND_REG (Offset: 0x10818C) - Attention Bit Set Port 0

Bit(s) Name Description Access Mode Reset Value

31:16 RESERVED WO 0x0

15:0 tmp_index_val Every bit that is set will
set the appropriate bit
in the attention bit
register

WO 0x0

Table 20: HC_REGISTERS_COMMAND_REG (Offset: 0x108190) - Attention Bit Clear Port 0

Bit(s) Name Description Access Mode Reset Value

31:16 RESERVED WO 0x0

15:0 tmp_index_val Every bit that is set will
clear the appropriate
bit in the attention bit
register

WO 0x0

Table 21: HC_REGISTERS_COMMAND_REG (Offset: 0x108194) - Coalesce Now Port 0

Bit(s) Name Description Access Mode Reset Value

31:0 RESERVED Writing to this address
will cause the HC to
send coalesce now
command to all the
storms.

WO 0x0

Table 22: HC_REGISTERS_COMMAND_REG (Offset: 0x108198) -
Single_isr_multi_dpc With Mask Port 0

Bit(s) Name Description Access Mode Reset Value

31:17 RESERVED RO 0x0

16:0 tmp_index_val The single ISR register
value. Every bit that is
set will be cleared in
the mask register

RO 0xXX
Broadcom Corporation

Page 74 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
HC_REGISTERS_COMMAND_REG (Offset: 0x10819C) -
Single_isr_multi_dpc Without Mask Port 0

HC_REGISTERS_COMMAND_REG (Offset: 0x108200) -
Interrupt Acknowledge Port 1

Table 23: HC_REGISTERS_COMMAND_REG (Offset: 0x10819C) -
Single_isr_multi_dpc Without Mask Port 0

Bit(s) Name Description Access Mode Reset Value

31:17 RESERVED RO 0x0

16:0 tmp_index_val The single ISR register
value.

RO 0xXX

Table 24: HC_REGISTERS_COMMAND_REG (Offset: 0x108200) - Interrupt Acknowledge Port 1

Bit(s) Name Description Access
Mode

Reset
Value

31:27 RESERVED WO 0x0

26:25 tmp_dis_enable_cmd If tmp_dis_enable_cmd == 0, set mask bit for
tmp_cmd_status_id. If tmp_dis_enable_cmd == 1, clr mask bit
for SB tmp_cmd_status_id. Else - ignore

WO 0x0

24 tmp_upd_index_cmd If set the tmp_index_val value will be written to the appropriate
consumer according to (tmp_cmd_storm_index and
tmp_cmd_status_id).

WO 0x0

23:21 tmp_cmd_storm_index Status block idx table
Status block idx: 0
Status block name: First status block

Status block idx: 1
Status block name Second status block

.

.

.

Status block idx: 15
Status block name: 16th status block
Status block idx: 16

Status block name: Default status block

WO 0x0
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 75

BCM57710/BCM57711 Programmer’s Guide
09/25/09
HC_REGISTERS_COMMAND_REG (Offset: 0x108204) - Producer Update Port 1

20:16 tmp_cmd_status_id STORMs/Attn idx table

STORMs index: 0

STORM name: USTORM

STORMs index: 1

STORM name: CSTORM

STORMs index: 2

STORM name: XSTORM (default SB only!)

STORMs index: 3

STORM name: TSTORM (default SB only!)

STORMs index: 4

STORM name: Attn (default SB only1)

STORMs index: 5-7

STORM name: Reserved

WO 0x0

15:0 tmp_index_val The consumer index WO 0x0

Table 25: HC_REGISTERS_COMMAND_REG (Offset: 0x108204) - Producer Update Port 1

Bit(s) Name Description Access
Mode

Reset
Value

31:27 RESERVED WO 0x0

26:25 tmp_dis_enable_cmd If tmp_dis_enable_cmd == 0, set mask bit for
tmp_cmd_status_id. If tmp_dis_enable_cmd == 1, clr mask bit
for SB tmp_cmd_status_id. Else - ignore

WO 0x0

24 tmp_upd_index_cmd If set the tmp_index_val value will be written to the appropriate
producer according to (tmp_cmd_storm_index and
tmp_cmd_status_id).

WO 0x0

Table 24: HC_REGISTERS_COMMAND_REG (Offset: 0x108200) - Interrupt Acknowledge Port 1

Bit(s) Name Description Access
Mode

Reset
Value
Broadcom Corporation

Page 76 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
HC_REGISTERS_COMMAND_REG (Offset: 0x108208) - Attention Bit update Port 1

23:21 tmp_cmd_storm_index Status block idx table
Status block idx: 0
Status block name: First status block

Status block idx: 1
Status block name Second status block

.

.

.

Status block idx: 15
Status block name: 16th status block
Status block idx: 16

Status block name: Default status block

WO 0x0

20:16 tmp_cmd_status_id STORMs/Attn idx table

STORMs index: 0
STORM name: USTORM

STORMs index: 1
STORM name: CSTORM

STORMs index: 2
STORM name: XSTORM (default SB only!)

STORMs index: 3
STORM name: TSTORM (default SB only!)

STORMs index: 4
STORM name: Attn (default SB only1)

STORMs index: 5-7
STORM name: Reserved

WO 0x0

15:0 tmp_index_val The producer index WO 0x0

Table 26: HC_REGISTERS_COMMAND_REG (Offset: 0x108208) - Attention Bit Update Port 1

Bit(s) Name Description Access Mode Reset Value

31:16 RESERVED WO 0x0

15:0 tmp_index_val The attention bit value WO 0x0

Table 25: HC_REGISTERS_COMMAND_REG (Offset: 0x108204) - Producer Update Port 1

Bit(s) Name Description Access
Mode

Reset
Value
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 77

BCM57710/BCM57711 Programmer’s Guide
09/25/09
HC_REGISTERS_COMMAND_REG (Offset: 0x10820C) - Attention Bit Set Port 1

HC_REGISTERS_COMMAND_REG (Offset: 0x108210) - Attention Bit Clear Port 1

HC_REGISTERS_COMMAND_REG (Offset: 0x108214) - Coalesce Now Port 1

HC_REGISTERS_COMMAND_REG (Offset: 0x108218) -
Single_isr_multi_dpc With Mask Port 1

Table 27: HC_REGISTERS_COMMAND_REG (Offset: 0x10820C) - Attention Bit Set Port 1

Bit(s) Name Description Access Mode Reset Value

31:16 RESERVED WO 0x0

15:0 tmp_index_val Every bit that is set
will set the
appropriate bit in the
attention bit register

WO 0x0

Table 28: HC_REGISTERS_COMMAND_REG (Offset: 0x108210) - Attention Bit Clear Port 1

Bit(s) Name Description Access Mode Reset Value

31:16 RESERVED WO 0x0

15:0 tmp_index_val Every bit that is set will
clear the appropriate
bit in the attention bit
register

WO 0x0

Table 29: HC_REGISTERS_COMMAND_REG (Offset: 0x108214) - Coalesce Now Port 1

Bit(s) Name Description Access Mode Reset Value

31:0 RESERVED Writing to this address
will cause the HC to
send coalesce now
command for all the
storms.

WO 0x0

Table 30: HC_REGISTERS_COMMAND_REG (Offset: 0x108218) -
Single_isr_multi_dpc With Mask Port 1

Bit(s) Name Description Access Mode Reset Value

31:17 RESERVED RO 0x0

16:0 tmp_index_val The single ISR register
value. Every bit that is set
will be clear in the mask
register

RO 0xXX
Broadcom Corporation

Page 78 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
HC_REGISTERS_COMMAND_REG (Offset: 0x10821C) -
Single_isr_multi_dpc Without Mask Port 1

ATTENTION SIGNALS

The BCM57710/BCM57711 can generate up to 128 different attention signals each of which can potentially generate a
system interrupt when asserted. The attention signal is a mechanism the BCM57710/BCM57711 uses to notify software or
firmware that an event has occurred that needs servicing, or that an error has occurred within the device or that a state has
changed within the device.

These signals include those generated by each of the BCM57710/BCM57711 STate Optimized RISC Microprocessors
(STORMs), most BCM57710/BCM57711 hardware blocks and signals for link state change and GPIO and timer attentions.
The attention signals must be routed to a smaller set of attention status bits for easy software handling.

Each attention signal can be configured at device initialization time to assert and cause an attention via a status block update.
The attentions signals can also be configured to cause an attention when the device monitors the rising and falling edge of
the signal or both the rising and falling edge of the signal.

The 128 attention signals are mapped to the bits found in the MISC_REGISTERS_AEU_ENABLE(1-4)_FUNC_(0/
1)_OUT_(1-8) registers that are used to enable and disable each signal. When a bit is set to 1, the corresponding signal is
enabled to generate an attention. The attentions are able to generate interrupts when the attention signal is latched by the
hardware and the host driver configured route bits are in the proper state.

Table 31: HC_REGISTERS_COMMAND_REG (Offset: 0x10821C) -
Single_isr_multi_dpc Without Mask Port 1

Bit(s) Name Description Access Mode Reset Value

31:17 RESERVED RO 0x0

16:0 tmp_index_val The single ISR register
value.

RO 0xXX
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 79

BCM57710/BCM57711 Programmer’s Guide
09/25/09
ATTENTION ROUTING

The 128 signals are routed into 16 attention status bits per port located in the default status block. The default status block
contains a sub-block or segment called the attention status block.

Each of the 8 lower bits of the attention register within the attention block segment is designed to map to one of the eight
register groups of the MISC_REGISTERS_AEU_ENABLE(1-4)_FUNC(1-4)_OUT_(1-8) registers.

For example; if bit 0 of the attention register in the default status block was asserted/de-asserted for port 0, the host driver
would need to check which of the enabled signals in the MISC_REGISTERS_AEU_ENABLE_(1-4)_FUNC_0_OUT_0
registers has changed. If bit 1 of the attention register was asserted/de-asserted for the same port then the signals that
caused that attention would be enabled in the MISC_REGISTER_AEU_ENABLE(1-4)_FUNC_0_OUT_1 registers.

The driver will determine which signal caused the assertion/de-assertion by reading the 32 bit value in the
MISC_REG_AEU_AFTER_INVERT_(1-4)_FUNC_(0/1) register and using the bit positions that correspond to the enabled
attention bits.

SIGNAL MONITORING

The 128 attention signals are grouped into 8 signals that can be configured and monitored by the BCM57710/BCM57711 on
the leading or trailing edges or both the leading and trailing edge. This allows the device to generate an interrupt on the
attention assert high (1) signal or assert low (0) signal or both.

MASKING

The masking on/off of these attentions can be achieved by the host driver writing a 1/0 respectively to the
MISC_REGISTERS_AEU_MASK_ATTN_FUNC_(0/1) register. Each bit in these registers map to each of the attention
groups mentioned above.
Broadcom Corporation

Page 80 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
DYNAMIC VS. STATIC INTERRUPT GROUPS

Sixteen bits within the MISC_REGISTERS_AEU_MASK_ATTN_FUNC_(0/1) register are available to mask dynamically
configured attentions and static, hard-wired attentions. The lower 8 bits of the register are for masking the dynamic attention
groups as explained above. The upper 8 bits are for masking the static attentions. The attentions signals that are considered
dynamic or static are any attentions that the host driver enables in the MISC_REGISTERS_AEU_ENABLE_(X) register
groups. There are 8 groups of these registers and the default status block attention register bits 0-7 map to them. The
attentions referred to as static attentions correspond to bits 8-15 of the default status block attention bits. Both dynamic and
static attentions are masked with the MISC_REGISTERS_AEU_MASK_ATTN_FUNC(0/1) register. Both types of attentions
are configured in the same way, but are handled a little differently because the static attention bits are hard-wired to the
registers shown in Table 32 and Table 33.

ATTENTION INITIALIZATION BY THE HOST DRIVER

The steps taken in the host driver to initialize the attention signals include:

1. The host driver masks off the mask register by writing zeros to the bits in the following register:
MISC_REGISTERS_AEU_MASK_ATTN_FUNC_(0/1)
Setting the bits to 1 allows the attentions to propagate to system interrupts. The attention signals should be cleared so
that no attention occurs during the device initialization. The E1.5 has two registers that mask the attention bits, one for
the 8 LSBs and one for the 8 MSBs.

Table 32: Static Attention Routing for Function 0

Routing Table for Function 0

Name Bit Position Notes:

NIG attention for port0 D8 See NIG specification for configuration of this signal.

SW timer#4 port0 D9 See misc. for more information regarding SW timer access.

GPIO#2 port0 D10 See misc. for more information regarding SW timer access.

GPIO#3 port0 D11 See misc. for more information regarding SW timer access.

GPIO#4 port0 D12 See misc. for more information regarding SW timer access.

General attn1 D13 Setting/clear of this signal is via AEU GRC.

General attn2 D14 Setting/clear of this signal is via AEU GRC.

General attn3 D15 Setting/clear of this signal is via AEU GRC.

Table 33: Static Attention Routing for Function 1

Routing Table for Function 1

Name Bit Position Notes:

NIG attention for port1 D8 See NIG specification for configuration of this signal.

SW timer#4 port1 D9 See misc. for more information regarding SW timer access.

GPIO#2 port1 D10 See misc. for more information regarding SW timer access.

GPIO#3 port1 D11 See misc. for more information regarding SW timer access.

GPIO#4 port1 D12 See misc. for more information regarding SW timer access.

General attn1 D13 Setting/clear of this signal is via AEU GRC.

General attn2 D14 Setting/clear of this signal is via AEU GRC.

General attn3 D15 Setting/clear of this signal is via AEU GRC.
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 81

BCM57710/BCM57711 Programmer’s Guide
09/25/09
2. The host driver enables/disables the attention signals of interest in the MISC_REGISTERS_AEU_ENABLE(1-
4)_FUNC_(0/1)_OUT_(0-7) registers. The configuration of these registers is by the host driver writing configuration
values to these registers.

3. The attentions signals are configured to assert on a leading or trailing edge or both. This configuration is done in the
HC_REGISTERS_TRAILING_EDGE(0/1) and HC_REGISTERS_LEADING_EDGE(0/1) registers. When the both
registers are configured, the attentions occur on both leading and trailing edge. The signal that is monitored by the
BCM57710/BCM57711 on the leading edge is referred to as a signal assertion and the signal monitored by the
BCM57710/BCM57711 on the trailing edge is referred to as a signal de-assertion.

- The bits in these registers correspond directly to the default status block attention segment bits.

- When both leading and trailing edge are configured, the trailing edge should be configured first. The host driver
should also clear the ACK and ATTN bits in the HC registers.

4. The host driver masks on (unmasks) the appropriate bits in the following mask register:
MISC_REGISTERS_AEU_MASK_ATTN_FUNC_(0/1).

5. Initialize associated default status block memory and variables. The host driver creates a variable to keep the last known
attention state serviced (see Figure 15: “Attention States,” on page 83).

HANDLING ATTENTIONS IN THE HOST DRIVER

After the driver configures the attentions, the enabled attention signals are primed to assert and de-assert. The Linux driver
and FreeBSD driver code are configured to monitor both the asserted and de-asserted signal. This is due to the design of
the device. The drivers are designed to use the assertion signal to mask off the interrupt and then service most of them on
the de-assertion signal.

The attention status block segment in the default status block contains an attention (Attn) register and an attention
acknowledgment (Ack) register. The bits of the Attn register are the previously mentioned 16 bits of dynamically and static
attentions and are used to indicate a signal attention. The Ack bits correspond to the Attn bits and are for the host driver to
acknowledge the asserted or de-asserted signal.

The default status block attention segment is updated by the asserted or de-asserted signal depending on the state of the
attention bit and acknowledgment bit of the signal in the attention and acknowledgement registers. It is the responsibility of
the host driver to set the appropriate Ack bit when an assertion of de-assertion signal is detected.
Broadcom Corporation

Page 82 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Figure 15: Attention States

Figure 15 represents the attention states and bit settings of the Attn and the Ack registers in the attention segment block of
the default status block when the corresponding attention signals are monitored for both the leading and trailing edge latched.

Figure 15 also shows the state transition when the Attn and Ack bits are 0, a signal assertion will update the status block
which will generate and interrupt. The signal will not generate another status block update until the host driver writes a 1 to
the corresponding signal bit in the Ack register. Once the Ack bit is written, another status block update will follow on a de-
asserted signal. Another assertion cannot take place unless the Ack bit is written with a 0 for that de-asserted signal. The
BCM57710/BCM57711 device design of the attention signals require that this assertion/de-assertion transition take place.
Subsequent status block updates for an attention signal state change and associated interrupt generation cannot occur
unless the host driver acknowledges the assertion and de-assertion of each attention signal.

The steps taken by the host driver to service attention interrupts are as follows:

1. The host driver copies the status block attention segment content.

2. The host driver determines that an attention interrupt has occurred by checking the default status block Attention Bits
status index.

3. The Attn bits and Ack bits from the attention register are read and compared to each other and to the last state saved by
the host driver to determine if any states changes occurred and which bits are in asserted and de-asserted states. The
host driver can determine the asserted and de-asserted states of the bits by the following method:

- Asserted bits = Attn bits & ~Ack bits & ~last saved state.

- De-asserted bits = ~Attn bits & Ack bits & last saved state

4. Update the asserted state driver variable by adding the current asserted state with the last saved asserted state so the
old bit that have not been processed yet are not lost when adding the new bits.

5. The asserted bits are masked off to disable the interrupt by writing zeros to the
MISC_REGISTERS_AEU_MASK_ATTN_FUNC_(0/1) register.

Signal Assert

Write 1 to Ack

Signal De-assert

Write 0 to Ack

Attn=0
Ack=0

Attn=1
Ack=1Attn=0

Ack=1

Attn=1
Ack=0

Status Block
Update

Status
Block

Update
Broadcom Corporation
Document 57710_57711-PG200-R Interrupt Handling and Attention Page 83

BCM57710/BCM57711 Programmer’s Guide
09/25/09
6. Handle the hard-wired attentions which include the link attention found in the NIG registers. The NIG register mask is
used to disable the interrupt on the NIG if a link attention is asserted. The 57711 device includes an additional register
called the MISC_REGISTERS_AEU_MASK_ATTN_FUNC_0/1_MSB register that masks the eight most significant bits
of the attention register that can be used in place of clearing the NIG register.

7. Ack the serviced asserted attentions by writing to the HC_REGISTERS_COMMAND attention_bit_set_port_(0/1)
register.

8. Handle the de-asserted attentions by searching through the eight groups of enabled attentions. The host driver reads the
MISC_REGISTERS_AEU_AFTER_INVERT(1-4)_FUNC(0/1) registers to identify the asserted signals. See the Linux or
FreeBSD driver source code.

9. Ack the serviced attentions by writing to the HC_REGISTERS_COMMAND attention_bit_clear_port(0/1) register.

10. If the attention signals have been disabled, ensure that the attention signals of interest are enabled in the
MISC_REGISTERS_AEU_ENABLE(1-4)_FUNC_(0/1)_OUT_(0-7) registers.

11. The de-asserted state must be saved to the last saved state to be used in the next interrupt attention service call.

12. Finally Ack the status block index using the status block segment copy taken in step 1 before returning from the ISR.
Some attentions that required to be cleared in the specific block that generates the attention may need to be re-enabled
such as the attentions generated from the NIG block.
Broadcom Corporation

Page 84 Interrupt Handling and Attention Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
L2 TRANSMIT FLOW

This section describes the ASIC, Firmware, and Driver Flows for a transmit packet.

ASIC/FIRMWARE FLOW

The L2 packet Tx flow inside the ASIC is shown in Figure 16. The various steps in the flow are described below.

1. The doorbell command is how the driver delivers packets to the device to transmit onto the network. The doorbell
commands from the driver are queued in the doorbell queue (DQ). For each command, the DQ loads the context to the
CFC and then sends the context update to the XCM.

2. The XCM updates the context according to the aggregation rules. It then applies a decision algorithm to either queue the
connection in the XQM or wake up the XSTORM (Transmitter STORM) for processing of that connection.

3. When the Max PBF credit required for processing a connection is available, the XCM will request the XQM for the
connection to be processed. The XQM selects the next connection to be processed according to the configured
arbitration rules, gets the context of that connection from the CFC, and then sends a message and the context to the
XSTORM.

Figure 16: L2 Tx Packet Flow Inside the ASIC

4. After the CFC sends a message and the context to the XSTORM:

a. The XSTORM requests the XSDM to fetch new BDs to its context whenever there are not enough BDs for at least
one packet.
Broadcom Corporation
Document 57710_57711-PG200-R L2 Transmit Flow Page 85

BCM57710/BCM57711 Programmer’s Guide
09/25/09
b. The XSTORM sends the Tx Command through the XSDM. In case of an LSO packet with NumOfBdsInPacket >
LOCAL_RING_SIZE (13 BDs), the XSTORM may send multiple commands to the PBF.

c. The XSTORM also gives back the PBF credit that was allocated but not necessary for transmitting the given packet.

5. The XSTORM updates the context in the XCM.

6. The PBF sends the packet and sends a message to the CCM. The CCM alerts the CSTORM and the CSTORM will send
an update to the HC block indicating the completion of packet transmit operation.

7. Upon reading a command from the PBF command queue, the PBF releases the PBF credit associated with that
command back to the XQM.

DRIVER FLOW

As part of the initialization, the driver will allocate host memory for Tx BD and Tx BD chain(s). The driver also maintains local
copies of the Producer and Consumer Indices for all the Tx BD chains used. The BCM57710/BCM57711 supports up to 16
Tx BD chains for L2 Tx traffic.

Figure 17 shows the BCM57710/BCM57711 driver Tx flow for L2 packets. For L2 Tx packets, the driver gets the required
number of BDs from the free Tx BD list, copies the packet data from the given packet buffers in to BD buffers, prepares the
BDs, and rings the device's doorbell. If the given packet is either an LSO packet, GSO packet or TCP/UDP/IP checksum
offloaded packet, then the packet data will also be parsed to form the Parsing-Info BD which will be added as the second BD
for a given packet.

Figure 17: L2 Tx Packet Flow

Listed below are more detailed driver steps for transmitting a given packet.

Handle short buffer merging:

• If a given packet contains multiple short buffers and requires more than the maximum number of BDs that can be
fetched by the device for a Tx packet as limited by the XSTORM (which is 13 BDs), then the driver may need to merge
the short buffers such that the required number of Tx BDs is less than 13 BDs.

- The driver should maintain a pre-allocated pool of buffers for facilitating this short buffer merging.

- For LSO, the driver should join the buffers such that the BD List size per MSS is less than the 13 BDs. See “Large
Send Offload” on page 103 for more information on sending LSO packets.

Note: This short buffer copying is not required if the OS can guarantee that a given packet would not use more
than 13 buffers.
Broadcom Corporation

Page 86 L2 Transmit Flow Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Get the free Tx BD(s) from Tx BD Chain and increment the local copy of Tx Producer Index.

Prepare the First Tx BD:

• Set the START_BD flag in the bd_flags field.

• If the given packet is a tagged packet, add the VLAN information delivered by the Host OS stack to the first BD and set
the VLAN_TAG flag.

• Set the addr_hi and addr_lo fields with the Host Address of Tx Buffer.

• If the IP checksum offload is enabled, set the IP_CSUM flag.

• If the TCP checksum offload is enabled, set the TCP_CSUM flag.

• If the UDP checksum offload is enabled, then also set the TCP_CSUM flag.

• Set the hdr_nbds with the Number of BDs containing Ethernet/IP/TCP headers. Currently the firmware requires one Tx
Buffer to contain all the headers, so make sure that all the headers are in the Tx Buffer pointed to by first Tx BD and set
this hdr_nbds field to 1.

• Set the length of Tx Buffer into nbytes field.

• Set the nbd field with the number of Tx BDs for this packet. Note that this count also includes the parsing Info BD if it is
present.

• If LSO is enabled, set the SW_LSO flag. If the first Tx BD contains headers (Ethernet, IP, and TCP) and data, then split
it into to 2 Tx BDs with the first Tx BD containing headers and the second Tx BD containing the data. This split is to aid
firmware processing of LSO/GSO packets. For the first BD containing the headers, increment the nbds field and set the
nbytes to the value of length of headers. For the second BD containing the data, set the addr_hi and addr_lo fields to
the Host Address of Tx Buffer, the nbytes to the length of data, and the SW_LSO flag of bd_flags to

• Set the END_BD flag if the first BD is also the last BD for a given packet.

Prepare the Parsing-Info BD if the packet is an LSO or CS (Check Sum) offload ('TCP and IP' or 'UDP and IP' or IP) packet:
The parsing BD information is used by the XSTORM to configure the PBF block that builds and frames the packet to be given
to Phy for transmission on the wire.

• If the packet has LLCSNAP encapsulation, raise the LLC_SNAP_EN flag in global_data field.

• Calculate the Ethernet Header Length and write it to the IP_HDR_START_OFFSET of the global_data field.

• If the packet is a TCP packet, set the tcp_flags as delivered by the Host OS.

• Calculate the IP Header Length and write it to ip_hlen field.

• If the packet is a TCP packet and TCP checksum offload is enabled, write the TCP pseudo-header checksum to the
tcp_pseudo_csum field. If the OS stack does not provide this pseudo header checksum, then the driver must calculate
it.

• If the packet is an UDP packet, set the UDP_FLG of global_data field. If the UDP checksum is offloaded, then calculate
the pseudo header checksum and place it in the UDP checksum field of the packet data.

• Calculate the total length of Ethernet, IP, and TCP (or UDP) headers and write it to total_hlen field.

• If LSO is enabled, do the following:

- Configure the lso_mss field with the value given by OS.

- Configure the tcp_send_seq field with the sequence number from the TCP header.

- Configure the ip_id field with the value from the IP header.

- Calculate the pseudo header checksum with length field set to 0 and write it to the tcp_pseudo_csum field. Also, set

Note: This second Tx BD arrives immediately after the Parsing Info BD in the BD list for a Tx packet.
Broadcom Corporation
Document 57710_57711-PG200-R L2 Transmit Flow Page 87

BCM57710/BCM57711 Programmer’s Guide
09/25/09
the PSEUDO_CS_WITHOUT_LEN flag.

Prepare the remaining Tx BDs for the given packet:

• Set the addr_hi and addr_lo fields with the Host Address of Tx Buffer.

• Set the length of Tx Buffer pointed by this BD into nbytes field.

• Set the bd_flags to zero.

• Make sure the END_BD flag is set for the last BD of a given packet.

• Ring the doorbell: The driver sends a doorbell to BCM57710/BCM57711 by writing the Doorbell entry to the doorbell
address of L2 connection (aka NIC connection).

Tx Interrupt Handling

The driver maintains a mirror copy for each of the Status Blocks. Upon receiving an interrupt from HC block, the driver
compares the updated Status Block to its mirror copy to determine the indices that have changed. Figure 18 shows the high
level view of Tx packet completion for both the Legacy INTA# and MSI-X interrupt modes. In the Legacy INTA# mode, the
INTA wakes up an arbitrary CPU which starts the main interrupt handler. The main interrupt handler determines the CPUs
whose BD Chain indices have changed and schedules Deferred Procedure Calls (DPCs), or task threads, for those CPUs
to start their interrupt handlers for completing the Tx packets and freeing the Tx BDs. In the case of the MSI-X mode, the
device directly wakes up each of the CPUs whose indices have changed and each CPU that is awaken by the device will
start an interrupt handler for completing the Tx packets in its Tx BD Chain and freeing the Tx BDs.

Figure 18: Tx Packet Completion

For each updated BD chain, the driver:

1. Determines if there are packets to be completed by comparing the local copy of Tx BD Chain Consumer Index with the
Tx BD Chain Consumer Index in updated Status Block.

2. For each packet, that needs to be completed:

a. Finds the Number of BDs used for a given Tx packet by reading the nbd field of the first BD of that Tx packet. Note
that the local Consumer Index always points to this first BD of a Tx packet that needs to be completed first by the
Broadcom Corporation

Page 88 L2 Transmit Flow Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
driver.

b. Releases the DMA mapping of the Tx Buffers used by the BDs and frees them.

c. Frees the Tx BDs by advancing the local Consumer Index of Tx BD Chain by the Number of BDs used for the packet
being completed.

d. Sends the completion notification to upper layers.

L2 RECEIVE FLOW

This section describes the ASIC, Firmware, and Driver Flows for a receive packet.

ASIC FLOW

All the steps outlined in this procedure are not necessarily sequential as all the state-machines and STORM processors in
the datapath are optimized to handle parallel processing for a single packet and many packets wherever possible. However,
the device will ensure the in-order delivery of the packets to the host per connection. In the L2 mode, all the packets are
treated as one single NIC connection and hence all the L2 packets will be delivered to the Host in the order they are received.

1. The SerDes passes the Rx packet to the NIG and the NIG places it into the BRB.

2. The BRB sends a notification to the Parser as soon as the packet header is placed into the BRB.

3. The Parser parses the header and requests the Searcher to find the corresponding connection.

4. The Searcher determines that it is a NIC connection. Note that all L2 packets are treated as a single NIC connection
which has a fixed CID (Connection ID).

5. The Parser requests the CFC to load the TSTORM context using the CID of the leading connection.

6. The Parser allocates a Serial Number for the packet and sends a Packet Start message to the TCM, together with the
allocated Serial Number. This serial number is used later by the BRB to release the buffers occupied by a given packet.

7. The Parser starts calculating the TCP checksum of the packet

8. The Packet Start message is a non-aggregative message, and hence TCM passes it directly to the TSTORM.

9. The TSTORM either forwards or drops the packet by checking for any errors in the packet data and applying the unicast,
multicast, and VLAN filtering rules. If it decides to forward the packet, it builds a Packet Start message for the USTORM.
If it drops the packet, then it also releases the Serial Number and the BRB buffers.

10. The TSTORM sends the Packet Start message to the USTORM.

11. The TSTORM checks in its internal RAM whether a Packet End message for this packet has also arrived. If it finds that
the Packet End has also arrived, then it jumps to step 15, otherwise it will continue with the next step.

12. The TSTORM thread goes to sleep and requests the TSDM to be wakened when the Packet End message for the given
packet has arrived.

13. The Parser completes the TCP checksum calculation and sends the Packet End message to the TSDM.

14. The TSDM wakes up the TSTORM thread for which Packet End has arrived using the Serial Number in the message.

15. The TSTORM forwards the Parser Packet End message to the USTORM.

Note: When using only one Tx BD Chain (No Tx Scaling and Tx Load Distribution), all indices are available in the
default status block. When using the per-CPU Tx-BD Chain for Tx Scaling, the per CPU status block should be
used for determining the BD Chain hardware consumer indices.
Broadcom Corporation
Document 57710_57711-PG200-R L2 Receive Flow Page 89

BCM57710/BCM57711 Programmer’s Guide
09/25/09
16. The USTORM reads the Parser message from its internal memory based on the Serial Number of the packet, and sends
a message (through the USDM) to the Parser to release the Serial Number.

17. The USTORM requests the BRB to release the buffers if it decides to drop the packet rather than forwarding it to the Host.

18. The USTORM forms and sends the UPB command to the UPB block (Packet Builder Block used with the USTORM for
placing the packet data into host memory) to deliver the packet to the Host.

19. The UPB block requests the PXP block to DMA the packet data from the BRB to Host memory.

20. After the DMA of the packet data is done, the USTORM requests the BRB to release the BRB buffers.

TSTORM

• The TSTORM filters the packets based on Unicast and Multicast MAC Addresses configured into the TSTORM CAM
Table Entries. The TCAM supports a total of 96 entries per port.

• The TSTORM filters the packets based on the VLAN configuration of the port. Table 34 summarizes how the TSTORM
handles the VLAN filtering.

i

• Drops the packets if there is an Rx error as indicated by the NIG block and the port is configured to drop the packets
with any Rx error.

• If RSS is enabled, The TSTORM calculates the RSS Hash based on the configured 'RSS Hash Type' and finds the
actual CID for that packet using the RSS Indirection Table.

• Sends Start Packet Messages to the USTORM

• Writes End Packet Messages directly to USTORM internal memory using the Serial Number assigned to a packet.

USTORM
• Fetches Rx BDs if the local Rx BD Ring is empty.

• Removes the VLAN tag if the device is configured to perform this action.

• Pads the packet with zeros if a packet becomes a short packet (length less than 64 Bytes) after the VLAN tag is
removed. For GVRP and LACP packets, removal of the VLAN field is not allowed, even if the port is configured for VLAN
Tag removal. The driver should set the Override VLAN Tag Removal when setting the GVRP and LACP destination
MAC addresses (the destination MAC address of GVRP is 0180-C2-00-00-21 and the destination MAC address of
LACP is 01-80-C2-00-00-02).

Table 34: VLAN Filtering Rules

Configured VLAN ID
for NIC

Packet Contains a tag
header?

VLAN ID in the Tag
header TSTORM Action

Zero (filter bypass) yes Any value Remove VLAN Tag from the packet if the
Enable VLAN Removal bit of the port is set.
Insert the stripped VLAN tag into BD and set
the VLAN bit in the WQE.

Zero (filter bypass) No Not applicable Unset the VLAN bit in the WQE.

Nonzero Yes Matches the configured
VLAN ID

Remove VLAN Tag from the packet if the
Enable VLAN Removal bit of the port is set.
Insert the stripped VLAN tag into BD and set
the VLAN bit in the WQE.

Nonzero Yes Does not match the
configured VLAN ID

Drop the packet

Nonzero No Not applicable Drop the packet
Broadcom Corporation

Page 90 L2 Receive Flow Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
• Checks for any errors (TCP/IP checksum errors and Rx Errors) in Packet End messages and drops the error packets if
the port is configured to do so.

• Forms the UPB command and sends it to UPB block so that UPB block can handle the DMA of Packet Data and RCQ
entry to the Host Memory. Updates the local RCQ Producer Index and writes it to the HC block.

• Builds RCQE using the information from the Packet Start and Packet End messages and writes the RCQE to RCQ
according to the RSS CPU_ID.

DRIVER FLOW

For Rx of L2 packets, the device driver maintains an Rx BD Chain (aka Receive Queue) and an Rx Completion Queue
(RCQ). The BCM57710/BCM57711 supports up to 16 Rx BD Chains for L2 traffic. For each BD Chain, the driver maintains
an associated RCQ. Multiple Rx Rings can be used to distribute the Rx Load across multiple CPU cores if the Host system
has multiple CPU cores. Figure 19 on page 92 shows the high level Driver Flow of Rx packets. Note that only one Rx BD
Chain (RQ) and RCQ are shown.

During the initialization, the driver:

• Allocates the memory for RQ and initializes it such that the last Rx BD element of each page in the Chain will point to
the next page in the Chain.

• Allocates the memory for RCQ and initializes it such that the last RCQE of each page in the Chain will point to the next
page in the Chain.

• Writes the Host memory addresses of RQ and RCQ to the device.

• For each chain (RQ and RCQ), the driver maintains the Consumer and Producer Indices. Initializes all these indices to
zero.

• Allocates memory for Rx Buffers. Associates an Rx buffer with each of the Rx BDs by updating the Rx BD fields. All the
Rx BDs are now ready and can be given to the device. So update the software copies of RQ Producer Index and RCQ
Producer Index with the available number of Rx BDs.

• Give all the prepared Rx BDs to the device by updating the RCQ Producer Index of the TSTORM in the device.
Broadcom Corporation
Document 57710_57711-PG200-R L2 Receive Flow Page 91

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Figure 19: Rx Driver Flow

For each Rx packet the device will use one Rx BD and the RCQE. When the USTORM gets the Packet End message of that
packet, it takes an Rx BD from the device's Rx Ring and builds and sends a command to the UPB block using the information
from the Rx BD, Packet Start and Packet End messages. The USTORM also takes an entry from the RCQ associated with
that Rx Ring and updates that RCQE with all the information required by the driver to complete processing of Rx packet. The
UPB will handle the DMA of the packet data to Host memory. After the packet is DMAed to the Host memory and RCQE is
written into the Host memory, the HC block will be notified of the updated RCQ Producer Index. When any of the coalescence
conditions is met, the HC block will update the Status Block in Host memory and trigger an interrupt. Depending upon the
configured mode of the interrupt, the device will generate either the INTA# interrupt or an MSI or MSI-X interrupt. As shown
in Figure 20 on page 93, when an INTA# interrupt is used, the interrupt will wake up an arbitrary CPU or a fixed CPU which
executes the main interrupt handler and schedules a DPC to the CPU as indicated by the RSS hash results. In MSI or MSI-
X mode, the interrupt will directly wake up the CPU as determined by the RSS hash results.
Broadcom Corporation

Page 92 L2 Receive Flow Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Figure 20: Rx Interrupt Flow

RX INTERRUPT HANDLING

The driver maintains a mirror copy for each of the Status Blocks used. Upon receiving an interrupt from the HC block, the
driver compares the software copy of the RCQ Consumer Index with the hardware copy of the RCQ Consumer Index
available in the updated Status Block. When the driver detects the software copy is not same as the hardware copy, then it
knows there are new packets received and will schedule a DPC or task thread to process the received packets. Listed below
is the step-by-step procedure of an Rx interrupt handler for each RCQ that has newly received packets.

1. Acquire the software copies of RQ and RCQ indices.

2. Use the software copy of the RCQ Consumer Index, and get the CQE.

3. Get the Rx Buf used for the Rx packet by using the software Rx BD Chain Consumer Index.

4. Check whether the CQE is a slow path completion entry or Rx completion entry. If the CQE is a slow path entry, then
change the driver state depending upon the completed slow path event (such as ramrod). Increment the available SPQ
commands, and jumps to step 13 to give the CQE back to the device.

5. If any error flag is set in the CQE, drop the packet and jump to step 11 to reuse the Rx Buf.

6. Acquire the Rx packet length and placement offset information from the CQE. This placement offset field tells the driver
about the number of Bytes padded by the FW before the Ethernet header in order to make the L3 header aligned to a 16
Byte boundary.

7. Allocate an Rx Buf and associate it with the Rx BD of the RQ indexed by the Rx BD Producer Index by updating the Rx
BD with the Rx Buf Host memory address and length. If the allocation of new Rx Buf fails, then either drop the Rx packet
and jump to step 11 for reusing the Rx Buf of the dropped Rx packet or proceed with steps 8-9 and then exit the interrupt
handler deferring the replenishing of Rx Bufs until OS returns the Rx Bufs.

8. Extract other information such as the L2 protocol, the VLAN tag when VLAN is enabled, and determine whether the TCP/
IP checksum validation is accomplished by the HW. Provide this information to the OS through the OS specific headers
associated with the OS specific data structure Rx Buf.
Broadcom Corporation
Document 57710_57711-PG200-R L2 Receive Flow Page 93

BCM57710/BCM57711 Programmer’s Guide
09/25/09
9. Indicate the new packet arrival to the OS.

10. Proceed to step 12.

11. Reuse the Rx Buf used by the Rx packet for the Rx BD of the RQ indexed by the Rx BD Producer Index by updating the
Rx BD with the Rx Buf Host memory address and length.

12. Update the software copies of RX BD Chain Consumer Index and Producer Index.

13. Update the software copies of RCQ Producer Index and Consumer Index.

14. Indicates the updated RCQ Producer Index to the device. Recycling of fast path CQE must be accomplished only after
recycling the BD.

If the interrupt handler defers the replenishing of the RCQ entries, then the driver will update the RCQ Producer Index only
when the OS returns the Rx Bufs as shown in Figure 19 on page 92. In any case, the driver can implement a threshold and
replenish the RCQ entries only when the number of available RCQ entries exceeds the threshold. This reduces the number
of DMA operations fetching the Rx BDs. When Jumbo Frame support is enabled, as there is no separate Rx ring for receiving
Jumbo Frames, the size of all Rx Bufs allocated should be at least the size of configured Ethernet Rx MTU. In this case, if
memory usage efficiency is a concern, the driver may implement copying the Rx packets of size less than a given threshold
into newly allocated small buffers and releasing Rx Bufs for reuse.

INTERRUPT COALESCING

The BCM57710/BCM57711 device has a transmit and a receive interrupt coalescing feature. The BCM57710/BCM57711
device interrupt coalescing functions are initialized by setting a timeout value in microseconds in the CSTORM and
USTORM timer offsets for transmits and receive interrupts respectively (CSTORM_SB_HC_TIMEOUT_OFFSET and
USTORM_SB_HC_TIMEOUT_OFFSET)

The microsecond value in the CSTORM and USTORM timeout offset has a 12 μs granularity.

For receive interrupt coalescing, the device generates an interrupt for the first incoming packet. At this point, the device sets
a timer and collects all packets received within the interval of the time out value.

Example: If the device receives a packet and the interval is configured to be the minimum value (12 μs), and if the
subsequent incoming packets arrive within the 12 μs interval, an interrupt is generated only when the timeout expires and
not before. If the next incoming packet arrives 12 μs after the previous packet and after the previous timeout value was
achieved, then a new interrupt is generated for that new packet and the timer interval begins again.

The transmit interrupt coalescing functions in the same way using transmitted packets.

1 For slow path completion, only the CQE is consumed by the device and Rx BD is not consumed.

2 The driver should allocate the receive buffers in 16-byte aligned addresses as required by FW.
Broadcom Corporation

Page 94 L2 Receive Flow Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
TRANSPARENT PACKET AGGREGATION

This section describes the theory and implementation of Transparent Packet Aggregation (TPA) for NetXtreme II 10 GbE
controllers.

GLOSSARY

• 4-Tuple - A combination of the IP source and destination address along with the TCP source and destination port.

• Aggregation - An aggregation is a TCP stream tracked by the network controller.

• LSO - Large Send Offload

• SGE - Scatter-Gather Entry

• SGQ - Scatter-Gather Queue

• TSO - TCP Segmentation Offload

• TOE - TCP Offload Engine

• TPA - Transparent Packet Aggregation

THEORY OF OPERATIONS

Transparent Packet Aggregation (TPA) is a technology that allows stateless offload of TCP connections to the network
controller. Unlike transmit offload technologies such as LSO/TSO (Large Send Offload/TCP Segmentation Offload) which
allow the network controller to breakup a single large TCP frame (say 64KB) into multiple, smaller frames appropriate for the
physical network layer (say 1500 byte frames), TPA is a receive offload technology which allows the network controller to
combine multiple, smaller TCP frames (say 1500 bytes) into a single, larger TCP frame (say 64KB) and pass the resulting
larger frame to the network stack.

HOW DOES AGGREGATION WORK?

Whenever the network controller detects an incoming TCP frame it compares the 4-tuple value of that frame to an existing
table of tracked TCP streams to determine if the TCP frame is part of an existing stream or a new stream. If it is a new stream
the network controller will store the relevant TCP connection information internally and then pass the TCP frame to the host
network driver, indicating that a new aggregation has begun. The network controller will then watch for additional TCP frames
the previously identified 4-tuple value. When such a frame is received, the controller will perform several checks (see “When
to Aggregate?” and “When to Stop Aggregation?” on page 97) to determine frame validity and to decide whether the new
frame should be added to an existing aggregation, or be used to start a new aggregation. If the frame should be added to
an existing aggregation, then the network controller writes the TCP payload to a buffer in the Scatter Gather Queue (SGQ).

When an aggregation is complete the network controller will indicate to the host network driver that an aggregation has
completed and that it should be assembled into a buffer appropriate for the OS network stack. The driver is then responsible
for combining the original TCP frame (which includes an updated TCP header) with additional entries from the SGQ to create
a single, large TCP frame for the OS.

Implementation of TPA has several advantages in a network driver:

- The OS stack is relieved of the responsibility to verify each individual frame (including verifying the TCP checksum)

- The network controller is responsible for verifying TCP checksums for the entire aggregated frame.
Broadcom Corporation
Document 57710_57711-PG200-R Transparent Packet Aggregation Page 95

BCM57710/BCM57711 Programmer’s Guide
09/25/09
WHEN TO AGGREGATE?

The network controller is responsible for determining when a received TCP frame can be aggregated. Only a frame which
satisfies ALL of the following conditions will be aggregated.

• The frame does not contain an IPv4 checksum error.

• The frame does not contain a TCP checksum error.

• The frame does not have a TTL = 0.

• The frame is not larger than the programmed MTU.

• The frame is larger than 80 bytes

• The frame does not have an FCS error.

• The frame does not use LLC SNAP encapsulation

• The frame does not use IP options

• The frame is not an IP fragment

• The frame does not contain any TCP options other than timestamp.

• The frame does not contain any of the following TCP flags: FIN/SYN/RST/URG.

Each NetXtreme II controller supports a maximum number of aggregation queues per port (32 for the BCM57710 and 64 for
the BCM57711). If a newly received frame is suitable for aggregation and all existing aggregation queues are already in use
the network controller will randomly select an existing aggregation, send an indication to the host network driver that the
existing aggregation is complete, and begin a new aggregation for the newly received TCP frame.
Broadcom Corporation

Page 96 Transparent Packet Aggregation Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
WHEN TO STOP AGGREGATION?

The network controller is responsible for determining when a TCP aggregation is complete. If a newly received frame
matches ANY of the following conditions the current aggregation will be marked complete and indicated to the network driver.

• The TCP header length of the current frame does not match the TCP header length of the first TCP frame in the
aggregation.

• The VLAN ID of the current frame does not match the VLAN ID of the first TCP frame in the aggregation.

• The TCP frame is out of order (i.e. the received sequence number does not match the expected sequence number).

• The acknowledged sequence number of the current frame is less than the acknowledged sequence number of the last
frame in the aggregation.

• The expected size of the aggregation with the new frame is greater than the aggregation threshold. The aggregation
threshold is calculated as (size_of_bd + size_of_sgl * size_of_sge - mtu).

• The TCP PUSH flag is set.

• Timeout

IMPLEMENTATION ASSUMPTIONS

It is assumed that the reader is familiar with basic operation of the Broadcom NetXtreme II 10Gb network driver. It is also
required that the host OS is capable of supporting large received TCP frames. In FreeBSD, for example, the capability to
accept large TCP frames is referred to as Large Receive Offload (LRO) and is available in FreeBSD version 6.5 and later..

The BCM57710/BCM57711 controllers use firmware extensively to implement many different features. The version of
firmware used may change the size or definition of common host memory data structures such as the Completion Queue
Entry (CQE). Developers writing their own driver should pay close attention to the Host Software Interface (HSI) definitions
provided in any reference drivers as these definitions may change between firmware releases. Although this document will
be update periodically to accommodate any new definitions the developer should always refer to the HSI definitions of the
firmware they receive. The remainder of this document includes HSI data structures that were in use with firmware version
4.8.5.

TPA Implementation

The following sections document how to modify a NetXtreme II network driver to add TPA support.

Required Firmware Version

The ability to support TPA was added in BCM57710/BCM57711 firmware version 4.4.9

Firmware Data Structures

When enabling or initializing many features in the NetXtreme II 10Gb network controller the host device driver must update
numerous firmware data structures used by the STORM processors in addition to the typical register reads/writes. The
following describes which STORM processors are involved with TPA operation and the additional initialization required for
that processor.

USTORM

The following USTORM context data structure is modified to enable TPA.

struct ustorm_eth_st_context_config {
#if defined(__BIG_ENDIAN)
Broadcom Corporation
Document 57710_57711-PG200-R Transparent Packet Aggregation Page 97

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 uint8_t flags;
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT (0x1<<0)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT_SHIFT 0
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_DYNAMIC_HC (0x1<<1)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_DYNAMIC_HC_SHIFT 1
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA (0x1<<2)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA_SHIFT 2
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_SGE_RING (0x1<<3)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_SGE_RING_SHIFT 3
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS (0x1<<4)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS_SHIFT 4
#define __USTORM_ETH_ST_CONTEXT_CONFIG_RESERVED0 (0x7<<5)
#define __USTORM_ETH_ST_CONTEXT_CONFIG_RESERVED0_SHIFT 5
 uint8_t status_block_id;
 uint8_t clientId;
 uint8_t sb_index_numbers;
#define USTORM_ETH_ST_CONTEXT_CONFIG_CQE_SB_INDEX_NUMBER (0xF<<0)
#define USTORM_ETH_ST_CONTEXT_CONFIG_CQE_SB_INDEX_NUMBER_SHIFT 0
#define USTORM_ETH_ST_CONTEXT_CONFIG_BD_SB_INDEX_NUMBER (0xF<<4)
#define USTORM_ETH_ST_CONTEXT_CONFIG_BD_SB_INDEX_NUMBER_SHIFT 4
#elif defined(__LITTLE_ENDIAN)
 uint8_t sb_index_numbers;
#define USTORM_ETH_ST_CONTEXT_CONFIG_CQE_SB_INDEX_NUMBER (0xF<<0)
#define USTORM_ETH_ST_CONTEXT_CONFIG_CQE_SB_INDEX_NUMBER_SHIFT 0
#define USTORM_ETH_ST_CONTEXT_CONFIG_BD_SB_INDEX_NUMBER (0xF<<4)
#define USTORM_ETH_ST_CONTEXT_CONFIG_BD_SB_INDEX_NUMBER_SHIFT 4
 uint8_t clientId;
 uint8_t status_block_id;
 uint8_t flags;
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT (0x1<<0)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT_SHIFT 0
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_DYNAMIC_HC (0x1<<1)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_DYNAMIC_HC_SHIFT 1
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA (0x1<<2)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA_SHIFT 2
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_SGE_RING (0x1<<3)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_SGE_RING_SHIFT 3
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS (0x1<<4)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS_SHIFT 4
#define __USTORM_ETH_ST_CONTEXT_CONFIG_RESERVED0 (0x7<<5)
#define __USTORM_ETH_ST_CONTEXT_CONFIG_RESERVED0_SHIFT 5
#endif
#if defined(__BIG_ENDIAN)
 uint16_t bd_buff_size;
 uint8_t statistics_counter_id;
 uint8_t mc_alignment_log_size;
#elif defined(__LITTLE_ENDIAN)
 uint8_t mc_alignment_log_size;
 uint8_t statistics_counter_id;
 uint16_t bd_buff_size;
#endif
#if defined(__BIG_ENDIAN)
 uint8_t __local_sge_prod;
 uint8_t __local_bd_prod;
 uint16_t sge_buff_size;
#elif defined(__LITTLE_ENDIAN)
Broadcom Corporation

Page 98 Transparent Packet Aggregation Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 uint16_t sge_buff_size;
 uint8_t __local_bd_prod;
 uint8_t __local_sge_prod;
#endif
 uint32_t reserved;
 uint32_t bd_page_base_lo;
 uint32_t bd_page_base_hi;
 uint32_t sge_page_base_lo;
 uint32_t sge_page_base_hi;
};

The following fields in the eth_st_context_config structure must be modified when enabling TPA support in the NetXtreme II
10Gb network controller:

• flags - The USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA bit in the flags field is used to enable/disable TPA
operation in the device while the USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_SGE_RING bit is used to enable
support for the scatter-gather queue. Both of these bits must be set when enabling TPA. These bits should not be set
until AFTER the SGQ has been initialized and populated.

• sge_buff_size - The size in bytes of each scatter-gather entry buffer. Typically equivalent to the page size of the host
CPU (for example, 4KB for Intel®/AMD® x86 processors).

• sge_page_base_lo - The lower 32 bits of the 64 bit address of the first page in the SGQ.

• sge_page_base_hi - The upper 32 bits of the 64 bit address of the first page in the SGQ.

The following USTORM receive producer data structure is modified to use TPA.

struct ustorm_eth_rx_producers {
#if defined(__BIG_ENDIAN)
 uint16_t bd_prod;
 uint16_t cqe_prod;
#elif defined(__LITTLE_ENDIAN)
 uint16_t cqe_prod;
 uint16_t bd_prod;
#endif
#if defined(__BIG_ENDIAN)
 uint16_t reserved;
 uint16_t sge_prod;
#elif defined(__LITTLE_ENDIAN)
 uint16_t sge_prod;
 uint16_t reserved;
#endif
};

The following fields in the ustorm_eth_rx_producers structure are used by TPA:

• sge_prod - The sge_prod field is used by the host network driver when adding new entries to the SGQ. It is used in the
same manner as the bd_prod or cqe_prod fields are during non-TPA operation and should be written at the same time
as the bd_prod or cqe_prod values.
Broadcom Corporation
Document 57710_57711-PG200-R Transparent Packet Aggregation Page 99

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Host Data Structures

The following host data structures are either added or modified to support TPA.

Scatter Gather Queue

The scatter gather queue (SGQ) is similar to the receive queue (RXQ) in that it is a chunked-list of pointers to host memory.
Each chunk of the SGQ is a page of host memory (typically 4KB in size for Intel/AMD x86 systems) which is directly accessed
by the network controller (i.e. it must be mapped for DMA by the controller). Each entry in the SGQ, or SGE, is a 64 bit pointer
to a host memory buffer except for the last entry on a page which is the Next Page pointer to the next SGQ page. Since the
SGQ is a circular linked list the last SGQ page points back to the first SGQ page.

Figure 21: Scatter-Gather Queue Structure

Note: Unlike the Receive Queue (RXQ) or the Completion Queue (CQ), entries of the SGQ may be posted to the
host network driver out-of-order. For example, when multiple aggregations are occurring simultaneously, the host
network driver may receive a CQE with scatter-gather elements 2, 4, and 6 in the sgl array field. Other scatter-
gather elements 0, 1, 3, and 5 may be involved with other aggregations that have not completed. However, just
like the RXQ and the CQ, when new elements are posted to the SGQ they must be posted in order (or
contiguously) since only a single producer index is used. It is therefore the host network driver's responsibility to
monitor the order of completions in the SGQ and only post contiguous scatter-gather entries to the SGQ when
updating the sge_prod value.

Scatter Gather Queue

.

.

.

SGE (64 bit pointer)

SGE (64 bit pointer)

SGE (64 bit pointer)

SGE (64 bit pointer)

SGE (64 bit pointer)

Next Page (64 bit pointer)

Scatter Gather Queue

.

.

.

SGE (64 bit pointer)

SGE (64 bit pointer)

SGE (64 bit pointer)

SGE (64 bit pointer)

SGE (64 bit pointer)

Next Page (64 bit pointer)

scatter-gather buffer (4KB)

scatter-gather buffer (4KB)

scatter-gather buffer (4KB)

scatter-gather buffer (4KB)

scatter-gather buffer (4KB)

scatter-gather buffer (4KB)

scatter-gather buffer (4KB)

scatter-gather buffer (4KB)

scatter-gather buffer (4KB)

scatter-gather buffer (4KB)
Broadcom Corporation

Page 100 Transparent Packet Aggregation Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Whereas the Receive Queue (RXQ) generally uses MTU sized buffers (2KB for FreeBSD) the SGQ generally uses buffers
that are equivalent to the host CPU page size (4KB for Intel/AMD x86 systems). The size of the buffers used in the SGQ is
configurable by the driver but the driver writer should be aware that a maximum of 8 SGE's can be used for an aggregated
frame (see “Completion Queue Entry” below.)

Scatter Gather Entry

The scatter-gather entry (SGE) has the following definition:

struct eth_rx_sge {
 uint32_t addr_lo;
 uint32_t addr_hi;
};

Completion Queue Entry

When a TPA aggregation is started or completed the NetXtreme II 10Gb network controller will provide an indication to the
host network driver through a Completion Queue Entry (CQE) in the Completion Queue (CQ). The CQE has the following
structure:

union eth_rx_cqe {
 struct eth_fast_path_rx_cqe fast_path_cqe;
 struct common_ramrod_eth_rx_cqe ramrod_cqe;
 struct eth_rx_cqe_next_page next_page_cqe;
};

Since a receive completion is a fastpath event, the CQE has the following structure:

struct eth_fast_path_rx_cqe {
 uint8_t type_error_flags;
#define ETH_FAST_PATH_RX_CQE_TYPE (0x1<<0)
#define ETH_FAST_PATH_RX_CQE_TYPE_SHIFT 0
#define ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG (0x1<<1)
#define ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG_SHIFT 1
#define ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG (0x1<<2)
#define ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG_SHIFT 2
#define ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG (0x1<<3)
#define ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG_SHIFT 3
#define ETH_FAST_PATH_RX_CQE_START_FLG (0x1<<4)
#define ETH_FAST_PATH_RX_CQE_START_FLG_SHIFT 4
#define ETH_FAST_PATH_RX_CQE_END_FLG (0x1<<5)
#define ETH_FAST_PATH_RX_CQE_END_FLG_SHIFT 5
#define ETH_FAST_PATH_RX_CQE_RESERVED0 (0x3<<6)
#define ETH_FAST_PATH_RX_CQE_RESERVED0_SHIFT 6
 uint8_t status_flags;
#define ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE (0x7<<0)
#define ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE_SHIFT 0
#define ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG (0x1<<3)
#define ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG_SHIFT 3
#define ETH_FAST_PATH_RX_CQE_BROADCAST_FLG (0x1<<4)
#define ETH_FAST_PATH_RX_CQE_BROADCAST_FLG_SHIFT 4
#define ETH_FAST_PATH_RX_CQE_MAC_MATCH_FLG (0x1<<5)
#define ETH_FAST_PATH_RX_CQE_MAC_MATCH_FLG_SHIFT 5
#define ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG (0x1<<6)
#define ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG_SHIFT 6
#define ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG (0x1<<7)
#define ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG_SHIFT 7
Broadcom Corporation
Document 57710_57711-PG200-R Transparent Packet Aggregation Page 101

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 uint8_t placement_offset;
 uint8_t queue_index;
 uint32_t rss_hash_result;
 uint16_t vlan_tag;
 uint16_t pkt_len;
 uint16_t len_on_bd;
 struct parsing_flags pars_flags;
 uint16_t sgl[8];
};

When the CQE indicates an aggregation start or aggregation end, the eth_fast_path_rx_cqe structure fields have the
following meaning:

• type_error_flags

- The ETH_FAST_PATH_RX_CQE_START_FLG bit indicates that a new aggregation has begun and that the driver
should place the newly received frame in the appropriate TPA queue.

- The ETH_FAST_PATH_RX_CQE_END_FLG bit indicates that an aggregation has completed and that the driver
should remove the scatter-gather entries for the frame from the SGQ.

• queue_index - This field indicate which TPA queue is referenced by the current TPA start or end CQE.

• pkt_len - When the ETH_FAST_PATH_RX_CQE_END_FLG bit is set this field indicates the number of bytes for the
entire aggregated frame.

• len_on_bd - When the ETH_FAST_PATH_RX_CQE_END_FLG bit is set this field indicates the number of bytes used
for the first frame received in the aggregation.

• sgl - The sgl array contains a list of pointers into the SGQ for the remaining data of the aggregated frame. The number
of valid sgl pointers used by the aggregated frame can be determined by subtracting the len_on_bd field from the
pkt_len_field and calculating the number of pages used to hold the result.

High Level Outline

The following is a high level outline of the steps required to implement TPA.

Initialization

The host network driver should perform the following steps to initialize the network controller for TPA:

• Allocate a number of pages for the scatter gather queue. Map these pages for DMA access. (The supplied reference
drivers require that the number of pages in the SGQ be a "power of two", i.e. 1, 2, 4, or 8 pages.)

• Initialize the "Next Page" entries for each SGQ page, creating a circular linked list.

• Allocate the necessary number of scatter-gather buffers (e.g. 255 scatter-gather buffers are used for a 4KB scatter-
gather chain page) to fill the SGQ. Map these buffers for DMA access. Update the scatter-gather entries with the
physical address of the allocated scatter-gather buffers.

• Update the USTORM context to enable SGE/TPA support, set the size of a scatter-gather buffer, and provide the
physical address of the first page of the SGQ.

Fastpath Operation

The host network driver should perform the following steps during normal network operation (i.e. during the interrupt service
routine or the deferred procedure call):

• If the CQE has the ETH_FAST_PATH_RX_CQE_START_FLG set, the driver should:

- Store the frame into an array of frames that are being aggregated (the TPA pool).

- Set an internal flag to indicate that an aggregation for queue_index is in progress.
Broadcom Corporation

Page 102 Transparent Packet Aggregation Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
- Not unmap the receive buffer from DMA space until the aggregation is complete as the network controller will need
to update the TCP/IP header as the aggregation continues.

• If the CQE has the ETH_FAST_PATH_RX_CQE_END_FLG set, the driver should:

- Determine the number of SGEs used for the aggregation.

- Umap the SGE's and the frame in the TAP pool

- Concatenate the SGE's to the original received frame in the TPA pool and remove those SGE's from the SGQ.

- Clear an internal flag to indicate that an aggregation for queue_index has completed.

• Replace any SGE's that have been released and map the buffers for DMA.

• Update the sge_prod index if any new scatter-gather buffers can be added to the SGQ, provided that they are
contiguous.

• Pass the resulting aggregated frame to the host network stack.

LARGE SEND OFFLOAD

This subsection includes rules that the BCM57710/BCM57711 host driver must follow for the device to support the Large
Send Offload (LSO) feature. The BCM57710/BCM57711 handles LSO packets very similar to non-LSO packets except that
the BCM57710/BCM57711 device segments large LSO blocks into smaller LSO maximum segment sized packets. Here are
additional rules for transmitting LSO blocks that are not included in the normal L2 Transmit Flows section.

• The packet header data must be separated from the data payload. The packet headers include the Ethernet, IP and
TCP headers. The packet headers must be placed into a separate buffer descriptor (BD).

• An LSO block maximum segment size (MSS) must not use up more than 13 buffer descriptors (BDs) for per MSS. A
maximum number of 13 BDs must hold a byte length that is greater than or equal to the LSO MSS.

• Three BDs of the 13 BD limit include 1 or more packet header BDs, 1 parsing BD (See the L2 Tx flow section) and 1
last BD. This can be called the "13 BD window"

• If more than 13 BDs are needed to transmit an MSS packet, then a coalescing buffer BD or bounce buffer BD is
necessary to meet the 13 BD limit.

• The host driver must implement a 13 BD sliding window algorithm to ensure the 13 BD limit is enforced as it processes
the LSO block.

The host driver must set the appropriate LSO related fields in the Tx BD for the device to recognize that the packet is an LSO
packet. See L2 Tx Flows section.

An LSO packet is handled in the following way:

1. Split the packet header data from the packet payload data and put it into a separate BD. The header BD is also the "start"
BD (See the L2 Transmit Flows section). If the packet header is already separate, then this BD is labeled the start BD.

2. If an entire LSO packet meets the 13 BD window restriction then continue with the steps described in “L2 Transmit Flow”
on page 85. If the LSO block contains more than 13 BDs, continue with the following steps

3. Determine how many BDs are required for the first packet byte count to be >= MSS. The Length in bytes used is
calculated by counting the total data payload bytes and not the header data of 13 BDs minus the 1 parsing BD + (x
amount of header BDs) + 1 last BD must be >= MSS. 13 BDs - (1 parsing BD + 1(or more) header BDs + 1 last BD) is
a "13 BD window"

4. Determine the size in bytes of the first 13 BD window

5. Beginning from the first data payload BD, slide the "13 BD window" over 1 BD and determine if [(the previous window
Broadcom Corporation
Document 57710_57711-PG200-R Large Send Offload Page 103

BCM57710/BCM57711 Programmer’s Guide
09/25/09
size in bytes - the size of the 1st payload BD) + (size of the newly windowed payload BD)] >= MSS

6. If any 13 BD window (except for the final window) is < MSS a double copy or bounce buffer is needed to meet the 13 BD
requirement of the 13 BD window >= MSS

7. Continue until the end of the LSO block. The last window does not have to be >= the MSS

Figure 22: 13 BD Sliding Window

Figure 22 represents a 13 BD sliding window on an LSO block containing more than 13 fragments where the header data
was split from the payload data and placed into a separate header BD. The blocks represent buffer descriptors of various
sizes. The header data must be split from the payload data and the total byte count within the 13 BD window must not include
the header data. By subtracting the 3 new driver-inserted BDs (the header BD, the parsing BD and a last BD) the 13 BD
window becomes a window that covers 10 payload BDs. After calculating the first window size, the window slides over 1 BD
and a new count is started.

DEVICE STATISTICS

BCM57710/BCM57711 layer 2 device statisitics are gathered by the host driver from the device block statistic registers and
from each STORM statistic memory.

The BMAC, EMAC and NIG device blocks contain device statistics that the driver can gather directly from register reads or
by using the BCM57710/BCM57711 device DMA engine. The STORM statistics are gathered by first using a RAMROD
command to request an update of all STORM internal statistics fields in the STORM memories. The STORM statistics
memories can then be read directly by the host driver.

The STORM statistics correspond to individual function statistics when multiple functions are enabled.

The BMAC, EMAC and NIG device block statistics pertain to individual port statistics.

The driver has the responsibility to ensure a 64–bit counter expansion from 32–bit counters.

Statistics gathered by the host driver from the BMAC, EMAC and NIG device blocks must be written to the MCP shared
memory by the host driver for use by the device management firmware (MCP). See the FreeBSD BCM577xx driver for
implementation details.

B

D
BD

B

D

B

D
BDBDBD

B
D BD

B

D
B
D

B
D

B
D

B
D

Add
1 Header BD &
1 Parsing BD

Here

Add
1 Last BD

LSO Packet w/14
Fragments

13 BD
Window
(-3 BDs)

Sliding
13 BD

Window
Broadcom Corporation

Page 104 Device Statistics Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
The method of gathering the device statistics can be seen in the open source host driver code.

DIRECT MEMORY ACCESS ENGINE (DMAE)

The BCM57710/BCM57711 includes an internal DMAE that allows DMA functionality to and from host memory, BAR
mapped memory, and device GRC memory.

THE “GO” REGISTER

Each DMAE command has a "Go" register, which is a distinct GRC address that is allocated for this purpose. When an
execution of a command finishes, the PCI/GRC source/destination addresses are retained intact, and the next execution
continues from the addresses where the previous execution finished. The CRC continues as if the new command is a
continuation of the previous command, except if the opcode indicates to reset the CRC result on either of the source/
destination addresses.

THE OPCODE

The opcode format is shown in Table 35.

Table 35: Opcode Format

Field Bits Description Significant
Width

SRC 0:0 Whether the source is the PCIe or the GRC.
0- The source is the PCIe

1- The source is the GRC.

1

DST 2:1 The destination of the DMA can be:

0- None
1- PCIe
2- GRC

3- None

2

C-DST 3:3 The destination of the completion:

0- PCIe
1- GRC

1

Completion type 4:4 Whether to write a completion word to the completion destination:
0- Do not write a completion word
1- Write the completion word

1

5:5 Whether to write a CRC word to the completion destination
0- Do not write a CRC word

1- Write a CRC word

1

8:6 The CRC word should be taken from the DMAE GRC space from
address 9+X, where X is the value in these bits.

3

Endianity mode 10:9 The endianity swapping used when doing the DMA. (see the PCIe HLD
spec for a description of endianity modes).

2

Network Port ID 11:11 Which network port ID to present to the PCI request interface 1
Broadcom Corporation
Document 57710_57711-PG200-R Direct Memory Access Engine (DMAE) Page 105

BCM57710/BCM57711 Programmer’s Guide
09/25/09
In the completion type field, if both bits 0 and 1 are asserted, first the word is written to the completion address, and then the
CRC result is written to the next address.

Endianity mode: Endianity swapping is used when reading/writing from/to PCI.

When consecutive DMAE commands are necessary and when the CRC should be calculated over the entire payload of all
the commands, then generally the CR bit should be 0, except for the first command where the CR bit should 1.

ARCHITECTURE

The NetXtreme II controller provides controls for both byte-swapping and word-swapping. The Broadcom NetXtreme II
controller operates internally using a 64-bit big-endian architecture, and its internal RISC processors are 64-bit big-endian
devices. This differs from many host systems that connect to the NetXtreme II through the little-endian PCI/PCI-X/PCIe bus,
and operate with little-endian processors. To accommodate the difference in data representation between the internal and
external interfaces, the Broadcom NetXtreme II controller provides several different byte and word swapping options so that
both big-endian and little-endian hosts can interface seamlessly over the PCIe interface.

The BCM57710/BCM57711 Ethernet Controller supports the Byte and Word swapping configuration per each of the clients
to the PXP (PCI Express logic) block. For SDM (USDM, TSDM, CSDM, XSDM, USDM_DP) and DMAE clients, the Byte and
Word swapping is supported per request (2 MSB bits of the Echo field in the request). For all other PXP clients, the swapping
mode is determined based on the configuration in per client Endian Mode configuration registers in the PXP and PXP2
blocks.

The following are the registers used for configuring the swap mode for Host accesses to various blocks of the device in BAR
space.

• PXP_REGISTERS_HST_USDM_SWAP_MODE (Offset: 0x10300C): Swapping Mode for the Host accesses to USDM
block.

• PXP_REGISTERS_HST_CSDM_SWAP_MODE (Offset: 0x10300C): Swapping Mode for the Host accesses to XSDM
block.

• PXP_REGISTERS_HST_XSDM_SWAP_MODE (Offset: 0x103014; Swapping Mode for the Host accesses to XSDM
block.

• PXP_REGISTERS_HST_TSDM_SWAP_MODE (Offset: 0x103018): Swapping Mode for the Host accesses to TSDM
block.

• PXP_REGISTERS_HST_GRC_SWAP_MODE (Offset: 0x103020): Swapping Mode for the Host accesses to GRC
block.

CR - CRC reset 12:12 Reset the CRC result (do not use the previous result as the seed). 1

SR – SRC address reset 13:13 Reset the source address in the next “go” to the same source address
of the previous “go”. If this bit is 0, then the next “go” continues from the
source address where the previous “go” stopped

1

DR – DEST address reset 14:14 Reset the destination address in the next “go” to the same destination
address of the previous “go”. If this bit is 0, then the next “go” continues
from the destination address where the previous “go” stopped.

1

Table 35: Opcode Format (Cont.)

Field Bits Description Significant
Width
Broadcom Corporation

Page 106 Direct Memory Access Engine (DMAE) Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
• PXP_REGISTERS_HST_DQ_SWAP_MODE (Offset: 0x103024): Swapping Mode for the Host accesses to Door Bell
BAR space.

• PXP_REGISTERS_HST_HC_SWAP_MODE (Offset: 0x10301C): Swapping Mode for the Host accesses to BAR
memory used by HC block. One example of such BAR memory used by HC block is the MSI-X table space.

The following are the registers for configuring the swap mode for DMA read requests from the different clients to the PCIe
block.

• PXP2_REGISTERS_RD_PBF_SWAP_MODE (Offset: 0x1203F4): Swapping Mode for the PBF bus master read
requests.

• PXP2_REGISTERS_RD_QM_SWAP_MODE (Offset: 0x1203F8): Swapping Mode for the QM bus master read
requests.

• PXP2_REGISTERS_RD_TM_SWAP_MODE (Offset: 0x1203FC): Swapping Mode for the TM bus master read
requests.

• PXP2_REGISTERS_RD_SRC_SWAP_MODE (Offset: 0x120400): Swapping Mode for the SRC bus master read
requests.

• PXP2_REGISTERS_RD_CDURD_SWAP_MODE (Offset: 0x120404): Swapping Mode for the CDU bus master read
requests.

The following are the registers used for configuring the swap mode for DMA write requests from the different clients to the
PCIe block.

• PXP2_REGISTERS_RQ_QM_ENDIAN_M (OFFSET: 0X120194): Swapping Mode for the Queue Manager block DMA
write requests.

• PXP2_REGISTERS_RQ_TM_ENDIAN_M (OFFSET: 0X120198): Swapping Mode for the Timers block DMA write
requests.

• PXP2_REGISTERS_RQ_SRC_ENDIAN_M (OFFSET: 0X12019C): Swapping Mode for the Searcher block DMA write
requests.

• PXP2_REGISTERS_RQ_CDU_ENDIAN_M (OFFSET: 0X1201A0): Swapping Mode for the Context Distribution Unit
block DMA write requests.

• PXP2_REGISTERS_RQ_DBG_ENDIAN_M (OFFSET: 0X1201A4): Swapping Mode for the Debug block DMA write
requests.

• PXP2_REGISTERS_RQ_HC_ENDIAN_M (OFFSET: 0X1201A8): Swapping Mode for the Host Coalescence block
DMA write requests.

• PXP2_REGISTERS_RQ_PBF_ENDIAN_M (OFFSET: 0X1201AC): Swapping Mode for the Packet Builder and Framer
block DMA write requests.

All the swap mode configuration registers described above support four different swapping modes depending upon the
configuration the 2 LSB bits.

• Mode-00: No Byte swapping and No Word (DW) swapping

• Mode-01: Byte swapping and No Word (DW) swapping

• Mode-10: No Byte swapping and Word (DW) swapping

• Mode-11: Byte swapping and Word (DW) swapping
Broadcom Corporation
Document 57710_57711-PG200-R Direct Memory Access Engine (DMAE) Page 107

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Section 6: PCIe

INTRODUCTION

PCI Express (PCIe) is a third-generation high-performance I/O interconnect, and is used in a wide variety of computing and
communication platforms. The BCM57710/BCM57711 supports the x8 PCIe interface, which is fully compliant with the PCI
Express Base Specification, Revisions 2.0 and 1.1. The x8 PCIe link has eight differential lanes in each direction, with each
lane operating at 2.5 Gbps in Gen 1 and 5.0 Gbps in Gen 2, for an aggregate raw bandwidth of 20 Gbps and 40 Gbps in Gen
1 and Gen 2 respectively, in each direction. The PCIe bus is a serial interconnect and hence the x8 PCIe link requires only
40 pins, with 32 of these used for 16 differential lanes (eight lanes in each direction), with the balance of the pins used for
power and grounding. The data on each lane is 8B/10B encoded to allow for clock recovery at the receiver and AC coupling.
CRC checking is performed on each lane to ensure data integrity. The bus protocol and I/O electrical design allow for hot-
insertion or removal of PCIe devices when a standard connector is used. The PCIe also supports other advanced features
like Power Management, Quality of Service, and error handling. See the PCI Express Base Specification, Revisions 2.0 and
1.1, March 28, 2005 for more details.
Document 57710_57711-PG200-R

Broadcom Corporation

5300 Calilfornia Avenue
Irvine, CA 92617

Phone: 949-926-5000
Fax: 949-926-5203

Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.
Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation

does not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Programmer’s Guide BCM57710/BCM57711
09/25/09
SUPPORTED FEATURES

Table 36: PCIe Features

Feature Support and Comments

Number of Lanes 1,2 ,4 or 8

Option to turn off packing Supported. Useful when link partner has problems with packing.

Access configuration space even when PCIe reference
clock is unavailable

Supported

Aligns the read requests originating from the PCIe to 4
Byte boundaries

Supported

Master single write transactions (without splitting) up to
the Max Payload Size

Supported

Target bursts Supported. User controls maximum length through credits and
ability to return error.

I/O transactions Not supported

Max payload size 512 bytes

Max Read Request size 4 KB

64-bit addressing Supported

Byte-enable checking Supported

Number of outstanding requests Up to 32. Hard-configurable.

Relaxed ordering support Supported. User controlled

No snoop support Supported. User controlled

Check crossing of 4k boundary as a receiver Supported

Transmitter supports INTx messages Supported

Receiver checks for INTx messages and reports as errors Supported

Interrupts performed with MSI/MSI-X or INTx messages Supported

BCM57710/BCM57711 A0 does not support MSI.

Transmitter supports PM_PME, PME_TO_Ack TLPs and
PM_Enter_L1 DLLP

Supported

Receiver supports PM_Active_State_Nak and
PME_Turn_Off

Supported

Receiver discards error messages Supported

Violations of programming model return completer abort Supported, user controlled

Support configuration request retry Supported

May return partial completions User controlled

Transactions crossing RCB boundaries may use multiple
completions

User controlled

Receivers may check for RCB violations Supported

VC support Only VC0 supported

TC support Supported

Virtual channel capability configuration space supported Supported

Initial posted header credits Hard configurable, default to 32, can be set to infinite for debug

Initial posted data credits Hard configurable, default to 512B worth, can be set to infinite for
debug
Broadcom Corporation
Document 57710_57711-PG200-R Supported Features Page 109

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Initial non-posted header credits Hard configurable, default to 1, can bet set to infinite for debug

Initial non-posted data credits Soft configurable, default to infinite

Initial completion header credits Soft configurable, default to infinite

Initial completion data credits Soft configurable, default to infinite

Check for violations of initial credits Supported

Check for too many credits Supported

Check for finite credits after infinite Supported

Receiver overflow detect Supported

Timer for not receiving DLLP Supported

Recommended FC update timer Self configurable

Supports ECRC generation/checking Supported

Transmitter data poisoning support User controlled

Completion timeout Supported

Transmitter may choose to have ACKs/NAKs not affect
replay

ACK/NAKs do not affect replay.

ACKs/NAKs may be collapsed Collapsing supported

Recommended DLLP priorities Recommended priorities supported

Replay timer programmable Self configurable

Retry buffer sizing Hard-configurable. Must follow formula and include L0s exit
latency

ACK_NAK latency timer programmable Soft configurable

STP and SDP symbols may be placed on link in same
symbol time

Supported

Handling of mutually exclusive control bits Supported

Number of FTS ordered sets required Soft-configurable between 0 and 255

Link errors may result in LTSSM transitioning to recovery Supported

Ability to form x2 link Supported

Support lane reversal Supported

Beacon support Supported

L1 support Supported

L1 transition from ASPM Supported

L2 support Supported

WAKE# support Supported

PM_PME backpressure deadlock avoidance Supported

L0s entry time Soft-configurable (<7 us)

L1 entry time Soft-configurable

L0s and L1 exit latencies Soft-configurable (reset to 2-4 us for L0s and 32-64 us for L1)

Endpoint L0s and L1 acceptable latencies Soft-configurable (reset to 2-4 us for L0s and >64 us for L1)

Advanced error reporting Supported

Device serial number capability Supported

Power budgeting capability Supported

Table 36: PCIe Features (Cont.)

Feature Support and Comments
Broadcom Corporation

Page 110 Supported Features Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
CONFIGURATION SPACE

The PCIe devices support the configuration space of 4 KB as shown in Figure 23. The PCIe configuration space is divided
into a PCI 2.3-compatible region, which is the first 256 bytes, and an extended PCIe configuration space region, which
consists of the remaining configuration space.

Figure 23: PCIe Configuration Space

There are three types of PCI configuration space registers that may be exposed by any particular PCI device:

• Required

• Capabilities

• Device specific
Broadcom Corporation
Document 57710_57711-PG200-R Configuration Space Page 111

BCM57710/BCM57711 Programmer’s Guide
09/25/09
REQUIRED REGISTERS

Figure 24 shows the PCI configuration space header that occupies the configuration space 0x0 to 0x3F and includes all the
Required PCIe registers. There are two formats for configuration space header: Type-0 and Type-1. The format for a given
device depends upon the device type. The BCM57710/BCM57711, being a PCIe endpoint device, implements the Type-0
configuration space header. The shaded registers are common for both Type-0 and Type-1 configuration space headers.

Figure 24: PCIe Type 0 Configuration Space Header

Device ID

Vendor ID

Status

Command

Class Code Revision ID

BIST

Header Type Master Latency Timer Cache Line Size

Base Address Registers

Card Bus CIS Pointer

Subsystem ID

Subsystem Vendor ID

Expansion ROM Base Address

Reserved Capabilities Pointer

Reserved

Max_Lat

Min_Gnt Interrupt Pin Interrupt Line
Broadcom Corporation

Page 112 Required Registers Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
CAPABILITIES REGISTERS

The capabilities registers provide system BIOS and Operating Systems visibility into a set of optional features that devices
may implement. The structure and mechanism for chaining auxiliary capabilities is defined in the PCI specification. Both
software and BIOS must implement algorithms to fetch and program capabilities fields, accordingly.

The BCM57710/BCM57711 supports the Power Management capability, VPD capability, MSI capability, MSI-X capability,
and PCIe capability in the capabilities chain, which is within the first 256 bytes of the configuration space. The BCM57710/
BCM57711 also supports Device Serial Number capability, Advanced Error Reporting capability, Power Budgeting capability,
and Virtual Channel capability in the PCIe extended configuration space.

DEVICE-SPECIFIC REGISTERS

Additional PCI configuration space may be used for device-specific registers. However, device-specific registers are not
exposed to system software, according to a specification/standard. System software cannot probe device-specific registers
without a predetermined understanding of the device and its functionality.

EXPANSION ROM

The Expansion ROM on the Broadcom NetXtreme II family is intended for implementation of Preboot Execution Environment
(PXE) and iSCSI boot. The firmware detects the size of option ROM firmware and accordingly advertises the required option
ROM size through the Expansion ROM Base Address register of the configuration space header.

OPERATIONAL CHARACTERISTICS

By default, the Expansion ROM is disabled and the firmware must explicitly enable this feature by setting the
PCIE_REG_PCIER_CONFIG_2.EXP_ROM_SIZE field to the required expansion ROM size. The BIOS detects whether a
PCI device supports an Expansion ROM by writing the value 0xFFFFFFFE to the Expansion ROM Base Address register. If
the value is non-0 when the BIOS reads back from this register, this PCI device supports Expansion ROM; otherwise, it is
not supported. If the EXP_ROM_SIZE field of the PCIE_REG_PCIER_CONFIG_2 register is set to a value of 0, then
Broadcom NetXtreme II returns a value of 0x00000000 when the PCI Expansion ROM Base Address register is read,
indicating that Expansion ROM is not supported. Otherwise, it returns a non-0 value that indicates the size of the expansion
ROM supported by the NetXtreme II.

If a PCI device supports Expansion ROM, the BIOS will assign an Expansion Base address to the device. It then checks for
a valid ROM header (0x55 0xAA as first 2 bytes, and so on) and checksum. If the ROM header and image are valid, the BIOS
will copy the Expansion ROM image to Host's Upper Memory Block (UMB) and invoke the initializing entry point.

Accesses to the PCI Expansion ROM are handled by boot code firmware running on the NetXtreme II. When the host
generates a PCI access to the Expansion ROM, the address is latched in the PCI Expansion ROM Address register and an
EXP_ROM_ATTN is asserted. When the firmware services this attention, it places the expansion ROM data read from
NVRAM into the PCI Expansion ROM Data register which places the data onto the PCI bus and completes the Expansion
ROM access. In between the time that the EXP_ROM_ATTN is asserted and the final data is written to the PCI Expansion
ROM Data register, the PCI block issues retries on the PCI bus to make the requester wait.

Note: The Maximum Expansion ROM size supported by the device is limited by the Maximum NVRAM size
supported by the device.
Broadcom Corporation
Document 57710_57711-PG200-R Required Registers Page 113

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Section 7: Ethernet Link Configuration

OVERVIEW

The BCM57710/BCM57711 Ethernet Controller integrates dual XAUI™/ 10GBASE-CX4/ 10GBASE-KX4 SerDes
Transceivers and dual 1000 BASE-KX/ 2500 BASE-KX SerDes Transceivers for supporting 1/ 2.5/ 10 Gbps modes of
operation and interfacing with external Phys supporting either Fiber or Copper physical media. This section describes the
programming aspects of driver accessing the Phy registers.

MDIO INTERFACE

The MDIO interface is an IEEE standardized Management interface between MAC and PHY devices. It is a serial interface
with two signals: MDIO clock (MDC) and bidirectional Serial Data (MDIO) which allows MDIO Address frames, MDIO Write
Data frames or MDIO Read Data frames to communicate to the (MDIO Management Device) MMD. This interface is covered
in details by Clause 22, Clause 45 and Annex 45A in IEEE 802.3-2005™ specification. The BCM57710/BCM57711 Ethernet
Controller supports both Clause 22 and Clause 45 modes of operation of MDIO interface.

CLAUSE 22 OVERVIEW

The management frame formats for the Clause 22 operation are shown in Table 18. The Clause 22 allows up to 32 Phy
devices and up to 32 registers per Phy device.

Table 37: Management Frame Format (See IEEE 802.3-2005 Specification)

Management Frame Fields

Frame PRE ST OP PHYAD REGAD TA DATA IDLE

Read 1...1 01 10 AAAAA RRRRR Z0 DDDDDDDD
DDDDDDDD

Z

Write 1...1 01 01 AAAAA RRRRR 10 DDDDDDDD
DDDDDDDD

Z

Broadcom Corporation

Page 114 Ethernet Link Configuration Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
CLAUSE 45 OVERVIEW

The Clause 45 provides the ability to access more PHY device registers while still retaining logical compatibility with the
MDIO interface defined in Clause 22. This clause allows a single MDIO management station (STA), through a single MDIO
interface, to access up to 32 Phys (defined as PRTAD in the frame format) consisting of up to 32 MMDs (MDIO Manageable
Devices addressed by DEVAD in the frame format) as shown in Figure 25. The MDIO interface can support up to a maximum
of 65536 registers in each MMD.

Figure 25: STA and MMD devices (ffrom the IEEE 802.3-2005 Specification)

In Clause 45 additional registers are added to the address space by defining MDIO frames that use an ST (Start) code of
'00' as shown in Table 38. Clause 45 defines an Address frame for writing the PHY register address to the Address Register
of the MMD. The write, read, and post-read-increment-address frames will access the register whose address is stored in
the Address Register of the MMD. The Post-read-increment-address frame allows reading of multiple successive registers
from an MMD without having to issue an Address command before every read operation. The MMD will automatically
increment the address by one upon receiving a post-read-increment-address frame unless the address is already 65535.

Table 38: Clause 45 MDIO Management Frame Formats

Management Frame Fields

Frame PRE ST OP PRTAD DEVAD TA ADDRESS/DATA IDLE

Address 1...1 00 00 PPPPP EEEEE I0 AAAAAAAAAAAAAAAA Z

Write 1...1 00 01 PPPPP EEEEE I0 DDDDDDDDDDDDDDDD Z

Read 1...1 00 11 PPPPP EEEEE Z0 DDDDDDDDDDDDDDDD Z

Post-read
increment
address

1...1 00 10 PPPPP EEEEE Z0 DDDDDDDDDDDDDDDD Z

Broadcom Corporation
Document 57710_57711-PG200-R Clause 45 Overview Page 115

BCM57710/BCM57711 Programmer’s Guide
09/25/09
ACCESSING PHY REGISTERS

The EMAC block of BCM57710/BCM57711 Ethernet Controller implements the device MDIO interface and the device MI
communications registers for allowing the firmware and driver to access the Phy registers. The BCM57710/BCM57711 MDIO
Management Station (STA) currently can be found in the BCM57710/BCM57711 EMAC block. The MMDs are found in the
BCM57710/BCM57711 internal PHY (XGXS) and external PHY if present.

Currently the BCM57710/BCM57711 internal PHY has a default PHY address of 1 and the external PHY of a Broadcom
designed NIC has an external PHY address of 0x0, 0x10 or 0x11.

There are three modes in which the MDIO interface signals (MDC/MDIO) can be controlled for communication with the PHY
registers; the Auto-Polling Mode, the Bit-Bang mode and the Auto-Access mode. Currently the Broadcom BCM57710/
BCM57711 software drivers use the Auto-Access Mode only. The other modes are listed for reference.

AUTO-POLLING MODE

This mode allows the EMAC to automatically poll for link status bit in the PHY periodically and update the MAC link status
accordingly. This mode is used for MAC detecting the link status changes from the PHY, especially when the PHY device
does not support the link status change interrupt signal. This mode can be enabled or disabled by using the 'Auto Poll' bit in
the EMAC_REG_EMAC_MDIO_MODE register.

BIT-BANG MODE

Th is mode a l lows the d r iver o r f i rmware to d i rect ly con t ro l the s ignals on MDIO bus through the
EMAC_REG_EMAC_MDIO_MODE register. This mode can be enabled or disabled using the BIT_BANG bit of the
MDIO_MODE register. When this mode is enabled, the values written to MDC, MDIO_OE, and MDIO bits of the
MDIO_MODE register directly control the logic levels of MDC and MDIO signals of the MDIO interface. When using this
mode, the software entity controlling the MDIO bus is responsible for providing the proper delay to satisfy timing requirements
such as setup time, hold time, clock frequency, etc. The Auto Access mode described next takes this burden off of the
software and hence is the recommended method for accessing PHY registers.

AUTO-ACCESS MODE

This mode allows the driver or firmware to access the PHY registers by issuing commands to the device through the
EMAC_REG_EMAC_MDIO_COMM register. The BCM57710/BCM57711 Ethernet Controller has a built-in state machine in
the EMAC block for controlling the MDIO bus according to the command issued from driver. For ease of reference, the
MDIO_COMM register definition is shown in Table 39.
Broadcom Corporation

Page 116 Accessing PHY Registers Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
The following is a list of steps for accessing BCM57710/BCM57711 external PHY registers in the Auto Access mode.

MDIO access is possible through the EMAC0 and EMAC1 blocks.

Table 39: EMAC_REG_EMAC_MDIO_MODE - (Offset: (GRCBASE_EMAC0 / GRCBASE_EMAC1)
+ 0xB4; Width: 32)

Bit Name Description Mode Reset

31 CLAUSE_45 When set to 1 this bit indicates that the current MDIO transaction
will be executed as a Clause 45 transaction. When 0, the
transaction is executed as a Clause 22 transaction. Value of this
bit also determines the meaning of bits specified in bits [27:0] of
the EMAC_REG_EMAC_MDIO_COMMregister. This bit must
be set to proper value before the link auto-polling function is
enabled.

RW 0

30-22 unused4 RO 0

21-16 CLOCK_CNT This field controls the MDIO clock speed. The output MDIO clock
runs at a frequency equal to CORE_CLK/(2*(CLOCK_CNT+1)).
A value of 0 is invalid for this register.

RW 0x13

15-14 unused3 RO 0

13 EXT_MDINT The read value of this bit reflects the current state of the External
MDINT input pin. If the interrupt is asserted, this bit will be '0',
otherwise, this bit will be '1'.

RO X

12 MDINT The read value of this bit reflects the current state of the MDINT
input pin from the Copper PHY. If the interrupt is asserted, this
bit will be '0', otherwise, this bit will be '1'.

RO 0x1

11 MDC Setting this bit to '1' will cause the MDC pin to high if the
BIT_BANG bit is set. Setting this pin low will cause the MDC pin
to drive low if the BIT_BANG bit is set.

RW 0

10 MDIO_OE Setting this bit to '1' will cause the MDIO pin to drive the value
written to the MDIO bit if the BIT_BANG bit is set. Setting this bit
to zero will make the MDIO pin an input.

RW 0

9 MDIO The write value of this bit controls the drive state of the MDIO pin
if the BIT_BANG bit is set. The read value of this bit always
reflects the state of the MDIO pin.

RW 0

8 BIT_BANG If this bit is '1', the MDIO interface is controlled by the MDIO,
MDIO_OE, and MDC bits in this register. When this bit is '0', the
commands in the EMAC_REG_EMAC_MDIO_COMM register
will be executed.

RW 0

7-5 unused2 RO 0

4 AUTO_POLL Enables auto-polling. When auto-polling is on, the
START_BUSY bit in the EMAC_REG_EMAC_MDIO_COMM
register must not be set. The interface automatically polls the
PHY device and sets the LINK bit in the
EMAC_REG_EMAC_STATUS register according to bit 2 of PHY
register 1. The PHY address used is that programmed into the
PHY_ADDR field of the EMAC_REG_EMAC_MDIO_COMM
register.

RW 0

3-2 unused1 RO 0

1 SHORT_
PREAMBLE

If this bit is set, the 32-bit pre-amble will not be generated during
autopolling.

RW 0

0 unused0 RO 0
Broadcom Corporation
Document 57710_57711-PG200-R Accessing PHY Registers Page 117

BCM57710/BCM57711 Programmer’s Guide
09/25/09
EMAC0 usually addresses XGXS0 and EMAC1 usually addresses EMAC1.

Steps for a Clause 45 Write

1. Set the MDIO mode to Clause45 by setting the appropriate bit in the EMAC0 or EMAC1 register block register
MDIO_MODE register

2. Create an MDIO address management frame with the CMD field of 0

3. Send an MDIO address management frame using the EMAC(0/1) MDIO_COMM register and setting the START_BUSY
bit to 1

4. Wait for the START_BUSY bit to return to 0

5. Create an MDIO data management frame with the CMD field set to 1

6. Send an MDIO write management frame using the EMAC(0/1) MDIO_COMM register and setting the START_BUSY bit
to 1.

Figure 26 shows an example of address and write management frames for an MDIO write procedure with a PHY address of
0, port 0, an MMD address of 2 containing an offset 0x9005 with data 0x1234.

DEVAD = 2

Data = 0x1234

Address Offset = 0x9005

Figure 26: Address and Write Management Frames

The following shows steps for a Clause 45 PHY Read Procedure :

1. Set the MDIO mode to Clause45 by setting the appropriate bit in the EMAC0 or EMAC1 register block register
MDIO_MODE register

2. Create an MDIO address management frame with the CMD field of 0

3. Send the MDIO address management frame using the EMAC(0/1) MDIO_COMM register and setting the START_BUSY
bit to 1

4. Wait for the START_BUSY bit to return to a value of 0

5. Create an MDIO read management frame with the CMD field value of 3

6. Send the MDIO read management frame using the EMAC(01) MDIO_COMM registers by setting the START_BUSY bit

Broadcom Corporation

Page 118 Accessing PHY Registers Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
to 1

7. Wait for the START_BUSY bit to return to a value of 0

8. Read the DATA field from the MDIO_COMM register for the read data

Figure 27 on page 119 shows an example of address and read management frames for an MDIO write procedure with a
PHY address of 0, port 0, an MMD address of 2 containing an offset 0x9005 with data 0x1234.

DEVAD = 2

Data = 0x1234

Address Offset = 0x9005

Figure 27: Address and Read Management Frames

Note: Writing to the MDIO_COMM register prior to the completion of a previous MDIO access will yield
unpredictable MDIO data: when programming, wait for the START_BUSY bit to clear.

Note: The Auto-polling mode has the lowest priority and it will be stalled any time there is an active operation
through the MDIO_COMM register using any other mode.

Note: When Bit-bang mode is enabled, the MDIO_COMM register cannot be read or written, thus avoid using
Auto Access mode while Bit-bang mode is enabled.

Broadcom Corporation
Document 57710_57711-PG200-R Accessing PHY Registers Page 119

BCM57710/BCM57711 Programmer’s Guide
09/25/09
INTERNAL PHY

The same steps taken to access the BCM57710/BCM57711 external PHY can be taken to access the BCM57710/
BCM57711 in te r na l PHY by us ing a d i f fe ren t DEVAD va lue, and by ensur ing tha t the
NIG_REGISTERS_XGXS0_CTRL_MD_DEVAD (Offset: 0x1033C; Width: 32) register is programmed with the same value.
In this example, the DEVAD is set to a value of 3 when making a Clause 45 call and the NIG register is programmed with the
same value. The XGXS AER register ADDRESS EXTENSION REGISTER BLOCK (OFFSET: 0XFFD0) must be
programmed to 0x3801 for the mapping found in this example. Table 40 lists the register blocks available in the BCM57710/
BCM57711 XGXS Autonegotiation MMD, DEVAD = 3.

Table 40: Internal PHY Clause 45 Register Blocks

Block Address Name

0000h IEEE0 AN CTRL Block

0010h IEEE1 AN ADV Block

0020h IEEE Reserved

8000h XGXS Block 0

8010h XGXS Block 1

8020h 10G TX BERT Block

8030h 10G RX BERT Block

8040h BcstBERT Block

8050h PLL Block

8060h TX0 Bock

8070h TX1 Block

8080h TX2 Block

8090h TX3 Block

80A0h TXAll Block

80B0h RX0 Block

80C0h RX1 Block

80D0h RX2 Block

80E0h RX3 Block

80F0h RXAll Block

8100h XGXS Block 2

8110h In Band MDIO Block

8120h General Purpose Status Block

8130h 10G Parallel Detect Block

8300h SerDes Digital Block

8310h Test Block

8320h Over 1G Block

8330h Remote PHY Block

8350h MRBE Block

8370h Clause 73 User B0 Block

FFD0h Address Extension Register Block

FFE0h Combo IEEE 0 Block
Broadcom Corporation

Page 120 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Register Notations

In the register description tables, the following notation in the R/W column is used to describe the ability to read or write:

• R/W = Read or write

• RO = Read only

• LH = Latched high (until read)

• LL = Latched low (until read)

• H = Fixed high

• L = Fixed low

• SC = Self-clear after read

• CR = Clear on read Reserved bits must be written as the default value and ignored when read.

IEEE0 Clause 73 Autonegotiation Control Block (Offset: 0x0)

IEEE0 Clause 73 Autonegotiation Status Register (Offset: 0x1 Width: 16)

FFF0h Combo User B0 Block

All Others Reserved

Table 41: IEEE0 Clause 73 Autonegotiation Control Register
(Offset: 0x0; Width: 16) AKA (CL73_IEEEB0)

Bit Name R/W Description Default

15 Reset R/W 0

14-13 Reserved R/W Write as 0, ignore on read. 0

12 Autonegotiation Enable R/W 0

11-10 Reserved R/W Write as 0, ignore on read. 0

9 Restart Autonegotiation R/W 0

8-0 Reserved R/W Write as 0, ignore on read. 0

Table 42: IEEE0 Clause 73 Autonegotiation Status Register (Offset: 0x1 Width: 16)

Bit Name R/W Description Default

15-10 Reserved RO Ignore on read. 0

9 Parallel Detect Fault RO Parallel detection fault. 0

8 Reserved RO Ignore on read. 0

7 Extended NP Status RO Extended next page will be used. 1

6 Page Received RO Page received. 0

5 Autonegotiation Complete RO Autonegotiation complete. 0

4 Remote Fault RO Remote fault. 0

3 Autonegotiation Ability RO Autonegotiation ability. 1

2 Link Status RO Link status. 0

1 Reserved RO Ignore on read. 0

Table 40: Internal PHY Clause 45 Register Blocks

Block Address Name
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 121

BCM57710/BCM57711 Programmer’s Guide
09/25/09
IEEE0 Clause 73 Autonegotiation PHY ID MSB Register (Offset: 0x2 Width: 16)

IEEE0 Clause 73 Autonegotiation PHY ID LSB Register (Offset: 0x3 Width: 16)

IEEE0 CL73 Autonegotiation Devices in Package 1 Register
(Offset: 0x5; Width: 16)

0 Link Partner Autonegotiation Capable RO LP autonegotiation capable. 0

Table 43: IEEE0 Clause 73 Autonegotiation PHY ID MSB Register (Offset: 0x2 Width: 16)

Bit Name R/W Description Default

15-0 OUI RO Bits 18:3 of the organizationally unique
identifier.

0143h

Table 44: IEEE0 Clause 73 Autonegotiation PHY ID LSB Register (Offset: 0x3 Width: 16)

Bit Name R/W Description Default

15-0 OUI RO Bits 24:19 of the organizationally unique
identifier.

27h

9-4 Model RO Device model number 3Fh

3-0 Revision RO Device model number 0h

Table 45: IEEE0 CL73 Autonegotiation Devices in Package 1 Register (Offset: 0x5; Width: 16)

Bit Name R/W Description Default

15-8 Reserved RO Ignore on read. 0

7 AN MMD Present RO 1 = Autonegotiation MMD present.
0 = Autonegotiation MMD not present.

1

6 TC MMD Present RO 1 = TC MMD present.
0 = TC MMD not present.

0

5 DTE XS MMD Present RO 1 = DTE XS MMD present.
0 = DTE XS MMD not present.

0

4 PHY XS MMD Present RO 1 = PHY XS MMD present.
0 = PHY XS MMD not present.

0

3 PCS MMD Present RO 1 = PCS MMD present.
0 = PCS MMD not present.

0

2 WIS MMD Present RO 1 = WIS MMD present.
0 = WIS MMD not present.

0

1 PMD/PMA MMD Present RO 1 = PMA/PMD MMD present.
0 = PMA/PMD MMD not present.

1

0 Clause 22 Present RO 1 = Clause 22 present.
0 = Clause 22 not present.

1

Table 42: IEEE0 Clause 73 Autonegotiation Status Register (Offset: 0x1 Width: 16)

Bit Name R/W Description Default
Broadcom Corporation

Page 122 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
IEEE0 CL 73 Autonegotiation Devices in Package 2 (Offset: 0x6; Width: 16)

IEEE1 Clause 73 PHY Block (Offset: 0x0010) CL73_IEEEB1

CL73_IEEE1_CL73_AUTONEG_ADVERTISE (Offset: 0x1; Width: 16)

IEEE3 Clause 73 PHY Block (Offset: 0x0030)

Reserved

XGXS0 Block (Offset: 0x8000)

Reserved

XGXS1 Block (Offset: 0x8010)

Reserved

10G TX Bert Block (Offset: 0x8020)

Reserved

10G RX Bert Block (Offset: 0x8030)

Reserved

BcstBert Block (Offset: 0x8040)

Table 46: IEEE0 CL 73 Autonegotiation Devices in Package 2 (Offset: 0x6; Width: 16)

Bit Name R/W Description Default

15 Vendor Specific MMD 2 Present RO 1 = Vendor specific MMD present.
0 = Vendor specific MMD not present.

0

14 Vendor Specific MMD 1 Present RO 1 = Vendor specific MMD present.
0 = Vendor specific MMD not present.

0

13 Clause 22 Extension Present RO 1 = Clause 22 extension present
0 = Clause 22 extension not present

0

12-0 Reserved RO Ignore on read. 0

Table 47: CL73_IEEE1_CL73_AUTONEG_ADVERTISE (Offset: 0x1; Width: 16)

Bit Name R/W Description Default

15:12 Reserved RO n/a 0

7 Advertise 10 KR R/W Advertise 10G KR 0

6 Advertise 10G KX4 R/W Advertise 10G KX4 0

5 Advertise 1000M KX R/W Advertise 1000M KX 0

4:3 Reserved N/A N/A 0

0 Advertise 1000M R/W Advertise 1000M 0
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 123

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Reserved

PLL Block (Offset: 0x8050)

Reserved

Transmit 0 Block (Offset: 0x8060)

Reserved

Transmit 1 Block (Offset: 0x8070)

Reserved

Transmit 2 Block (Offset: 0x8080)

Reserved

Transmit 3 Block (Offset: 0x8090)

Reserved

Transmit All Block (Offset: 0x80A0)

TXALL Status 0 Register (Offset: 0x0000; Width: 16)

TXALL Control 0 Register (Offset: 0x0007; Width: 16)

Table 48: TXALL Status 0 Register (Offset: 0x0000; Width: 16)

Bit Name R/W Description Default

12:3 Reserved RO Ignore on read. 0

2 Transmit G-Loop RO G-Loop command (to serializer). 0

1 R-Loop Transmit FIFO Error RO R-Loop FIFO error. 0

0 Transmit FIFO error RO Transmit FIFO error. 0

Table 49: TXALL Control 0 Register (Offset: 0x0007; Width: 16)

Bit Name R/W Description Default

15 Reserved R/W Write as 0, ignore on read. 0

14 Force Transmit Clock R/W Force txclk (bypass clock switch). 0

13 Transmit 1G FIFO Reset R/W Transmit 1G FIFO reset. 0

12 G-Loop Output Enable R/W Output data across serializer when G-Loop is enabled. 0

11-9 Reserved R/W Write a 0, ignore on read. 0

8 PRBS Enable R/W TX BERT enable. 0

7 Packet Enable R/W TX BERT packet mode enable. 0

6 Packet Start R/W TX BERT packet start. 0

5 Transmit Polarity Flip R/W Flip the analog transmit output.

4 RTBI Flip R/W Flip the RTBI nibble sequence. 0
Broadcom Corporation

Page 124 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
TXALL MDIO Data 0 Register (Offset: 0x0012; Width: 16)

TXALL MDIO Data 1 Register (Offset: 0x0013; Width: 16)

TXALL Status 1 Register (Offset: 0x0014; Width: 16)

TXALL BG VCM Register (Offset: 0x0015; Width: 16)

3 eden_r R/W 8B/10B enable. 0

2 eden_force_r R/W Enables eden_r. 0

1 Transmit Pattern Enable R/W Enables Transmit test pattern. 0

0 Transmit MDIO Data Enable R/W Enables transmit MDIO data.

Table 50: TXALL MDIO Data 0 Register (Offset: 0x0012; Width: 16)

Bit Name R/W Description Default

15-13 txTestMuxSelect R/W 0

12-10 rlfifo_tstsel R/W 0

9-0 TxMdioTstData[9:0] R/W 0

Table 51: TXALL MDIO Data 1 Register (Offset: 0x0013; Width: 16)

Bit Name R/W Description Default

15-10 Reserved R/W ignore on read. 0

9-0 TxMdioTstData[19:10] R/W 0

Table 52: TXALL Status 1 Register (Offset: 0x0014; Width: 16)

Bit Name R/W Description Default

15-14 Transmit ID RO Write on 0, ignore on read. 0

13-0 Reserved R/W ignore on read. 0

Table 53: TXALL BG VCM Register (Offset: 0x0015; Width: 16)

Bit Name R/W Description Default

15-14 Reserved R/W Write as 0, ignore on read. 0

13 id2c[2] R/W 0

12 refl_tx R/W 0

11 refh_tx R/W 0

10 newbias_en R/W 0

9 drivermode R/W 0

8 vddr_bgb R/W 0

7-6 ticksel R/W 0

5-4 driver_vcm R/W 0

Table 49: TXALL Control 0 Register (Offset: 0x0007; Width: 16)

Bit Name R/W Description Default
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 125

BCM57710/BCM57711 Programmer’s Guide
09/25/09
TXALL IBuff 1T2T Register (Offset: 0x0016; Width: 16)

3-0 Reserved R/W Write as 0, ignore on read. 0

Table 54: TXALL IBuff 1T2T Register (Offset: 0x0016; Width: 16)

Bit Name R/W Description Default

15-14 icbuf1t R/W 0

13-11 icbuf2t R/W 0

10 imin_predrv R/W 0

9 imax_predrv R/W 0

8 imode_predrv R/W 0

7-5 i21mux R/W 0

4 imin_drv R/W 0

3 imax_drv R/W 0

2 imode_drv R/W 0

1-0 id2c R/W 0

Table 53: TXALL BG VCM Register (Offset: 0x0015; Width: 16)

Bit Name R/W Description Default
Broadcom Corporation

Page 126 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
TXALL Transmit Driver Register (Offset: 0x0017; Width 16)

Table 55: TXALL Transmit Driver Register (Offset: 0x0017; Width 16)

Bit Name R/W Description Default

15-12 Pre-emphasis R/W For BCM5709S AX and BX controllers:
0000 = 0.0dB

1000 = 0.4dB
0100 = 0.8dB
1100 = 1.2dB

0010 = 1.7dB
1010 = 2.2dB
0110 = 2.7dB

1110 = 3.2dB
0001 = 3.9dB
1001 = 4.4dB

0101 = 5.2dB
1101 = 5.8dB
0011 = 6.6dB

1011 = 7.5dB
0111 = 8.4dB
1111 = 9.6dB

For BCM5709S CX and BCM5716S controllers:
0000 = 0.0dB

0001 = 0.4dB
0010 = 0.8dB
0011 = 1.2dB

0100 = 1.7dB
0101 = 2.2dB
0110 = 2.7dB

0111 = 3.2dB
1000 = 3.9dB
1001 = 4.4dB

1010 = 5.2dB
1011 = 5.8dB
1100 = 6.6dB

1101 = 7.5dB
1110 = 8.4dB
1111 = 9.6dB

0

Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 127

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Receive 0 Block (Offset: 0x80B0)

Reserved

11-8 iDriver R/W Specifies the voltage range.

For BCM5709S AX & BX controllers:
0000 = 670mV

0001 = 720mV
0010 = 770mV
0011 = 820Mv

0100 = 870mV
0101 = 920mV
0110 = 970mV

0111 = 1020mV
1000 = 1070mV
1001 = 1110mV

1010 = 1160mV
1011 = 1210mV
1100 = 1260mV

1101 = 1310mV
1110 = 1360mV
1111 = 1400mV

For BCM5709S CX+ and BCM5716S controllers:
0000 = 670mV

1000 = 720mV
0100 = 770mV
1100 = 820Mv

0010 = 870mV
1010 = 920mV
0110 = 970mV

1110 = 1020mV
0001 = 1070mV
1001 = 1110mV

0101 = 1160mV
1101 = 1210mV
0011 = 1260mV

1011 = 1310mV
0111 = 1360mV
1111 = 1400mV

9h

7-4 ipredriver R/W 0

3-1 ifullspd R/W 0

0 icbuf1t R/W 0

Table 55: TXALL Transmit Driver Register (Offset: 0x0017; Width 16)

Bit Name R/W Description Default
Broadcom Corporation

Page 128 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Receive 1 Block (Offset: 0x80C0)

Reserved

Receive 2 Block (Offset: 0x80D0)

Reserved

Receive 3 Block (Offset: 0x80E0)

Reserved

Receive All Block (Offset: 0x80F0)

RXALL Receive Status Register (Offset: 0x0; Width: 16)

RXALL Receive Control Register (Offset: 0x01; Width 16)

Table 56: RXALL Receive Status Register (Offset: 0x0; Width: 16)

Bit Name R/W Description Default

15 Signal Detect R/W 0

14-13 Reserved R/W Write as 0, ignore on read. 0

12 RxSeqDone R/W 0

11 rx_sigdet_II RO 1 = High to low transition of rx_sigdet (analog output) was detected. 0

10 cx4_sigdet_II RO 1 = High to low transition of cx4_sigdet was detected. 0

9-0 Reserved RO Ignore on read. 0

Table 57: RXALL Receive Control Register (Offset: 0x01; Width 16)

Bit Name R/W Description Default

15 RxSeqRestart R/W 0

14-13 Reserved R/W Write as 0, ignore on read. 0

12 sigDetected_en R/W 0

11 sigdettRestart_en R/W 0

10 sigdetMonitor_en R/W 0

9 overide_sig_en R/W 0

8 overide_sig_val R/W 0

7-6 Reserved R/W Write as 0, ignore on read. 0

5 phfreq_rst_dis R/W 0

4 forceRxSeqDone R/W 0

3 Reserved R/W Write as 0, ignore on read. 0

2-0 status_sel R/W 0
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 129

BCM57710/BCM57711 Programmer’s Guide
09/25/09
RXALL Receive Timer 1 Register (Offset: 0x02; Width 16)

RXALL Receive Timer 2 Register (Offset: 0x03; Width 16)

RXALL Receive Signal Detect Register (Offset: 0x04; Width 16)

RXALL Receive CDR Phase Register (Offset: 0x05; Width 16)

Table 58: RXALL Receive Timer 1 Register (Offset: 0x02; Width 16)

Bit Name R/W Description Default

15-8 Reserved R/W Ignore on read 0

7-0 CDR Acquisition Time R/W 0

Table 59: RXALL Receive Timer 2 Register (Offset: 0x03; Width 16)

Bit Name R/W Description Default

15-8 Reserved R/W Ignore on read 0

7-0 CDR Track Time R/W 0

Table 60: RXALL Receive Signal Detect Register (Offset: 0x04; Width 16)

Bit Name R/W Description Default

15-8 sigdet_time RO, R/W 0

7 cx4_sigdet_cnt_ld R/W 0

6 ext_sigdet_en_SM R/W 0

5 cx4_sigdet_en_SM R/W 0

4 tpctrl R/W 0

3-0 testMuxSelect R/W 0

Table 61: RXALL Receive CDR Phase Register (Offset: 0x05; Width 16)

Bit Name R/W Description Default

15 phase_freeze_en R/W 0

14 phase_freeze_val R/W 0

13-8 phase_offset R/W 0

7 phase_override R/W 0

6 phase_inc R/W 0

5 phase_dec R/W 0

4 phase_strobe R/W 0

3-0 phase_delta R/W 0
Broadcom Corporation

Page 130 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
RXALL Receive CDR Frequency Register (Offset: 0x06; Width 16)

RXALL Receive Equalizer Configuration Register (Offset: 0x07; Width)

RXALL Receive Equalizer Force Register (Offset: 0x08; Width 16)

RXALL Receive Control 1G Register (Offset: 0x09; Width 16)

Table 62: RXALL Receive CDR Frequency Register (Offset: 0x06; Width 16)

Bit Name R/W Description Default

15-12 bwsel_prop_trck R/W 0

11-8 bwsel_intg_trck R/W 0

7 falling_edge R/W 0

6 flip_polarity RO 0

5 freq_override_en R/W 0

4-0 freq_override_val R/W 0

Table 63: RXALL Receive Equalizer Configuration Register (Offset: 0x07; Width)

Bit Name R/W Description Default

15-8 Reserved R/W Write as 0, ignore on
read

0

7-4 bwsel_prop_acq R/W 0

3-0 bwsel_intg_acq R/W 0

Table 64: RXALL Receive Equalizer Force Register (Offset: 0x08; Width 16)

Bit Name R/W Description Default

15-0 Reserved R/W Write as 0, ignore on
read

0

Table 65: RXALL Receive Control 1G Register (Offset: 0x09; Width 16)

Bit Name R/W Description Default

15 fpat_md R/W Fixed pattern mode enable. 0

14 pkt_count_en R/W Packet counter enable. 0

13 staMuxRegsDis R/W Disable registering of status mux. 0

12 prbs_clr_dis R/W Disable PRBS clear-on-read. 0

11 rxd_dec_sel R/W Select 8B/10B output for PRBS monitor. 0

10 cgbad_tst R/W Define error code as 10’h3FE for PRBS monitor. 0

9 Emon_en R/W Enable |E| monitor. 0

8 prbs_en R/W Enable PRBS monitor. 0

7 cgbad_en R/W Set bit 9 of symbol when bad symbol is detected. 0

6 cstretch RO Enable rxck0_1g clock/data phase alignment. 0

5 rtbi_ckflip RO Flip RTBI nibble clock phasing. 0

4 rtbi_flip R/W Flip RTBI (re-ordering) data sequence. 0
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 131

BCM57710/BCM57711 Programmer’s Guide
09/25/09
RXALL Receive Control PCI Express Register (Offset: 0x0A; Width 16)

RXALL Receive All Status Register (Offset: 0x0B; Width 16)

RXALL Receive Equalizer Boost Register (Offset: 0x0C; Width 16)

3 phase_sel R/W Phfreqloops phase select. 0

2 Reserved R/W Write as 0, ignore on read. 0

1 freq_sel_force R/W Force freq_sel. 0

0 freq_sel R/W 0 = div/1

1 = div/2

0

Table 66: RXALL Receive Control PCI Express Register (Offset: 0x0A; Width 16)

Bit Name R/W Description Default

15 comma_adj_sync_sel R/W Used sync_status as comma_adj_en. 0

14 com_mask_force_r R/W Force com_mask_r. 0

13 com_mask R/W Defines |K| as 10-bit symbol (used for PCIe). 0

12 sync_status_force_sync R/W Derive sync_status from sync acquisition block. 0

11 sync_status_force_r R/W Derive sync_status from sync_status_r. 0

10 sync_status_r RW MDIO controller sync_status. 0

9 comma_adj_en_force_ext R/W Derive comma_adj_en from external pin. 0

8 comma_adj_en_force_sync R/W Derive comma_adj_en from sync_status. 0

7 comma_adj_en_force_r R/W Derive comma_adj_en from comma_adj_en_r. 0

6 comm._adj_en_r RO MDIO controller comma_adj_en. 0

5 link_en_force_r RO Enable link_en via link_en_r. 0

4 link_en_r R/W Link enable. 0

3 rx_polarity_force_r R/W Derive RX polarity from rx_polarity_r. 0

2 rx_polarity_r R/W Invert RX polarity. 0

1-0 integ_mode R/W Integration mode. 0

Table 67: RXALL Receive All Status Register (Offset: 0x0B; Width 16)

Bit Name R/W Description Default

15-1 Reserved R/W Ignore on read 0

0 sigdet RO 0

Table 68: RXALL Receive Equalizer Boost Register (Offset: 0x0C; Width 16)

Bit Name R/W Description Default

15 imode_vcm R/W 0

14 imin_vcm R/W 0

Table 65: RXALL Receive Control 1G Register (Offset: 0x09; Width 16)

Bit Name R/W Description Default
Broadcom Corporation

Page 132 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
RXALL Receive Ib Data Equalizer Register (Offset: 0x0D; Width 16)

RXALL Receive Ib ADC Buffer Register (Offset: 0x0E; Width 16)

13 imax_sigdet R/W 0

12 imode_sigdet R/W 0

11 imin_sigdet R/W 0

10 refh_rx R/W 0

9 refl_rx R/W 0

8 tport_en R/W 0

7 vddr_bg R/W 0

6 sig_pwrdn R/W 0

5-3 offset_ctrl R/W 0

2-0 equalizer_ctrl R/W 0

Table 69: RXALL Receive Ib Data Equalizer Register (Offset: 0x0D; Width 16)

Bit Name R/W Description Default

15 imax_phase R/W 0

14 imode_phase R/W 0

13 imin_phase R/W 0

12 imax_div2 R/W 0

11 imode_div2 R/W 0

10 imin_div2 R/W 0

9 imax_eqfl R/W 0

8 imode_eqfl R/W 0

7 imin_eqfl R/W 0

6 imax_slic R/W 0

5 imode_slic R/W 0

4 imin_slic R/W 0

3 imax_bufd2c R/W 0

2 imode_bufd2c R/W 0

1 imin_bufd2c R/W 0

0 imax_vcm R/W 0

Table 70: RXALL Receive Ib ADC Buffer Register (Offset: 0x0E; Width 16)

Bit Name R/W Description Default

15-12 adc_clkdelay R/W 0

11 imax_s/n R/W 0

10 imode_s/n R/W 0

9 imin_s/n R/W 0

8 imax_adcdrv R/W 0

Table 68: RXALL Receive Equalizer Boost Register (Offset: 0x0C; Width 16)

Bit Name R/W Description Default
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 133

BCM57710/BCM57711 Programmer’s Guide
09/25/09
XGXS Block 2 (Offset: 0x8100)

XGXS BLOCK 2 RX LANE SWAP (Offset: 0x0; Width 16)

XGXS BLOCK 2 TX LANE SWAP (Offset: 0x1; Width 16)

XGXS BLOCK 2 UNI-core Mode (Offset: 0x04; Width 16)

7 imode_adcdrv R/W 0

6 imin_adcdrv R/W 0

5 imax_adc R/W 0

4 imode_adc R/W 0

3 imin_adc R/W 0

2 imax_eqbuf R/W 0

1 imode_eqbuf R/W 0

0 imin_eqbuf R/W 0

Table 71: XGXS BLOCK 2 RX LANE SWAP (Offset: 0x0; Width 16)

Bit Name R/W Description Default

15 Rx Lane Swap Enable R/W Enables Rx Lane Swap (re-
ordering)

strap

14 Rx Ln Swap Force En R/W Enables Rx lane re-ordering
using bits 13:0

strap

12 Rx Ln Swap Link En R/W Enables link ordering 0

12:8 Qx MSB R/W MSB of Lane 0-3 Q character 0x8000

7:0 Rx Ln Swap Force X R/W Lane 0-3 manual override Rx
swap MUX select

0x3210

Table 72: XGXS BLOCK 2 TX LANE SWAP (Offset: 0x1; Width 16)

Bit Name R/W Description Default

15 Tx Lane Swap Enable R/W Enables Tx Lane Swap strap

14:8 Reserved R/W Ignore on read N/A

7:0 Tx Ln Swap Force X R/W Lane 0-3 manual override Tx
swap MUX select

0x3210

Table 73: XGXS BLOCK 2 UNI-core Mode (Offset: 0x04; Width 16)

Bit Name R/W Description Default

15:8 Reserved R/W Reserved N/A

7:4 Unicore 10gHiG R/W XGXS mode bit 4 strap

3:0 Unicore 10gCx4 R/W XGXS mode bit 0 strap

Table 70: RXALL Receive Ib ADC Buffer Register (Offset: 0x0E; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation

Page 134 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
XGXS BLOCK Test Mode Lane (Offset: 0x05; Width 16)

General Purpose Status Block (Offset: 0x8120)

GP Status Miscellaneous RX Status Register (Offset: 0x0; Width 16)

Table 74: XGXS BLOCK Test Mode Lane (Offset: 0x05; Width 16)

Bit Name R/W Description Default

15:2 Reserved R/W Reserved N/A

1:0 Slice selector R/W XGXS mode bit 4 strap

3:0 Unicore 10gCx4 R/W XGXS mode bit 0 strap

Table 75: GP Status Miscellaneous RX Status Register (Offset: 0x0; Width 16)

Bit Name R/W Description Def

15 capture_NP_lh RO, LH 0

14 teton_brk_link_lh RO, LH 0

13 UP3_lh RO, LH 0

12 MP5_lh RO, LH 0

11 nonMatchingOUI_lh RO, LH 0

10 matchingOUI_msb_lh RO, LH 0

9 matchingOUT_lsb_lh RO, LH 0

8 invalidSeq_lh RO, LH Indicates that an invalid
message/next page
sequence was detected. An
example would be the
reception of an over-1G
message page followed by
fewer than two next pages.

0

7 mullMP_lh RO, LH Null message page detected. 0

6 remotePhyMP_lh RO, LH Remote PHY message page
detected.

0

5 nonMatchingMP_lh RO, LH Non-Matching next page
detected (neither over-1G
nor Remote PHY).

0

4 over1gMP_lh RO, LH Over-1G message page
detected.

0

3 rx_config_is_0_lh RO, LH All-zero rx_config detected
(this indicates that the link
partner initiated an auto-neg
sequence.)

0

2 np_toggle_err_lh RO, LH Next page toggle error
detected.

0

1 mr_np_lh RO, LH Indicates reception of a next
page.

0

0 mr_bp_lh RO, LH Indicates reception of a base
page.

0

Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 135

BCM57710/BCM57711 Programmer’s Guide
09/25/09
GP Status XGXS Status 0 Register (Offset 0x01; Width 16)

GP Status XGXS Status 1 Register (Offset 0x02; Width 16)

Table 76: GP Status XGXS Status 0 Register (Offset 0x01; Width 16)

Bit Name R/W Description Default

15 read_control RO mdio_csreg status register control bit. 1

14 Reserved RO Ignore on read. 0

13 tx_remote_fault RO, LH Remote fault on transmit path. 0

12 rx_remote_fault RO, LH Remote fault on receive path. 0

11 txpll_lock RO Transmit PLL lock indicator (from analog tx_pll block). 0

10 txd_fifo_err RO,
Sticky

FIFO error for the 4 lanes (from tx_fifo). 0

9 sequencer_done RO PLL sequencer. 0

8 sequencer_pass RO PLL sequencer finished successfully. 0

7:4 rxferr RO,
Sticky

Per-lane receiver FIFO error indicator. 0

3 Reserved RO Ignore on read. 0

2 ckcmp_unflow RO,
Sticky

Clock compensation FIFO underflow. 0

1 ckcmp_ovflow RO,
Sticky

Clock compensation FIFO overflow. 0

0 skew_status RO Skew status (from rx_link). 0

Table 77: GP Status XGXS Status 1 Register (Offset 0x02; Width 16)

Bit Name R/W Description Default

15:12 mode_10g_tx RO Mode:
0 = XGXS
1 = XGXS, No Clock Conpensation

6 = IndLn
7 = PCI
8 = XGXS No LSS Q

9 = XGXS No Lss Q, No Clock Compensation
A = PBypsDsk
B = PBypsNoDsk

C = Combo Core Mode (SerDes/Unicore: 10M, 100M, 1G, 2.5G,
and auto-neg to XGXS speeds)
F = Clocks Off

All other values are reserved.

0

11 serdesMode_en_tx RO Indicates current mode is SerDes mode (i.e. 10M, 100M, 1G, or
2.5G).

0

10 sgmii_mode RO Indicates current mode is SerDes/SGMII mode (i.e. 10M, 100M, or
1G).

0

9 link10g RO Indicates XGXS link status. 0

8 linkstat RO Indicates XGXS link status. 0

7 autoneg_complete RO Indicates autonegotiation is complete. 0
Broadcom Corporation

Page 136 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
GP Status XGXS Status 2 Register (Offset 0x03; Width 16)

GP Status 1000X Status 1 Register (Offset: 0x04; Width 16)

6 Reserved RO Ignore on read. 0

5-0 Actual Speed RO Indicates the current UniCore speed:
0 = 10M

1 = 100M
2 = 1G
3 = 2.5G

4 = 5G
5 = 6G
6 = 10G HiG

7 = 10G CX4
8 = 12G
9 = 12.5G

A = 13G
B = 15G
C = 16G

All other values are reserved.

0

Table 78: GP Status XGXS Status 2 Register (Offset 0x03; Width 16)

Bit Name R/W Description Default

15-12 gpwrdwn_rx R/W 0

11-8 gpwrdwn_tx R/W 0

7-4 freq_sel_rx R/W 0

3-0 freq_sel_tx R/W 0

Table 79: GP Status 1000X Status 1 Register (Offset: 0x04; Width 16)

Bit Name R/W Description Default

15 Transmit FIFO Error
Detected

RO, LH 1 = Transmit FIFO error detected since last read

0 = No transmit FIFO error detected since last
read

0

14 Receive FIFO Error
Detected

RO, LH 1 = Receive FIFO error detected since last read
0 = No receive FIFO error detected since last
read

0

13 False Carrier
Detected

RO, LH 1 = False carrier detected since last read
0 = No false carrier detected since last read

0

12 CRC Error Detected RO, LH 1 = CRC error detected since last read
0 = No CRC error detected since last read

0

11 Transmit Error
Detected

RO, LH 1 = Transmit error code detected since last read
0 = No transmit error code detected since last
read

0

Table 77: GP Status XGXS Status 1 Register (Offset 0x02; Width 16)

Bit Name R/W Description Default
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 137

BCM57710/BCM57711 Programmer’s Guide
09/25/09
GP Status 1000X Status 2 Register (Offset: 0x05; Width 16)

10 Receive Error
Detected

RO, LH 1 = Receive error detected since last read

0 = No receive error detected since last read

0

9 Carrier Extend Error
Detected

RO, LH 1 = Carrier extend error detected since last read

0 = No carrier extend error detected since last
read

0

8 Early End
Extension Detected

RO, LH 1 = Early end extension detected since last read
0 = No early end extension detected since last
read

0

7 Link Status RO, LH 1 = Link status has not changed since last read
0 = Link status has changed since last read

0

6 Receive Pause
Resolution

RO 1 = Enable pause receive
0 = Disable pause receive

0

5 Transmit Pause
Resolution

RO 1 = Enable pause transmit
0 = Disable pause transmit

0

4-3 Speed Status RO 0h = 10Mbps
1h = 100Mbps

2h = 1000Mbps
3h = 2500Mbps

0

2 Duplex Status RO 1 = Full-duplex
0 = Half-duplex

0

1 Link Status RO 1 = Link is up
0 = Link is down

0

0 SGMII Mode RO 1 = SGMII mode
0 = Fiber mode (1000Base-X)

0

Table 80: GP Status 1000X Status 2 Register (Offset: 0x05; Width 16)

Bit Name R/W Description Default

15 SGMII Mode Change RO, LH 1 = SGMII mode has changed since last read

0 = SGMII mode has not changed since last read

0

14 Consistency Mismatch RO, LH 1 = Consistency mismatch detected since last
read
0 = No consistency mismatch detected since last
read

0

13 Autonegotiation Resolution Error RO, LH 1 = Autonegotiation HCD error detected since
last read

0 = No autonegotiation HCD error detected since
last read

0

12 SGMII Selector Mismatch RO, LH 1 = SGMII selector mismatch detected since last
read (autonegotiation page received from link
partner with bit 0 = 0 while local device is in
SGMII mode)
0 = No SGMII selector mismatch detected since
last read

0

Table 79: GP Status 1000X Status 1 Register (Offset: 0x04; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation

Page 138 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
11 Sync Status Failed RO, LH 1 = Sync status has failed since last read
(synchronization has been lost)
0 = Sync status has not failed since last read

0

10 Sync Status OK RO, LH 1 = Sync_Status OK detected since last read
(synchronization has been achieved)
0 = Sync_Status OK has not been detected
since last read

0

9 RUDI_C RO, LH 1 = RUDI_C detected since last read

0 = RUDI_C has not been detected since last
read

0

8 RUDI_L RO, LH 1 = RUDI_L detected since last read
0 = RUDI_L has not been detected since last
read

0

7 RUDI_Invalid RO, LH 1 = RUDI_Invalid detected since last read
0 = RUDI_Invalid has not been detected since
last read

0

6 Link Down from Sync Loss RO, LH 1 = A valid link went down due to loss of
synchronization for over 10ms
0 = No link down due to synchronization loss has
been detected

0

5 Idle Detect State RO, LH 1 = Idle detect state in autonegotiation FSM
entered since last read

0 = Idle detect state not entered since last read

0

4 Complete Acknowledge State RO, LH 1 = Complete acknowledge state in
autonegotiation FSM entered since last read
0 = Complete acknowledge state in
autonegotiation FSM not entered since last read

0

3 Acknowledge Detect State RO, LH 1 = Acknowledge detect state in autonegotiation
FSM entered since last read

0 = Acknowledge detect state in autonegotiation
FSM not entered since last read

0

2 Ability Detect State RO, LH 1 = Ability detect state in autonegotiation FSM
entered since last read
0 = Ability detect state in autonegotiation FSM
not entered since last read

0

1 Autonegotiation Error State RO, LH 1 = Autonegotiation error state in autonegotiation
FSM entered since last read
0 = Autonegotiation error state in autonegotiation
FSM not entered since last read

0

0 Autonegotiation Enable State RO, LH 1 = Autonegotiation enable state in
autonegotiation FSM entered since last read

0 = Autonegotiation enable state in
autonegotiation FSM not entered since last read

0

Table 80: GP Status 1000X Status 2 Register (Offset: 0x05; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 139

BCM57710/BCM57711 Programmer’s Guide
09/25/09
GP Status 1000X Status 3 Register (Offset: 0x06; Width 16)

GP Status TPOUT 1 Register (Offset: 0x07; Width 16)

GP Status TPOUT 2 Register (Offset: 0x08; Width 16)

GP Status XGXS Status 3 Register (Offset: 0x09; Width 16)

Table 81: GP Status 1000X Status 3 Register (Offset: 0x06; Width 16)

Bit Name R/W Description Default

15-13 Reserved RO Ignore on read. 0

12 pd_park_an RO 0

11 remotePhy_autose
l

RO 0

10 latch_linkdown RO 0

9 sd_filter RO 1 = Output of signal detect filter is set
0 = Output of signal detect filter is not set

0

8 sd_mux RO 1 = Input of signal detect filter is set
0 = Input of signal detect filter is not set

0

7 sd_filter_chg RO, LH 1 = Signal detect has changed since last
read

0 = Signal detect has not changed since
last read

0

6-0 Reserved 0

Table 82: GP Status TPOUT 1 Register (Offset: 0x07; Width 16)

Bit Name R/W Description Default

15-0 tpout[15:0] R/W 0

Table 83: GP Status TPOUT 2 Register (Offset: 0x08; Width 16)

Bit Name R/W Description Default

15-0 tpout[23:8] R/W 0

Table 84: GP Status XGXS Status 3 Register (Offset: 0x09; Width 16)

Bit Name R/W Description Default

15 link 0

14 link_latchdown 0

13 link_latchdown_10g_o 0

12 pd_park_an 0

11 gpwrdwn_pll 0

10-0 hcd_over_1g 0
Broadcom Corporation

Page 140 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
GP Status x2500 Status 1 Register (Offset: 0x0A; Width 16)

GP Status Top Autonegotiation Status Register (Offset: 0x0B; Width 16)

Table 85: GP Status x2500 Status 1 Register (Offset: 0x0A; Width 16)

Bit Name R/W Description Default

15 hcd_over_1g_or 0

14 latch_hcd_over_1g 0

13 latchmido 0

12 s_bc_reg_rst 0

11 s_wait2res 0

10 s_wait30ms 0

9 s_clockswit 0

8 s_pllswit 0

7 s_wait4link 0

6 s_complete 0

5 s_lostlink 0

4 s_dead 0

3-0 fail_cnt 0

Table 86: GP Status Top Autonegotiation Status Register (Offset: 0x0B; Width 16)

Bit Name R/W Description Default

15-14 Reserved R/W Write as 0, ignore on read. 0

13-8 Actual Speed R/O 00h = 10Mb
01h = 100Mb

02h = 1Gb
03h = 2.5Gb
04h = 5Gb

05h = 6Gb
06h = 10G HiG
07h = 10G CX4

08h = 12G HiG
09h = 12.5Gb
0Ah = 13Gb

0Bh = 15Gb
0Ch = 16Gb
0Dh = 1GBase-KX

0Eh = 10GBase-KX4

All others reserved.

0

7 Receive Pause
Resolution

R/O 1 = Enable pause receive
0 = Disable pause receive

0

6 Transmit Pause
Resolution

R/O 1 = Enable pause transmit
0 = Disable pause transmit

0

Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 141

BCM57710/BCM57711 Programmer’s Guide
09/25/09
GP Status LP_UP1 Register (Offset: 0x0C; Width 16)

GP Status LP_UP2 Register (Offset: 0x0D; Width 16)

5 Clause 73 MRBE
Capable

R/O 1 = Indicates that the LP and the LD
support MRBE for clause 37
autonegotiation. This bit is asserted
when both the LD and LP have
successfully exchanged MRBE
Clause 73 NPs and, therefore,
determined that a switch over to
clause 37 autonegotiation will follow.

0

4 Clause 73
Autonegotiation
Capable

R/O 1 = The link partner does support
autonegotiation
0 = The link partner does not support
autonegotiation

0

3 Duplex Status R/O 1 = Full-duplex
0 = Half-duplex

0

2 Link Status R/O 1 = Link is up
0 = Link is down

0

1 Clause 37
Autonegotiation
Status

R/O 1 = Clause 37 Autonegotiation is
complete

0 = Clause 37 Autonegotiation is not
complete

0

0 Clause 73
Autonegotiation
Status

R/O 1 = Clause 73 Autonegotiation is
complete
0 = Clause 73 Autonegotiation is not
complete

0

Table 87: GP Status LP_UP1 Register (Offset: 0x0C; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Ignore on read. 0

10-0 lp_adv_over_1g[10:0] RO 0

Table 88: GP Status LP_UP2 Register (Offset: 0x0D; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Ignore on read. 0

10-0 lp_adv_over_1g[21:11] RO 0

Table 86: GP Status Top Autonegotiation Status Register (Offset: 0x0B; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation

Page 142 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
GP Status LP_UP3 Register (Offset: 0x0E; Width 16)

SerDes Digital Block (Offset : 0x8300)

SerDes Digital 1000X Control 1 Register (Offset: 0x0; Width 16)

Table 89: GP Status LP_UP3 Register (Offset: 0x0E; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Ignore on read. 0

10-0 lp_adv_over_1g[31:22] RO 0

Table 90: SerDes Digital 1000X Control 1 Register (Offset: 0x0; Width 16)

Bit Name R/W Description Default

15 Reserved R/W Write as 0, ignore on read. 0

14 Disable Signal Detect
Filter

R/W 1 = Disable filter for signal detect.
0 = Filter signal detect from pin before using for synchronization.

0

13 Master MDIO PHY
Select

R/W 1 = All MDIO write accesses to PHY address “00000” will write this PHY
in addition to its own PHY address.

0 = Normal operation.

0

12 SerDes TX Amplitude
Override

R/W 1 = Overide SerDes transmit amplitude from register 1*10h bit 14.

0 = Normal operation

0

11 Select RX Packets for
Counter

R/W 1 = Select received packets for 0 * 17h counter.

0 = Select CRC packets for 0 * 17h counter.

0

10 Remote Loopback R/W 1 = Enable remote loopback (only operates at gigabit speed)

0 = Normal operation

0

9 Zero Comma Detector
Phase

R/W 1 = Force comma detector phase to zero

0 = Normal operation

0

8 Comma Detection
Enable

R/W 1 = Enable comma detection

0 = Disable comma detection

1

7 CRC Checker Disable R/W 1 = Disable CRC checker by gating the clock to save power

0 = Enable CRC checker

1

6 Disable PLL
Powerdown

R/W 1 = PLL will never be powered down. (Use this when the MAC/Switch
uses tx_wclk_o ouput.)
0 = PLL will be powered down when 0.11 is set

0

5 SGMII Master Mode R/W 1 = SGMII mode operates in “PHY Mode”, sending out link, speed, and
duplex settings from register 0 to link partner.
0 = Normal operation.

0

4 Auto-detection Enable R/W 1 = Enable auto-detection (fiber and SGMII mode will switch each time
an autonegotiation page is received with the wrong selector field in bit
0).
0 = Disable auto-detection (fiber or SGMII mode is set according to bit 0
of this register).

0

3 Invert Signal Detect R/W 1 = Invert signal detect from pin
0 = Use signal detect from pin

0

Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 143

BCM57710/BCM57711 Programmer’s Guide
09/25/09
SerDes Digital 1000X Control 2 Register (Offset: 0x01; Width 16)

2 Signal Detect Enable R/W 1 = Signal detect from pin must be set in order to achieve
synchronization. In SGMII the signal detect is always ignored
regardless of the setting of this bit.
0 = Ignore signal detect from pin.

1

1 TBI Interface R/W 1 = Ten-bit interface
0 = GMII Interface

0

0 Fiber Mode 1000x R/W 1 = Fiber mode (1000-X)
0 = SGMII mode

1

Table 91: SerDes Digital 1000X Control 2 Register (Offset: 0x01; Width 16)

Bit Name R/W Description Default

15 Disable Extend_Full-
Duplex Only

R/W 0

14 Clear BER Counter R/W,
SC

1 = Clear bit-error-rate counter
0 = Normal operation

0

13 Transmit Idle Jam
Sequence Test

R/W 1 = Enable test sequence to SerDes transmitter
0 = Normal operation

0

12 Transmit Packet
Sequence Test

R/W 1 = Enable transmit test sequence to SerDes transmitter
0 = Normal operation

0

11 Test Counter R/W 1 = Increment 0 * 17h counter each clock cycle for testing
0 = Normal operation

0

10 Bypass PCS Transmit R/W 1 = Bypass PCS transmit operation
0 = Normal operation

0

9 Bypass PCS Receive R/W 1 = Bypass PCS receive operation
0 = Normal operation

0

8 Disable TRRR
Generation

R/W 1 = Disable TRRR generation in PCS transmit
0 = Normal operation

0

7 Disable Carrier
Extend

R/W 1 = Disable carrier extension in PCS receive
0 = Normal operation

0

6 Autonegotiation Fast
Timers

R/W 1 = Speed up timers in autonegotiation for testing
0 = Normal operation

0

5 Force Transmit Data
on Transmit Side

R/W 1 = Allow packets to be transmitted regardless of the condition of the link
or synchronization
0 = Normal operation

0

4 Disable Remote Fault
Sensing

R/W 1 = Disable automatic sensing of remote faults such as autonegotiation
errors

0 = Automatically detect remote faults and send remote fault status to
link partner via autonegotiation when fiber mode is selected (SGMII does
not support remote faults).

0

Table 90: SerDes Digital 1000X Control 1 Register (Offset: 0x0; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation

Page 144 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
SerDes Digital 1000X Control 3 Register (Offset: 0x02; Width 16)

3 Enable
Autonegotiation Error
Timer

R/W 1 = Enable autonegotiation error timer. Error occurs when timer expires
in ability-detect, ack-detect, or idle-detect. When the error occurs, config
words of all zeros are sent until an ability match occurs, the
autonegotiation-enable state is entered.

0 = Normal operation

0

2 Filter Force Link R/W 1 = Sync-status must be set for 10ms before a valid link is established
when autonegotiation is disabled. (This is useful in fiber applications
where the user does not have the signal detect pin connected to the fiber
modules and autonegotiation is turned off.)

0 = Normal operation.

1

1 Disable False Link R/W 1 = Do not allow link to be established when autonegotiation is disabled
and receiving autonegotiation code words. The link will only be
established in this case after idles are received. (This bit does not need
to be set if bit 0 below is set.)

0 = Normal operation.

1

0 Enable Parallel
Detection

R/W 1 = Enable parallel detection. (This will turn autonegotiation on and off
as needed to properly link up with the link partner. The idles and
autonegotiation code words received from the link partner are used to
make this decision).

0 = Disable parallel detection.

1

Table 92: SerDes Digital 1000X Control 3 Register (Offset: 0x02; Width 16)

Bit Name R/W Description Default

15 Disable Packet
Misalign

R/W 0

14 Receive FIFO
GMII Reset

R/W 0

13 Disable TX CRS R/W 1 = Disable generating CRS from transmitting in half-duplex. Only receiving will
generate CRS.

0 = Normal operation

0

12 Invert External
PHY CRS

R/W 1 = Invert “receive CRS from PHY” pin

0 = Use “receive CRS from PHY” pin

0

11 External PHY
CRS Mode

R/W 1 = User external pin for the PHY’s “receive only” CRS output. (Useful in SGMII
10/100 half-duplex environments in order to reduce the collision domain latency.
Requires a PHY which generates a “receive only” CRS output to a pin.)

0

10 Jam False Carrier
Mode

R/W 1 = Change false carriers received into packets with preamble only. (Not
necessary if MAC uses CRS to determine collision.)
0 = Normal operation

0

9 Block Transmit
Enable Mode

R/W 1 = Block TXEN when necessary to guarantee an IPG of at least 6.5 bytes in 10/
100 mode, 7 bytes in 1000 mode.

0 = Normal operation

0

8 Force Transmit
FIFO On

R/W 1 = Force transmit FIFO to free-run in gigabit mode. (Requires clk_in and
tx_wclk_o to be frequency locked.)
0 = Normal operation

0

Table 91: SerDes Digital 1000X Control 2 Register (Offset: 0x01; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 145

BCM57710/BCM57711 Programmer’s Guide
09/25/09
SerDes Digital 1000X Control 4 Register (Offset: 0x03; Width 16)

7 Bypass Transmit
FIFO 1000

R/W 1 = Bypass transmit FIFO in gigabit mode. (Useful for fiber of gigabit only
environments where the MAC is using the tx_wclk_o as the clk_in port. User
must meet timing to the tx_wclk_o domain.)
0 = Normal operation

0

6 Frequency Lock
Elasticity TX

R/W 1 = Minimum FIFO latency to properly handle a clock which is frequency locked
but out of phase. (Overrides bits 2:1 of this register.)

0 = Normal operation

0

5 Frequency Lock
Elasticity RX

R/W 1 = Minimum FIFO latency to properly handle a clock which is frequency locked
but out of phase. (Not necessary if MAC uses CRS to determine collision.
Overrides bits 2:1 of this register.)
0 = Normal operation

0

4 Early Preamble
RX

R/W 1 = Send extra bytes of preamble to avoid FIFO latency. (Not necessary if MAC
uses CRS to determine collision.)

0 = Normal operation

0

3 Early Preamble
TX

R/W 1 = Send extra bytes of preamble to avoid FIFO latency. (Used in half-duplex
environments to reduce collision domain latency. MAC must send 5 bytes of
preamble or less to avoid non-compliant behavior.)
0 = Normal operation

0

2-1 FIFO Elasticity
TX/RX

R/W 00 = Support packets up to 5KB
01 = Support packets up to 10KB

1X = Supports packets up to 13.5KB

1h

0 Transmit FIFO
Reset

R/W 1 = Reset transmit FIFO. FIFO will remain in reset until the bit is cleared with a
software write.
0 = Normal operation

0

Table 93: SerDes Digital 1000X Control 4 Register (Offset: 0x03; Width 16)

Bit Name R/W Description Default

15-14 Reserved R/W Write as 0, ignore on read. 0

13 disable_resolution_err_restart R/W 0

12 enable_last_resolution_err R/W 0

11 tx_config_reg_sel R/W 0

10 zero_rxdgmii R/W 0

9 clear_linkdown R/W 0

8 latch_linkdown_enable R/W 0

7 link_force R/W 0

6 Reserved R/W Write as 0, ignore on read. 0

5 lp_next_page_sel R/W 0

4 np_count_ClrnBp R/W 0

3 np_count_ClrnRd R/W 0

2-0 MiscRxStatus_sel R/W 0

Table 92: SerDes Digital 1000X Control 3 Register (Offset: 0x02; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation

Page 146 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
SerDes Digital 1000X Status 1 Register (Offset: 0x04; Width 16)

Table 94: SerDes Digital 1000X Status 1 Register (Offset: 0x04; Width 16)

Bit Name R/W Description Default

15 Transmit FIFO Error
Detected

RO, LH 1 = Transmit FIFO error detected since last read
0 = No transmit FIFO error detected since last read

0

14 Receive FIFO Error
Detected

RO, LH 1 = Receive FIFO error detected since last read
0 = No receive FIFO error detected since last read

0

13 False Carrier Detected RO, LH 1 = False carrier detected since last read
0 = No false carrier detected since last read

0

12 CRC Error Detected RO, LH 1 = CRC error detected since last read
0 = No CRC error detected since last read

0

11 Transmit Error Detected RO, LH 1 = Transmit error code detected since last read (rx_data_error state
in PCS receive FSM)

0 = No transmit error code detected since last read

0

10 Receive Error Detected RO, LH 1 = Receive error detected since last read (early_end in PCS receive
FSM)
0 = No receive error detected since last read

0

9 Carrier Extend Error
Detected

RO, LH 1 = Carrier extend error detected since last read (extend_err in PCS
receive FSM)
0 = No carrier extend error detected since last read

0

8 Early End Extension
Detected

RO, LH 1 = Early end extension detected since last read (early_end_ext in
PCS receive FSM)

0 = No early end extension detected since last read

0

7 Link Status Change
Detected

RO, LH 1 = Link status has changed since last read

0 = Link status has not changed since last read

0

6 Pause Resolution Receive
Side

RO 1 = Enable pause receive

0 = Disable pause receive

0

5 Pause Resolution Transmit
Side

RO 1 = Enable pause transmit

0 = Disable pause transmit

0

4-3 Speed Status RO 11 = 2.5Gb

10 = 1Gb
01 = 100Mb
00 = 10Mb

0

2 Duplex Status RO 1 = Full-duplex
0 = Half duplex

0

1 Link Status RO 1 = Link is up
0 = Link is down

0

0 SGMII Mode RO 1 = SGMII mode
0 = Fiber mode (1000-X)

0

Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 147

BCM57710/BCM57711 Programmer’s Guide
09/25/09
SerDes Digital 1000X Status 2 Register (Offset: 0x05; Width 16)

SerDes Digital 1000X Status 3 Register (Offset: 0x06; Width 16)

SerDes Digital CRC Err and Rx Packet Counter Register (Offset: 0x07; Width 16)

Table 95: SerDes Digital 1000X Status 2 Register (Offset: 0x05; Width 16)

Bit Name R/W Description Default

15 sgmii_mode_change 0

14 consistency_mismatch 0

13 autoneg_resolution_err 0

12 sgmii_selector_msimatch 0

11 sync_status_fail 0

10 sync_status_ok 0

9 rudi_c 0

8 rudi_l 0

7 rudi_invalid 0

6 link_went_down_from_loss_of_sync 0

5 idle_detect_state 0

4 complete_acknowledge_state 0

3 acknowledge_detect_state 0

2 ability_detect_state 0

1 an_error_state 0

0 an_enable_state 0

Table 96: SerDes Digital 1000X Status 3 Register (Offset: 0x06; Width 16)

Bit Name R/W Description Default

15-13 Reserved R/W Write as 0, ignore on read. 0

12 pd_park_an 0

11 remotePhy_autosel 0

10 latch_linkdown 0

9 sd_filter 0

8 sd_mux 0

7 sd_filter_chg 0

6-0 Reserved R/W Write as 0, ignore on read. 0

Table 97: SerDes Digital CRC Err and Rx Packet Counter Register (Offset: 0x07; Width 16)

Bit Name R/W Description Default

15-8 bit_error_rate_counter 0

7-0 crc_err_rx_pkt_cntr 0
Broadcom Corporation

Page 148 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
SerDes Digital Miscellaneous 1 Register (Offset: 0x08; Width 16)

SerDes Digital Miscellaneous 2 Register (Offset: 0x09; Width 16)

Table 98: SerDes Digital Miscellaneous 1 Register (Offset: 0x08; Width 16)

Bit Name R/W Description Default

15-13 Reference Clock Select R/W 0 = 25MHz
1 = 100MHz

2 = 125MHz
3 = 156.25MHz
4 = 187.5MHz

3

12 Force PLL Mode AFE Select R/W Forces on force_pll_mode_afe[2:0] 0

11 Reserved R/W Write as 0, ignore on read. 0

10-8 force_pll_mode_afe[2:0] R/W Determines PLL clock multiplier factor:

0 = x16
1 = x20
2 = x25

3 = x25
4 = x26
5 = x30

6 = x32
7 = x40

0

7 Reserved R/W Write as 0, ignore on read. 0

6 Transmit Underrun 1000 Disable R/W 0

5 Force Lane Mode R/W 1 = Forces the lane mode to be derived from independent lane
control registers (overrides autonegotiation).

0 = Normal operation

0

4 Force Speed Select R/W Forces the speed selected in bits [3:0] of this register. 0

3-0 Force Speed R/W 0 = 2.5Gb
1 = 5Gb

2 = 6Gb
3 = 10G (HiG)
4 = 10G (CX4)

5 = 12G
6 = 12.5G
7 = 13G

8 = 15G
9 = 16G

All others reserved

0

Table 99: SerDes Digital Miscellaneous 2 Register (Offset: 0x09; Width 16)

Bit Name R/W Description Default

15 rxckpl_sel_combo 0

14 rxck_mii_gen_sel_force 0
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 149

BCM57710/BCM57711 Programmer’s Guide
09/25/09
SerDes Digital Pattern Generation Control Register (Offset: 0x0A; Width 16)

13 rxck_mii_gel_sel_val 0

12 rlpbk_sw_force 0

11 rlpbk_RxRst_en 0

10 clkSigdet_bypass 0

9 clk41_bypass 0

8-6 Reserved 0

5 pma_pmd_forced_speed_enc_en 0

4 fifo_err_cya 0

3 an_txdisablePhase 0

2 an_rxSeqStartDis 0

1 an_txdisable_ln 0

0 an_deadTrap 0

Table 100: SerDes Digital Pattern Generation Control Register (Offset: 0x0A; Width 16)

Bit Name R/W Description Default

15 Reserved R/W 0

14 tx_err R/W 1 = Set txer=1 during CRC portion of packet
0 = Normal operation

0

13 skip_crc R/W 1 = Do not append 32 bit CRC to end of packet
0 = Normal operation

0

12 en_crc_checker_fragment_err_det R/W 1 = Enable CRC checker to detect CRC errors on packets
of any size (1 byte or more)
0 = Normal operation (CRC checker only detects CRC
errors on packets of at least 72 bytes)

0

11-9 ipg_select R/W 0 = Invalid

1 = IPG of 6 bytes
2 = IPG of 10 bytes
3 = IPG of 14 bytes

4 = IPG of 18 bytes
5 = IPG of 22 bytes
6 = IPG of 26 bytes

7 = IPG of 20 bytes

4

8-3 pkt_size R/W 0 = Invalid

1 = 256 bytes
2 = 512 bytes
3 = 768 bytes

4 = 1024 bytes
…
3Fh = 16,128 bytes

4

2 single_pass_mode R/W 1 = Only send 1 packet and stop.
0 = Send packets while bit 1 of this register is set

0

Table 99: SerDes Digital Miscellaneous 2 Register (Offset: 0x09; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation

Page 150 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
SerDes Digital Pattern Generation Status Register (Offset: 0x0B; Width 16)

SerDes Digital Test Mode Register (Offset: 0x0C; Width 16)

1 run_pattern_gen R/W 1 = A rising edge on this bit while the pattern generator is
in the idle state will start sending packets. If the
single_pass_mode bit is set then a single packet will be
sent and the idle state will be entered, otherwise packets
will be sent until this bit is cleared. At this point the current
packet will finish transmitting and then ether the idle state.

Note: A valid link must be established before sending
packets.

0 = Do no send packets.

0

0 sel_pattern_gendata R/W 1 = Send idles or pattern generator data into transmit FIFO
(ignore MAC transmit data)
0 = Normal operation

0

Table 101: SerDes Digital Pattern Generation Status Register (Offset: 0x0B; Width 16)

Bit Name R/W Description Default

15-4 Reserved R/W 0

3 pattern_gen_active RO 1 = Pattern generator is still sending packets
0 = Pattern generator is idle

0

2-0 pattern_gen_fsm RO 0 = Idle
1 = Transmit preamble

2 = Transmit data
3 = Transmit SFD
4 = IPG

5 = IPG 2 (allows FSM to be grey-coded)
6 = Transmit CRC
7 = Reserved

0

Table 102: SerDes Digital Test Mode Register (Offset: 0x0C; Width 16)

Bit Name R/W Description Default

15 disable_reset_cnt R/W 0

14 clear_packet_counters R/W 0

13-12 Reserved R/W 0

11-6 test_monitor_mode2 R/W 0

5-0 test_monitor_mode1 R/W 0

Table 100: SerDes Digital Pattern Generation Control Register (Offset: 0x0A; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 151

BCM57710/BCM57711 Programmer’s Guide
09/25/09
SerDes Digital Transmit Packet Count Register (Offset: 0x0D; Width 16)

SerDes Digital Receive Packet Count Register (Offset: 0x0E; Width 16)

Over 1G Block (Offset: 0x8320)

Over 1G Digital Control 30 Register (Offset: 0x0; Width 16)

Over 1G Digital Control 31 Register (Offset: 0x1; Width 16)

Over 1G Digital Control 32 Register (Offset: 0x2; Width 16)

Over 1G Digital Control 33 Register (Offset: 0x3; Width 16)

Table 103: SerDes Digital Transmit Packet Count Register (Offset: 0x0D; Width 16)

Bit Name R/W Description Default

15-0 txpktcnt RO Transmit packet counter status register (rolls over). 0

Table 104: SerDes Digital Receive Packet Count Register (Offset: 0x0E; Width 16)

Bit Name R/W Description Default

15-0 rxpktcnt RO Receive packet counter status register (rolls over). 0

Table 105: Over 1G Digital Control 30 Register (Offset: 0x0; Width 16)

Bit Name R/W Description Default

15-0 an_lostlink_cnt[15:0] R/W After losing link, the PHY must wait for this number of 25
MHz clock cycles before restarting autoneg.

0X7180

Table 106: Over 1G Digital Control 31 Register (Offset: 0x1; Width 16)

Bit Name R/W Description Default

15-0 an_switch_cnt[15:0] R/W After entering the autoneg IDLE state, the PHY must wait
this number of 25MHz clock cycles before commanding
the PLL to switch.

0X7180

Table 107: Over 1G Digital Control 32 Register (Offset: 0x2; Width 16)

Bit Name R/W Description Default

15-0 an_link_cnt[15:0] R/W After losing link, the PHY must continue looking for link for
this number of 25 MHz clock cycles before restarting the
autoneg process.

0X25A0

Table 108: Over 1G Digital Control 33 Register (Offset: 0x3; Width 16)

Bit Name R/W Description Default

15-8 an_switch_cnt[23:16] R/W After entering the autoneg IDLE state, the PHY must wait
this number of 25 MHz clock cycles before commanding
the PLL to switch.

0X0B
Broadcom Corporation

Page 152 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Over 1G Digital Control 34 Register (Offset: 0x04; Width 16)

Over 1G Digital Control 35 Register (Offset: 0x05; Width 16)

Over 1G Digital Control 36 Register (Offset: 0x06; Width 16)

Over 1G TPOUT 1 Register (Offset: 0x07; Width 16)

7:0 an_link_cnt[23:16] After losing link, the PHY must continue looking for link for
this number of 25 MHz clock cycles before restarting the
autoneg process.

0X26

Table 109: Over 1G Digital Control 34 Register (Offset: 0x04; Width 16)

Bit Name R/W Description Default

15:5 mp_number[10:0] R/W The message page (MP) ID for “Over 1Gb” next pages. 0x80

4 no_fail_cnt R/W 1 = No limit to the number of 2.5G autoneg iterations
0 = The an_fail_cnt field specifies the number of autoneg iterations
that must be performed before the higher speed advertisement is no
longer advertised.

0

3:0 an_fail_cnt[3:0] Specifies the number of autoneg iterations that must be performed
before the higher speed advertisement is no longer advertised.

0x4

Table 110: Over 1G Digital Control 35 Register (Offset: 0x05; Width 16)

Bit Name R/W Description Default

15:0 an_ignoreLink_cnt[15:0] R/W The PHY must ignore the link status for this number of 25
MHz clock cycles while concluding autonegotiation.

0x71B0

Table 111: Over 1G Digital Control 36 Register (Offset: 0x06; Width 16)

Bit Name R/W Description Default

15:8 an_lostLink_cnt[23:16] R/W After losing link, the PHY must wait for this number of 25
MHz clock cycles before restarting autoneg.

0x0B

7:0 an_ignoreLink_cnt[23:16] The PHY must ignore the link status for this number of 25
MHz clock cycles while concluding autonegotiation.

0x0B

Table 112: Over 1G TPOUT 1 Register (Offset: 0x07; Width 16)

Bit Name R/W Description Default

15:0 tpout[15:0] R/W Select from register 0*1C.9:0 0

Table 108: Over 1G Digital Control 33 Register (Offset: 0x3; Width 16)

Bit Name R/W Description Default
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 153

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Over 1G TPOUT 2 Register (Offset: 0x08; Width 16)

Over 1G Unformatted Page 1 Register (Offset: 0x09; Width 16)

Over 1G Unformatted Page 2 Register (Offset: 0x0A; Width 16)

Over 1G Unformatted Page 3 Register (Offset: 0x0B; Width 16)

Over 1G Link Partner Unformatted Page 1 Register (Offset: 0x0C; Width 16)

Table 113: Over 1G TPOUT 2 Register (Offset: 0x08; Width 16)

Bit Name R/W Description Default

15:0 tpout[23:8] R/W Select from register 0*1C.9:0 0

Table 114: Over 1G Unformatted Page 1 Register (Offset: 0x09; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-0 mr_adv_over_1g[10:0] R/W Over 1Gb abilities advertised (first next page).
bit[0] = 2.5Gb

bit[1] = 5Gb
bit[2] = 6Gb
bit[3] = 10Gb

bit[4] = 10Gb CX4
bit[5] = 12Gb
bit[6] = 12.5Gb

bit[7] = 13Gb
bit[8] = 15Gb
bit[9] = 16Gb

1h

Table 115: Over 1G Unformatted Page 2 Register (Offset: 0x0A; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-0 mr_adv_over_1g[21:11] R/W General purpose [21:11] (second next page). 0

Table 116: Over 1G Unformatted Page 3 Register (Offset: 0x0B; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-0 mr_adv_over_1g[31:22] R/W General purpose [31:22] (third next page). 0

Table 117: Over 1G Link Partner Unformatted Page 1 Register (Offset: 0x0C; Width 16)

Bit Name R/W Description Default

15-11 Reserved 0
Broadcom Corporation

Page 154 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Over 1G LP_UP 2 Register Offset: 0x0D; Width 16)

Over 1G LP_UP 3 Register (Offset: 0x0E; Width 16)

Remote PHY Block (Offset: 0x 8330)

Multirate Backplane Ethernet (MRBE) Block (Offset: 0x8350)

MRBE Message Page 5 Next Page Control Register (Offset: 0x0; Width 16)

MRBE Link Timer Offset 1 Register (Offset: 0x01; Width 16)

10-0 lp_adv_over_1g[10:0]

Table 118: Over 1G LP_UP 2 Register Offset: 0x0D; Width 16)

Bit Name R/W Description Default

15-11 Reserved 0

10-0 lp_adv_over_1g[21:11]

Table 119: Over 1G LP_UP 3 Register (Offset: 0x0E; Width 16)

Bit Name R/W Description Default

15-11 Reserved 0

10-0 lp_adv_over_1g[31:22]

Table 120: MRBE Message Page 5 Next Page Control Register (Offset: 0x0; Width 16)

Bit Name R/W Description Default

15:4 Reserved R/W Write as 0, ignore on read. 0

3 Next Page Software Override Enable R/W 1 = Enable next page software override

0 = Normal operation

0

2 Unformatted Page 3 Enable R/W 1 = Send unformatted pages 1, 2, and 3

0 = Send unformatted pages 1 and 2 only

0

1 T2 Mode R/W 1 = Enable T2 mode

0 = Normal operation

0

0 MRBE Mode R/W 1 = Enable MRBE mode

0 = Normal operation

0

Table 121: MRBE Link Timer Offset 1 Register (Offset: 0x01; Width 16)

Bit Name R/W Description Default

15:8 sgmii_offset[7:0] R/W 0x14

7:0 max_offset[7:0] R/W 0x7E

Table 117: Over 1G Link Partner Unformatted Page 1 Register (Offset: 0x0C; Width 16)

Bit Name R/W Description Default
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 155

BCM57710/BCM57711 Programmer’s Guide
09/25/09
MRBE Link Timer Offset 2 Register (Offset: 0x02; Width 16)

MRBE Link Timer Offset 3 Register (Offset: 0x03; Width 16)

MRBE OUI MSB Field Register (Offset: 0x04; Width 16)

MRBE OUI LSB Field Register (Offset: 0x05; Width 16)

MRBE Field Register (Offset: 0x06; Width 16)

Table 122: MRBE Link Timer Offset 2 Register (Offset: 0x02; Width 16)

Bit Name R/W Description Default

15:8 sgmii_up_offset[7:0] R/W 0x3D

7:0 link_down_offset[7:0] R/W 0x3D

Table 123: MRBE Link Timer Offset 3 Register (Offset: 0x03; Width 16)

Bit Name R/W Description Default

15:8 break_link_offset[7:0] R/W 0x3D

7:0 np_link_offset[7:0] R/W 0x3D

Table 124: MRBE OUI MSB Field Register (Offset: 0x04; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-0 oui[23:13] R/W OUI bits [23:13]. 0

Table 125: MRBE OUI LSB Field Register (Offset: 0x05; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-0 oui[12:2] R/W OUI bits[12:2] 0x2BD

Table 126: MRBE Field Register (Offset: 0x06; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-9 oui[1:0] R/W OUT bits[1:0] 0x3

8-0 mrbe_field R/W 0 = None, used to transfer OUI

1 = SerDes autonegotiation

0x0
Broadcom Corporation

Page 156 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
MRBE UD Field Register (Offset: 0x07; Width 16)

MRBE Link Partner OUI MSB Field Register (Offset: 0x08; Width 16)

MRBE Link Partner OUI LSB Field Register (Offset: 0x09; Width 16)

MRBE Link Partner MRBE Field Register (Offset: 0x0A; Width 16)

MRBE Link Partner UD Field Register (Offset: 0x0B; Width 16)

Table 127: MRBE UD Field Register (Offset: 0x07; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-0 ud_field R/W 0 = Over 1Gb
1 = Remote copper PHY
2 = Remote SerDes PHY

3 = Autoneg MDIO
4 = In-Band MDIO
5 = Remote BN page

0

Table 128: MRBE Link Partner OUI MSB Field Register (Offset: 0x08; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-0 lp_oui[23:13] R/W LP OUI bits[23:13] 0

Table 129: MRBE Link Partner OUI LSB Field Register (Offset: 0x09; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-0 lp_oui[12:2] R/W LP OUI bits[12:2] 0

Table 130: MRBE Link Partner MRBE Field Register (Offset: 0x0A; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0

10-9 lp_oui[1:0] R/W LP OUI bits[1:0] 0

8-0 lp_mrbe_field R/W 0 = None, used to transfer OUI
1 = SerDes autonegotiation

0

Table 131: MRBE Link Partner UD Field Register (Offset: 0x0B; Width 16)

Bit Name R/W Description Default

15-11 Reserved R/W Write as 0, ignore on read. 0
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 157

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Clause 73 User B0 (CL73_UserB0) Block (Offset: 0x 8370)

CL73_UserB0 Control 1 Register (Offset: 0x00; Width 16)

CL73_UserB0 Status 1 Register (Offset: 0x01; Width 16)

10-0 lp_ud_field R/W 0 = Over 1Gb

1 = Remote copper PHY
2 = Remote SerDes PHY
3 = Autoneg MDIO

4 = In-Band MDIO
5 = Remote BN page

0

Table 132: CL73_UserB0 Control 1 Register (Offset: 0x00; Width 16)

Bit Name R/W Description Default

15-13 Reserved R/W Write as 0, ignore on read. 0

12 cl73_lossOfSyncFail_en R/W Enables exit from an AN_GOOD_CHECK state upon
loss of sync_status.

0

11 cl73_parDet_dis R/W Disables CL73 parallel detect. 0

10 cl73_allowCl37AN R/W Allows CL73 auto-neg when link resolves to KX. 0

9 longParDetTimer_dis R/W Long parallel detect timer disable (use 50ms timer
instead).

0

8 linkFailTimer_dis R/W Disable link fail inhibit timer enable. 0

7 linkFailTimerQual_en R/W Qualify link with link fail inhibit timer enable. 0

6 cl73_nonce_match_over R/W Clause 73 nonce match override. 0.

5 cl73_noncr_match_val R/W Clause 73 nonce match value. 0

4 couple_w_cl73_restart_wo_link_fail R/W Undocumented. 0

3 couple_w_cl73_restart R/W Undocumented. 0

2 couple_w_cl37_restart R/W Undocumented. 0

1 cl73_Ustat1_muxsel R/W Undocumented. 0

0 force_cl73_tx_omux_en RW Undocumented. 0

Table 133: CL73_UserB0 Status 1 Register (Offset: 0x01; Width 16)

Bit Name R/W Description Default

15:10 Reserved RO Write as 0, ignore on read. 0

9:0 Arbitration Finite State
Machine

RO Undocumented 0

Table 131: MRBE Link Partner UD Field Register (Offset: 0x0B; Width 16)

Bit Name R/W Description Default
Broadcom Corporation

Page 158 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
CL73_UserB0 MRBE Control 1 Register (Offset: 0x02; Width 16)

CL73_UserB0 MRBE Control 2 Register (Offset: 0x03; Width 16)

CL73_UserB0 MRBE Control 3 Register (Offset: 0x04; Width 16)

CL73_UserB0 MRBE Status 1 Register (Offset: 0x05; Width 16)

Table 134: CL73_UserB0 MRBE Control 1 Register (Offset: 0x02; Width 16)

Bit Name R/W Description Default

15 Clause 73 MRBE Enable R/W 1 = Enable MRBE autonegotiation
0 = Disable MRBE autonegotiation

0

14 Clause 73 MRBE Station Manager Enable R/W 1 = Enable MRBE station manager
0 = Disable MRBE station manager

1

13 Clause 73 MRBE Next Page After Base
Page Enable

R/W 1 = Send MRBE next pages immediately after the
base page

0 = Send MRBE next pages following software next
pages

1

12 Clause 73 MRBE Test Message Page 5 Halt
Enable

R/W 1 = Enable MRBE MP5 test
0 = Disable MRBE MP5 test

0

11 Clause 73 MRBE Test Message Page 5 Halt
Step

R/W The MP5 halt step value. 0

10 Reserved R/W Write as 0, ignore on read. 0

9:0 User Defined Code Field [41:32] R/W MRBE user defined code field [41:32]. 0

Table 135: CL73_UserB0 MRBE Control 2 Register (Offset: 0x03; Width 16)

Bit Name R/W Description Default

15:0 User Defined Code
Field [31:16]

R/W MRBE user defined code field [31:16]. 0

Table 136: CL73_UserB0 MRBE Control 3 Register (Offset: 0x04; Width 16)

Bit Name R/W Description Default

15:0 User Defined Code
Field [15:0]

R/W MRBE user defined code field [15:0]. 0

Table 137: CL73_UserB0 MRBE Status 1 Register (Offset: 0x05; Width 16)

Bit Name R/W Description Default

15:10 Reserved RO Ignore on read. 0

9:0 Link Partner User
Defined Code Field
[41:32]

RO The link partner's user defined code field [41:32]. 0
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 159

BCM57710/BCM57711 Programmer’s Guide
09/25/09
CL73_UserB0 MRBE Status 2 Register (Offset: 0x06; Width 16)

CL73_UserB0 MRBE Status 3 Register (Offset: 0x07; Width 16)

Address Extension Register (AER) Block (Offset: 0xFFD0)

AER Address Extension Register (Offset: 0x0E; Width 16)

Table 138: CL73_UserB0 MRBE Status 2 Register (Offset: 0x06; Width 16)

Bit Name R/W Description Default

15:0 Link Partner User
Defined Code Field
[31:16]

RO The link partner's user defined code field [31:16]. 0

Table 139: CL73_UserB0 MRBE Status 3 Register (Offset: 0x07; Width 16)

Bit Name R/W Description Default

15:0 Link Partner User
Defined Code Field
[15:0]

RO The link partner's user defined code field [15:0]. 0

Table 140: AER Address Extension Register (Offset: 0x0E; Width 16)

Bit Name R/W Description Default

15-0 Address
Expansion
Register

R/W Selects an embedded/companion MMD. When not in independent channel
mode (single PHY mode) there are 4 MMD’s. The top level XGXS MMD is
identified by the DEVAD_STRAP. The PMA/PMD device is identified by
DEVAD=1. The Clause 73 Autonegotiation device is identified by DEVAD=7.
The Clause 22 Combo core/SGMII device is identified with a Clause 22 MDIO
access.
When configured as four independent channels each channel has 3 devices.
The PMA/PMD devices is identified by DEVAD=1. The Clause 73
Autonegotiation device is identified by DEVAD=7. The Clause 22 Combo core/
SGMII device is identified with a Clause 22 MDIO access.
The MDI registers for all MMDs can be accessed through Clause 22 PHY
register space by setting the AER field to the appropriate value. The top level
XGXS registers can be accessed by setting Address Expansion Register [15:11]
to the DEVAD_STRAP value.

0x0000 = DEVAD/ComboCore
0x0800 = PMA/PMD
0x3800 = Autonegotiation MMD (7h)

All other values are reserved.

0

Broadcom Corporation

Page 160 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
IEEE Combination Block (Offset 0xFFE0)

IEEE_Combo MII Control Register (Offset: 0x0; Width 16)

IEEE0 MII Status Register (Offset: 0x01; Width 16)

Table 141: IEEE_Combo MII Control Register (Offset: 0x0; Width 16)

Bit Name R/W Description Default

15 Reset R/W, SC 1 = PHY Reset
0 = Normal operation

0

14 Internal Loopback R/W 1 = Global loopback enabled
0 = Normal operation

0

13 Speed Selection (LSB) R/W See Speed Selection (MSB) 0

12 Autonegotiation Enable R/W 1 = Autonegotiation enabled
0 = Autonegotiation disabled

1

11 Power Down R/W 1 = Low Power Mode
0 = Normal operation

0

10 Reserved RO Ignore on read. 0

9 Restart Autonegotiation R/W, SC 1 = Restart autonegotiation

0 = Normal operation

0

8 Manual Duplex Mode R/W 1 = Full duplex

0 = Half duplex

1

7 Collision Test Enabled R/W 1 = Collision test mode enabled

0 = Collision test mode disabled

0

6 Speed Selection (MSB) R/W 11 = Reserved

10 = SGMII 1000Mb/s
01 = SGMII 100Mb/s
00 = SGMII 10Mb/s

0

5-0 Reserved RO Ignore on read. 0

Table 142: IEEE0 MII Status Register (Offset: 0x01; Width 16)

Bit Name R/W Description Default

15 100Base-T4 Capable RO, L 1 = 100Base-T4 capable

0 = Not 100Base-T4 capable

0

14 100Base-X Full-Duplex Capable RO, L 1 = 100Base-X full-duplex capable

0 = Not 100Base-X full-duplex capable

0

13 100Base-X Half-Duplex Capable RO, L 1 = 100Base-X half-duplex capable

0 = Not 100Base-X half-duplex capable

0

12 10Base-T Full-Duplex Capable RO, L 1 = 10Base-T full-duplex capable

0 = Not 10Base-T full-duplex capable

0

11 10Base-T Half-Duplex Capable RO, L 1 = 10Base-T half-duplex capable

0 = Not 10Base-T half-duplex capable

0

10 100Base-T2 Full-Duplex Capable RO, L 1 = 100Base-T2 full-duplex capable

0 = Not 100Base-T2 full-duplex capable

0

Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 161

BCM57710/BCM57711 Programmer’s Guide
09/25/09
IEEE0 PHY Identifier MSB Register (Offset: 0x02; Width 16)

IEEE0 PHY Identifier LSB Register (Offset: 0x03; Width 16)

9 100Base-T2 Half-Duplex Capable RO, L 1 = 100Base-T2 half-duplex capable

0 = Not 100Base-T2 half-duplex capable

0

8 Extended Status RO, H 1 = Extended status information in register 0Fh 1

7 Reserved RO Ignore on read. 0

6 Management Frames Preamble
Suppression

RO, H 1 = PHY will accept management frames with preamble
suppressed
0 = PHY will not accept management frames with
preamble suppressed

1

5 Autonegotiation Complete RO 1 = Autonegotiation complete

0 = Autonegotiation in progress

0

4 Remote Fault RO, LH 1 = Remote fault detected

0 = No remote fault detected

0

3 Autonegotiation Ability RO, H 1 = Autonegotiation capable

0 = Not autonegotiation capable

1

2 Link Status RO, LL 1 = Link is up

0 = Link is down

0

1 Jabber Detect RO, L 1 = Jabber condition detected

0 = No jabber condition detected

0

0 Extended Capability RO, H 1 = Extended register capabilities supported

0 = Basic register set capabilities only

1

Table 143: IEEE0 PHY Identifier MSB Register (Offset: 0x02; Width 16)

Bit Name R/W Description Default

15-0 OUI RO Bits 18:3 of the organizationally unique
identifier.

0143h

Table 144: IEEE0 PHY Identifier LSB Register (Offset: 0x03; Width 16)

Bit Name R/W Description Default

15:10 OUI RO Bits 24:19 of the organizationally unique
identifier.

2Fh

9:4 Model RO Device model number 3Fh

3:0 Revision RO Device revision number 0h

Table 142: IEEE0 MII Status Register (Offset: 0x01; Width 16) (Cont.)

Bit Name R/W Description Default
Broadcom Corporation

Page 162 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
IEEE0 Autonegotiation Advertisement Register (Offset: 0x04; Width 16)

IEEE0 Autonegotiation Link Partner Ability Register (Offset: 0x05; Width 16)

IEEE0 Autonegotiation Expansion Register (Offset: 0x06; Width 16)

Table 145: IEEE0 Autonegotiation Advertisement Register (Offset: 0x04; Width 16)

Bit Name R/W Description Default

15 Next Page R/W 1 = Next page ability supported
0 = Next page ability not supported

0

14 Reserved RO Ignore on read 0

13:12 Remote Fault R/W 01 = Link failure
00 = Advertise no remote fault

0

11:9 Reserved R/W Write as 0, ignore on read 0

8:7 Pause R/W 01 = Advertise symmetric pause capable

00 = Advertise not pause capable

1

6 Half-Duplex R/W 1 = Advertise half-duplex capable

0 = Advertise not half-duplex capable

1

5 Full-Duplex R/W 1 = Advertise full-duplex capable

0 = Advertise not full-duplex capable

1

4:0 Reserved R/W Write as 0, ignore on read 0

Table 146: IEEE0 Autonegotiation Link Partner Ability Register (Offset: 0x05; Width 16)

Bit Name R/W Description Default

15 Next Page RO 1 = Link partner has Next Page ability.
0 = Link partner does not have Next Page ability.

0

14 Acknowledge RO 1 = Link partner has received link code word.
0 = Link partner has not received link code word.

0

13-12 Remote Fault RO 01 = Link partner has detected remote fault.
00 = Link partner has not detected remote fault.

0

11-9 Reserved RO Ignore on read. 0

8-7 Pause Capable RO 01 = Link partner is symmetric pause capable.

00 = Link partner is not pause capable.

0

6 Half Duplex Capable RO 1 = Link partner is half duplex capable

0 = Link partner is not half duplex capable

0

5 Full Duplex Capable RO 1 = Link partner is full duplex capable

0 = Link partner is not full duplex capable

0

4-1 Reserved RO Ignore on read. 0

0 SGMII Mode RO 1 = SGMII Mode
0 = Fiber mode

0

Table 147: IEEE0 Autonegotiation Expansion Register (Offset: 0x06; Width 16)

Bit Name R/W Description Default

15-3 Reserved RO Ignore on read. 0
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 163

BCM57710/BCM57711 Programmer’s Guide
09/25/09
IEEE0 Autonegotiation Next Page Register (Offset: 0x07; Width 16)

IEEE0 Autonegotiation Link Partner Next Page Register (Offset: 0x08; Width 16)

2 Next Page Ability RO, L 1 = Local device is next page capable.

0 = Local device is not next page capable.

0

1 Page Received RO, LH 1 = New link code word has been received

0 = New link code word has not bee received.

0

0 Reserved RO Ignore on read. 0

Table 148: IEEE0 Autonegotiation Next Page Register (Offset: 0x07; Width 16)

Bit Name R/W Description Default

15 Next Page R/W 0 = Last page
1 = Additional next page(s) follow

0

14 Acknowledge R/W Acknowledge 0

13 Message Page R/W 0 = Unformatted page

1 = Message Page

0

12 Acknowledge 2 R/W Acknowledge 0

11 Toggle R/W Opposite value of bit in the previous page. 0

10-0 Message or Unformatted Code Field R/W 400h = Over 1G message page
410h = Remote copper PHY message page
411h = MDIO register write message page

412h = MDIO register read request message page
413h = MDIO register response message page

0

Table 149: IEEE0 Autonegotiation Link Partner Next Page Register (Offset: 0x08; Width 16)

Bit Name R/W Description Default

15 Next Page R/W 0 = Last page

1 = Additional next page(s) follow

0

14 Acknowledge R/W 0

13 Message Page R/W 0 = Unformatted page
1 = Message Page

0

12 Acknowledge 2 R/W 0

11 Toggle R/W Opposite value of bit in the previous page. 0

10-0 Message or Unformatted Code Field R/W 400h = Over 1G message page

410h = Remote copper PHY message page
411h = MDIO register write message page
412h = MDIO register read request message page

413h = MDIO register response message page

0

Table 147: IEEE0 Autonegotiation Expansion Register (Offset: 0x06; Width 16)

Bit Name R/W Description Default
Broadcom Corporation

Page 164 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Appendix A: bxe_hsi.h

/*-
 * Copyright (c) 2007-2008 Broadcom Corporation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written consent.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

struct license_key {
uint32_t reserved[6];

#if defined(__BIG_ENDIAN)
uint16_t max_iscsi_init_conn;
uint16_t max_iscsi_trgt_conn;

#elif defined(__LITTLE_ENDIAN)
uint16_t max_iscsi_trgt_conn;
uint16_t max_iscsi_init_conn;

#endif

uint32_t reserved_a[6];
};

#define PORT_00
#define PORT_11
#define PORT_MAX2

/**
 * Shared HW configuration *
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 165

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 **/
struct shared_hw_cfg { /* NVRAM Offset */

/* Up to 16 bytes of NULL-terminated string */
uint8_t part_num[16];/* 0x104 */

uint32_t config; /* 0x114 */
#define SHARED_HW_CFG_MDIO_VOLTAGE_MASK 0x00000001
#define SHARED_HW_CFG_MDIO_VOLTAGE_SHIFT 0
#define SHARED_HW_CFG_MDIO_VOLTAGE_1_2V 0x00000000
#define SHARED_HW_CFG_MDIO_VOLTAGE_2_5V 0x00000001
#define SHARED_HW_CFG_MCP_RST_ON_CORE_RST_EN 0x00000002

#define SHARED_HW_CFG_PORT_SWAP 0x00000004

#define SHARED_HW_CFG_BEACON_WOL_EN 0x00000008

#define SHARED_HW_CFG_MFW_SELECT_MASK 0x00000700
#define SHARED_HW_CFG_MFW_SELECT_SHIFT 8

/* Whatever MFW found in NVM
 (if multiple found, priority order is: NC-SI, UMP, IPMI) */

#define SHARED_HW_CFG_MFW_SELECT_DEFAULT 0x00000000
#define SHARED_HW_CFG_MFW_SELECT_NC_SI 0x00000100
#define SHARED_HW_CFG_MFW_SELECT_UMP 0x00000200
#define SHARED_HW_CFG_MFW_SELECT_IPMI 0x00000300

/* Use SPIO4 as an arbiter between: 0-NC_SI, 1-IPMI
 (can only be used when an add-in board, not BMC, pulls-down SPIO4) */

#define SHARED_HW_CFG_MFW_SELECT_SPIO4_NC_SI_IPMI 0x00000400
/* Use SPIO4 as an arbiter between: 0-UMP, 1-IPMI
 (can only be used when an add-in board, not BMC, pulls-down SPIO4) */

#define SHARED_HW_CFG_MFW_SELECT_SPIO4_UMP_IPMI 0x00000500
/* Use SPIO4 as an arbiter between: 0-NC-SI, 1-UMP
 (can only be used when an add-in board, not BMC, pulls-down SPIO4) */

#define SHARED_HW_CFG_MFW_SELECT_SPIO4_NC_SI_UMP 0x00000600

#define SHARED_HW_CFG_LED_MODE_MASK 0x000f0000
#define SHARED_HW_CFG_LED_MODE_SHIFT 16
#define SHARED_HW_CFG_LED_MAC1 0x00000000
#define SHARED_HW_CFG_LED_PHY1 0x00010000
#define SHARED_HW_CFG_LED_PHY2 0x00020000
#define SHARED_HW_CFG_LED_PHY3 0x00030000
#define SHARED_HW_CFG_LED_MAC2 0x00040000
#define SHARED_HW_CFG_LED_PHY4 0x00050000
#define SHARED_HW_CFG_LED_PHY5 0x00060000
#define SHARED_HW_CFG_LED_PHY6 0x00070000
#define SHARED_HW_CFG_LED_MAC3 0x00080000
#define SHARED_HW_CFG_LED_PHY7 0x00090000
#define SHARED_HW_CFG_LED_PHY9 0x000a0000
#define SHARED_HW_CFG_LED_PHY11 0x000b0000
#define SHARED_HW_CFG_LED_MAC4 0x000c0000
#define SHARED_HW_CFG_LED_PHY8 0x000d0000

#define SHARED_HW_CFG_AN_ENABLE_MASK 0x3f000000
#define SHARED_HW_CFG_AN_ENABLE_SHIFT 24
#define SHARED_HW_CFG_AN_ENABLE_CL37 0x01000000
#define SHARED_HW_CFG_AN_ENABLE_CL73 0x02000000
#define SHARED_HW_CFG_AN_ENABLE_BAM 0x04000000
Broadcom Corporation

Page 166 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
#define SHARED_HW_CFG_AN_ENABLE_PARALLEL_DETECTION 0x08000000
#define SHARED_HW_CFG_AN_EN_SGMII_FIBER_AUTO_DETECT 0x10000000
#define SHARED_HW_CFG_AN_ENABLE_REMOTE_PHY 0x20000000

uint32_t config2; /* 0x118 */
/* one time auto detect grace period (in sec) */

#define SHARED_HW_CFG_GRACE_PERIOD_MASK 0x000000ff
#define SHARED_HW_CFG_GRACE_PERIOD_SHIFT 0

#define SHARED_HW_CFG_PCIE_GEN2_ENABLED 0x00000100

/* The default value for the core clock is 250MHz and it is
 achieved by setting the clock change to 4 */

#define SHARED_HW_CFG_CLOCK_CHANGE_MASK 0x00000e00
#define SHARED_HW_CFG_CLOCK_CHANGE_SHIFT 9

#define SHARED_HW_CFG_SMBUS_TIMING_100KHZ 0x00000000
#define SHARED_HW_CFG_SMBUS_TIMING_400KHZ 0x00001000

#define SHARED_HW_CFG_HIDE_PORT1 0x00002000

#define SHARED_HW_CFG_WOL_CAPABLE_DISABLED 0x00000000
#define SHARED_HW_CFG_WOL_CAPABLE_ENABLED 0x00004000

/* Output low when PERST is asserted */
#define SHARED_HW_CFG_SPIO4_FOLLOW_PERST_DISABLED 0x00000000
#define SHARED_HW_CFG_SPIO4_FOLLOW_PERST_ENABLED 0x00008000

uint32_t power_dissipated;/* 0x11c */
#define SHARED_HW_CFG_POWER_DIS_CMN_MASK 0xff000000
#define SHARED_HW_CFG_POWER_DIS_CMN_SHIFT 24

#define SHARED_HW_CFG_POWER_MGNT_SCALE_MASK 0x00ff0000
#define SHARED_HW_CFG_POWER_MGNT_SCALE_SHIFT 16
#define SHARED_HW_CFG_POWER_MGNT_UNKNOWN_SCALE 0x00000000
#define SHARED_HW_CFG_POWER_MGNT_DOT_1_WATT 0x00010000
#define SHARED_HW_CFG_POWER_MGNT_DOT_01_WATT 0x00020000
#define SHARED_HW_CFG_POWER_MGNT_DOT_001_WATT 0x00030000

uint32_t ump_nc_si_config;/* 0x120 */
#define SHARED_HW_CFG_UMP_NC_SI_MII_MODE_MASK 0x00000003
#define SHARED_HW_CFG_UMP_NC_SI_MII_MODE_SHIFT 0
#define SHARED_HW_CFG_UMP_NC_SI_MII_MODE_MAC 0x00000000
#define SHARED_HW_CFG_UMP_NC_SI_MII_MODE_PHY 0x00000001
#define SHARED_HW_CFG_UMP_NC_SI_MII_MODE_MII 0x00000000
#define SHARED_HW_CFG_UMP_NC_SI_MII_MODE_RMII 0x00000002

#define SHARED_HW_CFG_UMP_NC_SI_NUM_DEVS_MASK 0x00000f00
#define SHARED_HW_CFG_UMP_NC_SI_NUM_DEVS_SHIFT 8

#define SHARED_HW_CFG_UMP_NC_SI_EXT_PHY_TYPE_MASK 0x00ff0000
#define SHARED_HW_CFG_UMP_NC_SI_EXT_PHY_TYPE_SHIFT 16
#define SHARED_HW_CFG_UMP_NC_SI_EXT_PHY_TYPE_NONE 0x00000000
#define SHARED_HW_CFG_UMP_NC_SI_EXT_PHY_TYPE_BCM5221 0x00010000

uint32_t board; /* 0x124 */
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 167

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#define SHARED_HW_CFG_BOARD_REV_MASK 0x00FF0000
#define SHARED_HW_CFG_BOARD_REV_SHIFT 16

#define SHARED_HW_CFG_BOARD_MAJOR_VER_MASK 0x0F000000
#define SHARED_HW_CFG_BOARD_MAJOR_VER_SHIFT 24

#define SHARED_HW_CFG_BOARD_MINOR_VER_MASK 0xF0000000
#define SHARED_HW_CFG_BOARD_MINOR_VER_SHIFT 28

uint32_t reserved; /* 0x128 */

};

/**
 * Port HW configuration *
 **/
struct port_hw_cfg { /* port 0: 0x12c port 1: 0x2bc */

uint32_t pci_id;
#define PORT_HW_CFG_PCI_VENDOR_ID_MASK 0xffff0000
#define PORT_HW_CFG_PCI_DEVICE_ID_MASK 0x0000ffff

uint32_t pci_sub_id;
#define PORT_HW_CFG_PCI_SUBSYS_DEVICE_ID_MASK 0xffff0000
#define PORT_HW_CFG_PCI_SUBSYS_VENDOR_ID_MASK 0x0000ffff

uint32_t power_dissipated;
#define PORT_HW_CFG_POWER_DIS_D3_MASK 0xff000000
#define PORT_HW_CFG_POWER_DIS_D3_SHIFT 24
#define PORT_HW_CFG_POWER_DIS_D2_MASK 0x00ff0000
#define PORT_HW_CFG_POWER_DIS_D2_SHIFT 16
#define PORT_HW_CFG_POWER_DIS_D1_MASK 0x0000ff00
#define PORT_HW_CFG_POWER_DIS_D1_SHIFT 8
#define PORT_HW_CFG_POWER_DIS_D0_MASK 0x000000ff
#define PORT_HW_CFG_POWER_DIS_D0_SHIFT 0

uint32_t power_consumed;
#define PORT_HW_CFG_POWER_CONS_D3_MASK 0xff000000
#define PORT_HW_CFG_POWER_CONS_D3_SHIFT 24
#define PORT_HW_CFG_POWER_CONS_D2_MASK 0x00ff0000
#define PORT_HW_CFG_POWER_CONS_D2_SHIFT 16
#define PORT_HW_CFG_POWER_CONS_D1_MASK 0x0000ff00
#define PORT_HW_CFG_POWER_CONS_D1_SHIFT 8
#define PORT_HW_CFG_POWER_CONS_D0_MASK 0x000000ff
#define PORT_HW_CFG_POWER_CONS_D0_SHIFT 0

uint32_t mac_upper;
#define PORT_HW_CFG_UPPERMAC_MASK 0x0000ffff
#define PORT_HW_CFG_UPPERMAC_SHIFT 0

uint32_t mac_lower;

uint32_t iscsi_mac_upper; /* Upper 16 bits are always zeroes */
uint32_t iscsi_mac_lower;

uint32_t rdma_mac_upper; /* Upper 16 bits are always zeroes */
Broadcom Corporation

Page 168 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
uint32_t rdma_mac_lower;

uint32_t serdes_config;
#define PORT_HW_CFG_SERDES_TX_DRV_PRE_EMPHASIS_MASK 0x0000FFFF
#define PORT_HW_CFG_SERDES_TX_DRV_PRE_EMPHASIS_SHIFT 0

#define PORT_HW_CFG_SERDES_RX_DRV_EQUALIZER_MASK 0xFFFF0000
#define PORT_HW_CFG_SERDES_RX_DRV_EQUALIZER_SHIFT 16

uint32_t Reserved0[16]; /* 0x158 */

/* for external PHY, or forced mode or during AN */
uint16_t xgxs_config_rx[4]; /* 0x198 */

uint16_t xgxs_config_tx[4]; /* 0x1A0 */

uint32_t Reserved1[64]; /* 0x1A8 */

uint32_t lane_config;
#define PORT_HW_CFG_LANE_SWAP_CFG_MASK 0x0000ffff
#define PORT_HW_CFG_LANE_SWAP_CFG_SHIFT 0
#define PORT_HW_CFG_LANE_SWAP_CFG_TX_MASK 0x000000ff
#define PORT_HW_CFG_LANE_SWAP_CFG_TX_SHIFT 0
#define PORT_HW_CFG_LANE_SWAP_CFG_RX_MASK 0x0000ff00
#define PORT_HW_CFG_LANE_SWAP_CFG_RX_SHIFT 8
#define PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK 0x0000c000
#define PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT 14

/* AN and forced */
#define PORT_HW_CFG_LANE_SWAP_CFG_01230123 0x00001b1b

/* forced only */
#define PORT_HW_CFG_LANE_SWAP_CFG_01233210 0x00001be4

/* forced only */
#define PORT_HW_CFG_LANE_SWAP_CFG_31203120 0x0000d8d8

/* forced only */
#define PORT_HW_CFG_LANE_SWAP_CFG_32103210 0x0000e4e4

uint32_t external_phy_config;
#define PORT_HW_CFG_SERDES_EXT_PHY_TYPE_MASK 0xff000000
#define PORT_HW_CFG_SERDES_EXT_PHY_TYPE_SHIFT 24
#define PORT_HW_CFG_SERDES_EXT_PHY_TYPE_DIRECT 0x00000000
#define PORT_HW_CFG_SERDES_EXT_PHY_TYPE_BCM5482 0x01000000
#define PORT_HW_CFG_SERDES_EXT_PHY_TYPE_NOT_CONN 0xff000000

#define PORT_HW_CFG_SERDES_EXT_PHY_ADDR_MASK 0x00ff0000
#define PORT_HW_CFG_SERDES_EXT_PHY_ADDR_SHIFT 16

#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK 0x0000ff00
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SHIFT 8
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT 0x00000000
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8071 0x00000100
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8072 0x00000200
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073 0x00000300
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705 0x00000400
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8706 0x00000500
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726 0x00000600
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 169

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481 0x00000700
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101 0x00000800
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE 0x0000fd00
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN 0x0000ff00

#define PORT_HW_CFG_XGXS_EXT_PHY_ADDR_MASK 0x000000ff
#define PORT_HW_CFG_XGXS_EXT_PHY_ADDR_SHIFT 0

uint32_t speed_capability_mask;
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK 0xffff0000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_SHIFT 16
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL 0x00010000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF 0x00020000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF 0x00040000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL 0x00080000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_1G 0x00100000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G 0x00200000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_10G 0x00400000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_12G 0x00800000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_12_5G 0x01000000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_13G 0x02000000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_15G 0x04000000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_16G 0x08000000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_RESERVED 0xf0000000

#define PORT_HW_CFG_SPEED_CAPABILITY_D3_MASK 0x0000ffff
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_SHIFT 0
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_10M_FULL 0x00000001
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_10M_HALF 0x00000002
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_100M_HALF 0x00000004
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_100M_FULL 0x00000008
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_1G 0x00000010
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_2_5G 0x00000020
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_10G 0x00000040
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_12G 0x00000080
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_12_5G 0x00000100
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_13G 0x00000200
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_15G 0x00000400
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_16G 0x00000800
#define PORT_HW_CFG_SPEED_CAPABILITY_D3_RESERVED 0x0000f000

/* A place to hold the original MAC address as a backup */
uint32_t backup_mac_upper; /* 0x2B4 */

uint32_t backup_mac_lower; /* 0x2B8 */
};

/**
 * Shared Feature configuration *
 **/
struct shared_feat_cfg { /* NVRAM Offset */

uint32_t config; /* 0x450 */
#define SHARED_FEATURE_BMC_ECHO_MODE_EN 0x00000001
Broadcom Corporation

Page 170 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
/* Use the values from options 47 and 48 instead of the HW default
 values */

#define SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_DISABLED 0x00000000
#define SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED 0x00000002

#define SHARED_FEAT_CFG_NCSI_ID_METHOD_SPIO 0x00000000
#define SHARED_FEAT_CFG_NCSI_ID_METHOD_NVRAM 0x00000008

#define SHARED_FEAT_CFG_NCSI_ID_MASK 0x00000030
#define SHARED_FEAT_CFG_NCSI_ID_SHIFT 4

/* Override the OTP back to single function mode */
#define SHARED_FEATURE_MF_MODE_DISABLED 0x00000100

};

/**
 * Port Feature configuration *
 **/
struct port_feat_cfg { /* port 0: 0x454 port 1: 0x4c8 */

uint32_t config;
#define PORT_FEATURE_BAR1_SIZE_MASK 0x0000000f
#define PORT_FEATURE_BAR1_SIZE_SHIFT 0
#define PORT_FEATURE_BAR1_SIZE_DISABLED 0x00000000
#define PORT_FEATURE_BAR1_SIZE_64K 0x00000001
#define PORT_FEATURE_BAR1_SIZE_128K 0x00000002
#define PORT_FEATURE_BAR1_SIZE_256K 0x00000003
#define PORT_FEATURE_BAR1_SIZE_512K 0x00000004
#define PORT_FEATURE_BAR1_SIZE_1M 0x00000005
#define PORT_FEATURE_BAR1_SIZE_2M 0x00000006
#define PORT_FEATURE_BAR1_SIZE_4M 0x00000007
#define PORT_FEATURE_BAR1_SIZE_8M 0x00000008
#define PORT_FEATURE_BAR1_SIZE_16M 0x00000009
#define PORT_FEATURE_BAR1_SIZE_32M 0x0000000a
#define PORT_FEATURE_BAR1_SIZE_64M 0x0000000b
#define PORT_FEATURE_BAR1_SIZE_128M 0x0000000c
#define PORT_FEATURE_BAR1_SIZE_256M 0x0000000d
#define PORT_FEATURE_BAR1_SIZE_512M 0x0000000e
#define PORT_FEATURE_BAR1_SIZE_1G 0x0000000f
#define PORT_FEATURE_BAR2_SIZE_MASK 0x000000f0
#define PORT_FEATURE_BAR2_SIZE_SHIFT 4
#define PORT_FEATURE_BAR2_SIZE_DISABLED 0x00000000
#define PORT_FEATURE_BAR2_SIZE_64K 0x00000010
#define PORT_FEATURE_BAR2_SIZE_128K 0x00000020
#define PORT_FEATURE_BAR2_SIZE_256K 0x00000030
#define PORT_FEATURE_BAR2_SIZE_512K 0x00000040
#define PORT_FEATURE_BAR2_SIZE_1M 0x00000050
#define PORT_FEATURE_BAR2_SIZE_2M 0x00000060
#define PORT_FEATURE_BAR2_SIZE_4M 0x00000070
#define PORT_FEATURE_BAR2_SIZE_8M 0x00000080
#define PORT_FEATURE_BAR2_SIZE_16M 0x00000090
#define PORT_FEATURE_BAR2_SIZE_32M 0x000000a0
#define PORT_FEATURE_BAR2_SIZE_64M 0x000000b0
#define PORT_FEATURE_BAR2_SIZE_128M 0x000000c0
#define PORT_FEATURE_BAR2_SIZE_256M 0x000000d0
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 171

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#define PORT_FEATURE_BAR2_SIZE_512M 0x000000e0
#define PORT_FEATURE_BAR2_SIZE_1G 0x000000f0
#define PORT_FEATURE_EN_SIZE_MASK 0x07000000
#define PORT_FEATURE_EN_SIZE_SHIFT 24
#define PORT_FEATURE_WOL_ENABLED 0x01000000
#define PORT_FEATURE_MBA_ENABLED 0x02000000
#define PORT_FEATURE_MFW_ENABLED 0x04000000

uint32_t wol_config;
/* Default is used when driver sets to "auto" mode */

#define PORT_FEATURE_WOL_DEFAULT_MASK 0x00000003
#define PORT_FEATURE_WOL_DEFAULT_SHIFT 0
#define PORT_FEATURE_WOL_DEFAULT_DISABLE 0x00000000
#define PORT_FEATURE_WOL_DEFAULT_MAGIC 0x00000001
#define PORT_FEATURE_WOL_DEFAULT_ACPI 0x00000002
#define PORT_FEATURE_WOL_DEFAULT_MAGIC_AND_ACPI 0x00000003
#define PORT_FEATURE_WOL_RES_PAUSE_CAP 0x00000004
#define PORT_FEATURE_WOL_RES_ASYM_PAUSE_CAP 0x00000008
#define PORT_FEATURE_WOL_ACPI_UPON_MGMT 0x00000010

uint32_t mba_config;
#define PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK 0x00000007
#define PORT_FEATURE_MBA_BOOT_AGENT_TYPE_SHIFT 0
#define PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE 0x00000000
#define PORT_FEATURE_MBA_BOOT_AGENT_TYPE_RPL 0x00000001
#define PORT_FEATURE_MBA_BOOT_AGENT_TYPE_BOOTP 0x00000002
#define PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB 0x00000003
#define PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE0x00000007
#define PORT_FEATURE_MBA_RES_PAUSE_CAP 0x00000100
#define PORT_FEATURE_MBA_RES_ASYM_PAUSE_CAP 0x00000200
#define PORT_FEATURE_MBA_SETUP_PROMPT_ENABLE 0x00000400
#define PORT_FEATURE_MBA_HOTKEY_CTRL_S 0x00000000
#define PORT_FEATURE_MBA_HOTKEY_CTRL_B 0x00000800
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_MASK 0x000ff000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_SHIFT 12
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_DISABLED 0x00000000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_2K 0x00001000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_4K 0x00002000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_8K 0x00003000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_16K 0x00004000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_32K 0x00005000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_64K 0x00006000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_128K 0x00007000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_256K 0x00008000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_512K 0x00009000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_1M 0x0000a000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_2M 0x0000b000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_4M 0x0000c000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_8M 0x0000d000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_16M 0x0000e000
#define PORT_FEATURE_MBA_EXP_ROM_SIZE_32M 0x0000f000
#define PORT_FEATURE_MBA_MSG_TIMEOUT_MASK 0x00f00000
#define PORT_FEATURE_MBA_MSG_TIMEOUT_SHIFT 20
#define PORT_FEATURE_MBA_BIOS_BOOTSTRAP_MASK 0x03000000
#define PORT_FEATURE_MBA_BIOS_BOOTSTRAP_SHIFT 24
#define PORT_FEATURE_MBA_BIOS_BOOTSTRAP_AUTO 0x00000000
Broadcom Corporation

Page 172 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
#define PORT_FEATURE_MBA_BIOS_BOOTSTRAP_BBS 0x01000000
#define PORT_FEATURE_MBA_BIOS_BOOTSTRAP_INT18H 0x02000000
#define PORT_FEATURE_MBA_BIOS_BOOTSTRAP_INT19H 0x03000000
#define PORT_FEATURE_MBA_LINK_SPEED_MASK 0x3c000000
#define PORT_FEATURE_MBA_LINK_SPEED_SHIFT 26
#define PORT_FEATURE_MBA_LINK_SPEED_AUTO 0x00000000
#define PORT_FEATURE_MBA_LINK_SPEED_10HD 0x04000000
#define PORT_FEATURE_MBA_LINK_SPEED_10FD 0x08000000
#define PORT_FEATURE_MBA_LINK_SPEED_100HD 0x0c000000
#define PORT_FEATURE_MBA_LINK_SPEED_100FD 0x10000000
#define PORT_FEATURE_MBA_LINK_SPEED_1GBPS 0x14000000
#define PORT_FEATURE_MBA_LINK_SPEED_2_5GBPS 0x18000000
#define PORT_FEATURE_MBA_LINK_SPEED_10GBPS_CX4 0x1c000000
#define PORT_FEATURE_MBA_LINK_SPEED_10GBPS_KX4 0x20000000
#define PORT_FEATURE_MBA_LINK_SPEED_10GBPS_KR 0x24000000
#define PORT_FEATURE_MBA_LINK_SPEED_12GBPS 0x28000000
#define PORT_FEATURE_MBA_LINK_SPEED_12_5GBPS 0x2c000000
#define PORT_FEATURE_MBA_LINK_SPEED_13GBPS 0x30000000
#define PORT_FEATURE_MBA_LINK_SPEED_15GBPS 0x34000000
#define PORT_FEATURE_MBA_LINK_SPEED_16GBPS 0x38000000

uint32_t bmc_config;
#define PORT_FEATURE_BMC_LINK_OVERRIDE_DEFAULT 0x00000000
#define PORT_FEATURE_BMC_LINK_OVERRIDE_EN 0x00000001

uint32_t mba_vlan_cfg;
#define PORT_FEATURE_MBA_VLAN_TAG_MASK 0x0000ffff
#define PORT_FEATURE_MBA_VLAN_TAG_SHIFT 0
#define PORT_FEATURE_MBA_VLAN_EN 0x00010000

uint32_t resource_cfg;
#define PORT_FEATURE_RESOURCE_CFG_VALID 0x00000001
#define PORT_FEATURE_RESOURCE_CFG_DIAG 0x00000002
#define PORT_FEATURE_RESOURCE_CFG_L2 0x00000004
#define PORT_FEATURE_RESOURCE_CFG_ISCSI 0x00000008
#define PORT_FEATURE_RESOURCE_CFG_RDMA 0x00000010

uint32_t smbus_config;
/* Obsolete */

#define PORT_FEATURE_SMBUS_EN 0x00000001
#define PORT_FEATURE_SMBUS_ADDR_MASK 0x000000fe
#define PORT_FEATURE_SMBUS_ADDR_SHIFT 1

uint32_t reserved1;

uint32_t link_config; /* Used as HW defaults for the driver */
#define PORT_FEATURE_CONNECTED_SWITCH_MASK 0x03000000
#define PORT_FEATURE_CONNECTED_SWITCH_SHIFT 24

/* (forced) low speed switch (< 10G) */
#define PORT_FEATURE_CON_SWITCH_1G_SWITCH 0x00000000

/* (forced) high speed switch (>= 10G) */
#define PORT_FEATURE_CON_SWITCH_10G_SWITCH 0x01000000
#define PORT_FEATURE_CON_SWITCH_AUTO_DETECT 0x02000000
#define PORT_FEATURE_CON_SWITCH_ONE_TIME_DETECT 0x03000000

#define PORT_FEATURE_LINK_SPEED_MASK 0x000f0000
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 173

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#define PORT_FEATURE_LINK_SPEED_SHIFT 16
#define PORT_FEATURE_LINK_SPEED_AUTO 0x00000000
#define PORT_FEATURE_LINK_SPEED_10M_FULL 0x00010000
#define PORT_FEATURE_LINK_SPEED_10M_HALF 0x00020000
#define PORT_FEATURE_LINK_SPEED_100M_HALF 0x00030000
#define PORT_FEATURE_LINK_SPEED_100M_FULL 0x00040000
#define PORT_FEATURE_LINK_SPEED_1G 0x00050000
#define PORT_FEATURE_LINK_SPEED_2_5G 0x00060000
#define PORT_FEATURE_LINK_SPEED_10G_CX4 0x00070000
#define PORT_FEATURE_LINK_SPEED_10G_KX4 0x00080000
#define PORT_FEATURE_LINK_SPEED_10G_KR 0x00090000
#define PORT_FEATURE_LINK_SPEED_12G 0x000a0000
#define PORT_FEATURE_LINK_SPEED_12_5G 0x000b0000
#define PORT_FEATURE_LINK_SPEED_13G 0x000c0000
#define PORT_FEATURE_LINK_SPEED_15G 0x000d0000
#define PORT_FEATURE_LINK_SPEED_16G 0x000e0000

#define PORT_FEATURE_FLOW_CONTROL_MASK 0x00000700
#define PORT_FEATURE_FLOW_CONTROL_SHIFT 8
#define PORT_FEATURE_FLOW_CONTROL_AUTO 0x00000000
#define PORT_FEATURE_FLOW_CONTROL_TX 0x00000100
#define PORT_FEATURE_FLOW_CONTROL_RX 0x00000200
#define PORT_FEATURE_FLOW_CONTROL_BOTH 0x00000300
#define PORT_FEATURE_FLOW_CONTROL_NONE 0x00000400

/* The default for MCP link configuration,
 uses the same defines as link_config */
uint32_t mfw_wol_link_cfg;

uint32_t reserved[19];

};

/**
 * Device Information *
 **/
struct shm_dev_info { /* size */

uint32_t bc_rev; /* 8 bits each: major, minor, build */ /* 4 */

struct shared_hw_cfg shared_hw_config; /* 40 */

struct port_hw_cfg port_hw_config[PORT_MAX]; /* 400*2=800 */

struct shared_feat_cfg shared_feature_config; /* 4 */

struct port_feat_cfg port_feature_config[PORT_MAX];/* 116*2=232 */

};

#define FUNC_00
#define FUNC_11
#define FUNC_22
#define FUNC_33
Broadcom Corporation

Page 174 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
#define FUNC_44
#define FUNC_55
#define FUNC_66
#define FUNC_77
#define E1_FUNC_MAX2
#define E1H_FUNC_MAX8

#define VN_0 0
#define VN_1 1
#define VN_2 2
#define VN_3 3
#define E1VN_MAX1
#define E1HVN_MAX4

/* This value (in milliseconds) determines the frequency of the driver
 * issuing the PULSE message code. The firmware monitors this periodic
 * pulse to determine when to switch to an OS-absent mode. */
#define DRV_PULSE_PERIOD_MS250

/* This value (in milliseconds) determines how long the driver should
 * wait for an acknowledgement from the firmware before timing out. Once
 * the firmware has timed out, the driver will assume there is no firmware
 * running and there won't be any firmware-driver synchronization during a
 * driver reset. */
#define FW_ACK_TIME_OUT_MS5000

#define FW_ACK_POLL_TIME_MS1

#define FW_ACK_NUM_OF_POLL(FW_ACK_TIME_OUT_MS/FW_ACK_POLL_TIME_MS)

/* LED Blink rate that will achieve ~15.9Hz */
#define LED_BLINK_RATE_VAL480

/**
 * Driver <-> FW Mailbox *
 **/
struct drv_port_mb {

uint32_t link_status;
/* Driver should update this field on any link change event */

#define LINK_STATUS_LINK_FLAG_MASK0x00000001
#define LINK_STATUS_LINK_UP0x00000001
#define LINK_STATUS_SPEED_AND_DUPLEX_MASK0x0000001E
#define LINK_STATUS_SPEED_AND_DUPLEX_AN_NOT_COMPLETE(0<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_10THD(1<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_10TFD(2<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_100TXHD(3<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_100T4(4<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_100TXFD(5<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_1000THD(6<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_1000TFD(7<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_1000XFD(7<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_2500THD(8<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_2500TFD(9<<1)
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 175

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#define LINK_STATUS_SPEED_AND_DUPLEX_2500XFD(9<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_10GTFD(10<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_10GXFD(10<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_12GTFD(11<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_12GXFD(11<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_12_5GTFD(12<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_12_5GXFD(12<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_13GTFD(13<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_13GXFD(13<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_15GTFD(14<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_15GXFD(14<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_16GTFD(15<<1)
#define LINK_STATUS_SPEED_AND_DUPLEX_16GXFD(15<<1)

#define LINK_STATUS_AUTO_NEGOTIATE_FLAG_MASK0x00000020
#define LINK_STATUS_AUTO_NEGOTIATE_ENABLED0x00000020

#define LINK_STATUS_AUTO_NEGOTIATE_COMPLETE0x00000040
#define LINK_STATUS_PARALLEL_DETECTION_FLAG_MASK0x00000080
#define LINK_STATUS_PARALLEL_DETECTION_USED0x00000080

#define LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE0x00000200
#define LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE0x00000400
#define LINK_STATUS_LINK_PARTNER_100T4_CAPABLE0x00000800
#define LINK_STATUS_LINK_PARTNER_100TXFD_CAPABLE0x00001000
#define LINK_STATUS_LINK_PARTNER_100TXHD_CAPABLE0x00002000
#define LINK_STATUS_LINK_PARTNER_10TFD_CAPABLE0x00004000
#define LINK_STATUS_LINK_PARTNER_10THD_CAPABLE0x00008000

#define LINK_STATUS_TX_FLOW_CONTROL_FLAG_MASK0x00010000
#define LINK_STATUS_TX_FLOW_CONTROL_ENABLED0x00010000

#define LINK_STATUS_RX_FLOW_CONTROL_FLAG_MASK0x00020000
#define LINK_STATUS_RX_FLOW_CONTROL_ENABLED0x00020000

#define LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK0x000C0000
#define LINK_STATUS_LINK_PARTNER_NOT_PAUSE_CAPABLE(0<<18)
#define LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE(1<<18)
#define LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE(2<<18)
#define LINK_STATUS_LINK_PARTNER_BOTH_PAUSE(3<<18)

#define LINK_STATUS_SERDES_LINK 0x00100000

#define LINK_STATUS_LINK_PARTNER_2500XFD_CAPABLE0x00200000
#define LINK_STATUS_LINK_PARTNER_2500XHD_CAPABLE0x00400000
#define LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE 0x00800000
#define LINK_STATUS_LINK_PARTNER_12GXFD_CAPABLE 0x01000000
#define LINK_STATUS_LINK_PARTNER_12_5GXFD_CAPABLE0x02000000
#define LINK_STATUS_LINK_PARTNER_13GXFD_CAPABLE 0x04000000
#define LINK_STATUS_LINK_PARTNER_15GXFD_CAPABLE 0x08000000
#define LINK_STATUS_LINK_PARTNER_16GXFD_CAPABLE 0x10000000

uint32_t port_stx;

uint32_t stat_nig_timer;
Broadcom Corporation

Page 176 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
uint32_t reserved[1];

};

struct drv_func_mb {

uint32_t drv_mb_header;
#define DRV_MSG_CODE_MASK0xffff0000
#define DRV_MSG_CODE_LOAD_REQ0x10000000
#define DRV_MSG_CODE_LOAD_DONE0x11000000
#define DRV_MSG_CODE_UNLOAD_REQ_WOL_EN0x20000000
#define DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS 0x20010000
#define DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP 0x20020000
#define DRV_MSG_CODE_UNLOAD_DONE0x21000000
#define DRV_MSG_CODE_DIAG_ENTER_REQ0x50000000
#define DRV_MSG_CODE_DIAG_EXIT_REQ0x60000000
#define DRV_MSG_CODE_VALIDATE_KEY0x70000000
#define DRV_MSG_CODE_GET_CURR_KEY0x80000000
#define DRV_MSG_CODE_GET_UPGRADE_KEY0x81000000
#define DRV_MSG_CODE_GET_MANUF_KEY0x82000000
#define DRV_MSG_CODE_LOAD_L2B_PRAM0x90000000

#define BIOS_MSG_CODE_LIC_CHALLENGE0xff010000
#define BIOS_MSG_CODE_LIC_RESPONSE0xff020000
#define BIOS_MSG_CODE_VIRT_MAC_PRIM0xff030000
#define BIOS_MSG_CODE_VIRT_MAC_ISCSI0xff040000

#define DRV_MSG_SEQ_NUMBER_MASK 0x0000ffff

uint32_t drv_mb_param;

uint32_t fw_mb_header;
#define FW_MSG_CODE_MASK0xffff0000
#define FW_MSG_CODE_DRV_LOAD_COMMON0x10100000
#define FW_MSG_CODE_DRV_LOAD_PORT0x10110000
#define FW_MSG_CODE_DRV_LOAD_FUNCTION0x10120000
#define FW_MSG_CODE_DRV_LOAD_REFUSED0x10200000
#define FW_MSG_CODE_DRV_LOAD_DONE0x11100000
#define FW_MSG_CODE_DRV_UNLOAD_COMMON0x20100000
#define FW_MSG_CODE_DRV_UNLOAD_PORT0x20110000
#define FW_MSG_CODE_DRV_UNLOAD_FUNCTION 0x20120000
#define FW_MSG_CODE_DRV_UNLOAD_DONE0x21100000
#define FW_MSG_CODE_DIAG_ENTER_DONE0x50100000
#define FW_MSG_CODE_DIAG_REFUSE 0x50200000
#define FW_MSG_CODE_DIAG_EXIT_DONE0x60100000
#define FW_MSG_CODE_VALIDATE_KEY_SUCCESS0x70100000
#define FW_MSG_CODE_VALIDATE_KEY_FAILURE0x70200000
#define FW_MSG_CODE_GET_KEY_DONE0x80100000
#define FW_MSG_CODE_NO_KEY0x80f00000
#define FW_MSG_CODE_LIC_INFO_NOT_READY0x80f80000
#define FW_MSG_CODE_L2B_PRAM_LOADED0x90100000
#define FW_MSG_CODE_L2B_PRAM_T_LOAD_FAILURE0x90210000
#define FW_MSG_CODE_L2B_PRAM_C_LOAD_FAILURE0x90220000
#define FW_MSG_CODE_L2B_PRAM_X_LOAD_FAILURE0x90230000
#define FW_MSG_CODE_L2B_PRAM_U_LOAD_FAILURE0x90240000
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 177

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#define FW_MSG_CODE_LIC_CHALLENGE0xff010000
#define FW_MSG_CODE_LIC_RESPONSE0xff020000
#define FW_MSG_CODE_VIRT_MAC_PRIM0xff030000
#define FW_MSG_CODE_VIRT_MAC_ISCSI0xff040000

#define FW_MSG_SEQ_NUMBER_MASK0x0000ffff

uint32_t fw_mb_param;

uint32_t drv_pulse_mb;
#define DRV_PULSE_SEQ_MASK0x00007fff
#define DRV_PULSE_SYSTEM_TIME_MASK0xffff0000

/* The system time is in the format of
 * (year-2001)*12*32 + month*32 + day. */

#define DRV_PULSE_ALWAYS_ALIVE0x00008000
/* Indicate to the firmware not to go into the
 * OS-absent when it is not getting driver pulse.
 * This is used for debugging as well for PXE(MBA). */

uint32_t mcp_pulse_mb;
#define MCP_PULSE_SEQ_MASK0x00007fff
#define MCP_PULSE_ALWAYS_ALIVE0x00008000

/* Indicates to the driver not to assert due to lack
 * of MCP response */

#define MCP_EVENT_MASK0xffff0000
#define MCP_EVENT_OTHER_DRIVER_RESET_REQ0x00010000

uint32_t iscsi_boot_signature;
uint32_t iscsi_boot_block_offset;

uint32_t drv_status;
#define DRV_STATUS_PMF0x00000001

uint32_t virt_mac_upper;
#define VIRT_MAC_SIGN_MASK0xffff0000
#define VIRT_MAC_SIGNATURE0x564d0000

uint32_t virt_mac_lower;

};

/**
 * Management firmware state *
 **/
/* Allocate 440 bytes for management firmware */
#define MGMTFW_STATE_WORD_SIZE 110

struct mgmtfw_state {
uint32_t opaque[MGMTFW_STATE_WORD_SIZE];

};

/**
 * Multi-Function configuration *
 **/
Broadcom Corporation

Page 178 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
struct shared_mf_cfg {

uint32_t clp_mb;
#define SHARED_MF_CLP_SET_DEFAULT 0x00000000

/* set by CLP */
#define SHARED_MF_CLP_EXIT 0x00000001

/* set by MCP */
#define SHARED_MF_CLP_EXIT_DONE 0x00010000

};

struct port_mf_cfg {

uint32_t dynamic_cfg;/* device control channel */
#define PORT_MF_CFG_E1HVN_TAG_MASK 0x0000ffff
#define PORT_MF_CFG_E1HVN_TAG_SHIFT 0
#define PORT_MF_CFG_DYNAMIC_CFG_ENABLED 0x00010000
#define PORT_MF_CFG_DYNAMIC_CFG_DEFAULT 0x00000000

uint32_t reserved[3];

};

struct func_mf_cfg {

uint32_t config;
/* E/R/I/D */
/* function 0 of each port cannot be hidden */

#define FUNC_MF_CFG_FUNC_HIDE 0x00000001

#define FUNC_MF_CFG_PROTOCOL_MASK 0x00000007
#define FUNC_MF_CFG_PROTOCOL_ETHERNET 0x00000002
#define FUNC_MF_CFG_PROTOCOL_ETHERNET_WITH_RDMA 0x00000004
#define FUNC_MF_CFG_PROTOCOL_ISCSI 0x00000006
#define FUNC_MF_CFG_PROTOCOL_DEFAULT\

FUNC_MF_CFG_PROTOCOL_ETHERNET_WITH_RDMA

#define FUNC_MF_CFG_FUNC_DISABLED 0x00000008

/* PRI */
/* 0 - low priority, 3 - high priority */

#define FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK 0x00000300
#define FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT 8
#define FUNC_MF_CFG_TRANSMIT_PRIORITY_DEFAULT 0x00000000

/* MINBW, MAXBW */
/* value range - 0..100, increments in 100Mbps */

#define FUNC_MF_CFG_MIN_BW_MASK 0x00ff0000
#define FUNC_MF_CFG_MIN_BW_SHIFT 16
#define FUNC_MF_CFG_MIN_BW_DEFAULT 0x00000000
#define FUNC_MF_CFG_MAX_BW_MASK 0xff000000
#define FUNC_MF_CFG_MAX_BW_SHIFT 24
#define FUNC_MF_CFG_MAX_BW_DEFAULT 0x64000000

uint32_t mac_upper;/* MAC */
#define FUNC_MF_CFG_UPPERMAC_MASK 0x0000ffff
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 179

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#define FUNC_MF_CFG_UPPERMAC_SHIFT 0
#define FUNC_MF_CFG_UPPERMAC_DEFAULT FUNC_MF_CFG_UPPERMAC_MASK

uint32_t mac_lower;
#define FUNC_MF_CFG_LOWERMAC_DEFAULT 0xffffffff

uint32_t e1hov_tag;/* VNI */
#define FUNC_MF_CFG_E1HOV_TAG_MASK 0x0000ffff
#define FUNC_MF_CFG_E1HOV_TAG_SHIFT 0
#define FUNC_MF_CFG_E1HOV_TAG_DEFAULT FUNC_MF_CFG_E1HOV_TAG_MASK

uint32_t reserved[2];

};

struct mf_cfg {

struct shared_mf_cfgshared_mf_config;
struct port_mf_cfgport_mf_config[PORT_MAX];
struct func_mf_cfgfunc_mf_config[E1H_FUNC_MAX];

};

/**
 * Shared Memory Region *
 **/
struct shmem_region { /* SharedMem Offset (size) */

uint32_t validity_map[PORT_MAX]; /* 0x0 (4*2 = 0x8) */
#define SHR_MEM_FORMAT_REV_ID ('A'<<24)
#define SHR_MEM_FORMAT_REV_MASK 0xff000000

/* validity bits */
#define SHR_MEM_VALIDITY_PCI_CFG 0x00100000
#define SHR_MEM_VALIDITY_MB 0x00200000
#define SHR_MEM_VALIDITY_DEV_INFO 0x00400000
#define SHR_MEM_VALIDITY_RESERVED 0x00000007

/* One licensing bit should be set */
#define SHR_MEM_VALIDITY_LIC_KEY_IN_EFFECT_MASK 0x00000038
#define SHR_MEM_VALIDITY_LIC_MANUF_KEY_IN_EFFECT 0x00000008
#define SHR_MEM_VALIDITY_LIC_UPGRADE_KEY_IN_EFFECT 0x00000010
#define SHR_MEM_VALIDITY_LIC_NO_KEY_IN_EFFECT 0x00000020

/* Active MFW */
#define SHR_MEM_VALIDITY_ACTIVE_MFW_UNKNOWN 0x00000000
#define SHR_MEM_VALIDITY_ACTIVE_MFW_IPMI 0x00000040
#define SHR_MEM_VALIDITY_ACTIVE_MFW_UMP 0x00000080
#define SHR_MEM_VALIDITY_ACTIVE_MFW_NCSI 0x000000c0
#define SHR_MEM_VALIDITY_ACTIVE_MFW_NONE 0x000001c0
#define SHR_MEM_VALIDITY_ACTIVE_MFW_MASK 0x000001c0

struct shm_dev_infodev_info; /* 0x8 (0x438) */

struct license_keydrv_lic_key[PORT_MAX];/* 0x440 (52*2=0x68) */

/* FW information (for internal FW use) */
uint32_t fw_info_fio_offset; /* 0x4a8 (0x4) */
struct mgmtfw_statemgmtfw_state; /* 0x4ac (0x1b8) */
Broadcom Corporation

Page 180 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
struct drv_port_mbport_mb[PORT_MAX]; /* 0x664 (16*2=0x20) */
#if !defined(b710) /* BXE_UPSTREAM */

struct drv_func_mbfunc_mb[E1H_FUNC_MAX];
#else

struct drv_func_mbfunc_mb[E1_FUNC_MAX]; /* 0x684 (44*2=0x58) */
#endif

#if !defined(b710) /* BXE_UPSTREAM */
struct mf_cfgmf_cfg;

#endif

}; /* 0x6dc */

struct emac_stats {
 uint32_t rx_stat_ifhcinoctets;
 uint32_t rx_stat_ifhcinbadoctets;
 uint32_t rx_stat_etherstatsfragments;
 uint32_t rx_stat_ifhcinucastpkts;
 uint32_t rx_stat_ifhcinmulticastpkts;
 uint32_t rx_stat_ifhcinbroadcastpkts;
 uint32_t rx_stat_dot3statsfcserrors;
 uint32_t rx_stat_dot3statsalignmenterrors;
 uint32_t rx_stat_dot3statscarriersenseerrors;
 uint32_t rx_stat_xonpauseframesreceived;
 uint32_t rx_stat_xoffpauseframesreceived;
 uint32_t rx_stat_maccontrolframesreceived;
 uint32_t rx_stat_xoffstateentered;
 uint32_t rx_stat_dot3statsframestoolong;
 uint32_t rx_stat_etherstatsjabbers;
 uint32_t rx_stat_etherstatsundersizepkts;
 uint32_t rx_stat_etherstatspkts64octets;
 uint32_t rx_stat_etherstatspkts65octetsto127octets;
 uint32_t rx_stat_etherstatspkts128octetsto255octets;
 uint32_t rx_stat_etherstatspkts256octetsto511octets;
 uint32_t rx_stat_etherstatspkts512octetsto1023octets;
 uint32_t rx_stat_etherstatspkts1024octetsto1522octets;
 uint32_t rx_stat_etherstatspktsover1522octets;

 uint32_t rx_stat_falsecarriererrors;

 uint32_t tx_stat_ifhcoutoctets;
 uint32_t tx_stat_ifhcoutbadoctets;
 uint32_t tx_stat_etherstatscollisions;
 uint32_t tx_stat_outxonsent;
 uint32_t tx_stat_outxoffsent;
 uint32_t tx_stat_flowcontroldone;
 uint32_t tx_stat_dot3statssinglecollisionframes;
 uint32_t tx_stat_dot3statsmultiplecollisionframes;
 uint32_t tx_stat_dot3statsdeferredtransmissions;
 uint32_t tx_stat_dot3statsexcessivecollisions;
 uint32_t tx_stat_dot3statslatecollisions;
 uint32_t tx_stat_ifhcoutucastpkts;
 uint32_t tx_stat_ifhcoutmulticastpkts;
 uint32_t tx_stat_ifhcoutbroadcastpkts;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 181

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 uint32_t tx_stat_etherstatspkts64octets;
 uint32_t tx_stat_etherstatspkts65octetsto127octets;
 uint32_t tx_stat_etherstatspkts128octetsto255octets;
 uint32_t tx_stat_etherstatspkts256octetsto511octets;
 uint32_t tx_stat_etherstatspkts512octetsto1023octets;
 uint32_t tx_stat_etherstatspkts1024octetsto1522octets;
 uint32_t tx_stat_etherstatspktsover1522octets;
 uint32_t tx_stat_dot3statsinternalmactransmiterrors;
};

struct bmac_stats {
 uint32_t tx_stat_gtpkt_lo;
 uint32_t tx_stat_gtpkt_hi;
 uint32_t tx_stat_gtxpf_lo;
 uint32_t tx_stat_gtxpf_hi;
 uint32_t tx_stat_gtfcs_lo;
 uint32_t tx_stat_gtfcs_hi;
 uint32_t tx_stat_gtmca_lo;
 uint32_t tx_stat_gtmca_hi;
 uint32_t tx_stat_gtbca_lo;
 uint32_t tx_stat_gtbca_hi;
 uint32_t tx_stat_gtfrg_lo;
 uint32_t tx_stat_gtfrg_hi;
 uint32_t tx_stat_gtovr_lo;
 uint32_t tx_stat_gtovr_hi;
 uint32_t tx_stat_gt64_lo;
 uint32_t tx_stat_gt64_hi;
 uint32_t tx_stat_gt127_lo;
 uint32_t tx_stat_gt127_hi;
 uint32_t tx_stat_gt255_lo;
 uint32_t tx_stat_gt255_hi;
 uint32_t tx_stat_gt511_lo;
 uint32_t tx_stat_gt511_hi;
 uint32_t tx_stat_gt1023_lo;
 uint32_t tx_stat_gt1023_hi;
 uint32_t tx_stat_gt1518_lo;
 uint32_t tx_stat_gt1518_hi;
 uint32_t tx_stat_gt2047_lo;
 uint32_t tx_stat_gt2047_hi;
 uint32_t tx_stat_gt4095_lo;
 uint32_t tx_stat_gt4095_hi;
 uint32_t tx_stat_gt9216_lo;
 uint32_t tx_stat_gt9216_hi;
 uint32_t tx_stat_gt16383_lo;
 uint32_t tx_stat_gt16383_hi;
 uint32_t tx_stat_gtmax_lo;
 uint32_t tx_stat_gtmax_hi;
 uint32_t tx_stat_gtufl_lo;
 uint32_t tx_stat_gtufl_hi;
 uint32_t tx_stat_gterr_lo;
 uint32_t tx_stat_gterr_hi;
 uint32_t tx_stat_gtbyt_lo;
 uint32_t tx_stat_gtbyt_hi;

 uint32_t rx_stat_gr64_lo;
Broadcom Corporation

Page 182 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 uint32_t rx_stat_gr64_hi;
 uint32_t rx_stat_gr127_lo;
 uint32_t rx_stat_gr127_hi;
 uint32_t rx_stat_gr255_lo;
 uint32_t rx_stat_gr255_hi;
 uint32_t rx_stat_gr511_lo;
 uint32_t rx_stat_gr511_hi;
 uint32_t rx_stat_gr1023_lo;
 uint32_t rx_stat_gr1023_hi;
 uint32_t rx_stat_gr1518_lo;
 uint32_t rx_stat_gr1518_hi;
 uint32_t rx_stat_gr2047_lo;
 uint32_t rx_stat_gr2047_hi;
 uint32_t rx_stat_gr4095_lo;
 uint32_t rx_stat_gr4095_hi;
 uint32_t rx_stat_gr9216_lo;
 uint32_t rx_stat_gr9216_hi;
 uint32_t rx_stat_gr16383_lo;
 uint32_t rx_stat_gr16383_hi;
 uint32_t rx_stat_grmax_lo;
 uint32_t rx_stat_grmax_hi;
 uint32_t rx_stat_grpkt_lo;
 uint32_t rx_stat_grpkt_hi;
 uint32_t rx_stat_grfcs_lo;
 uint32_t rx_stat_grfcs_hi;
 uint32_t rx_stat_grmca_lo;
 uint32_t rx_stat_grmca_hi;
 uint32_t rx_stat_grbca_lo;
 uint32_t rx_stat_grbca_hi;
 uint32_t rx_stat_grxcf_lo;
 uint32_t rx_stat_grxcf_hi;
 uint32_t rx_stat_grxpf_lo;
 uint32_t rx_stat_grxpf_hi;
 uint32_t rx_stat_grxuo_lo;
 uint32_t rx_stat_grxuo_hi;
 uint32_t rx_stat_grjbr_lo;
 uint32_t rx_stat_grjbr_hi;
 uint32_t rx_stat_grovr_lo;
 uint32_t rx_stat_grovr_hi;
 uint32_t rx_stat_grflr_lo;
 uint32_t rx_stat_grflr_hi;
 uint32_t rx_stat_grmeg_lo;
 uint32_t rx_stat_grmeg_hi;
 uint32_t rx_stat_grmeb_lo;
 uint32_t rx_stat_grmeb_hi;
 uint32_t rx_stat_grbyt_lo;
 uint32_t rx_stat_grbyt_hi;
 uint32_t rx_stat_grund_lo;
 uint32_t rx_stat_grund_hi;
 uint32_t rx_stat_grfrg_lo;
 uint32_t rx_stat_grfrg_hi;
 uint32_t rx_stat_grerb_lo;
 uint32_t rx_stat_grerb_hi;
 uint32_t rx_stat_grfre_lo;
 uint32_t rx_stat_grfre_hi;
 uint32_t rx_stat_gripj_lo;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 183

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 uint32_t rx_stat_gripj_hi;
};

union mac_stats {
 struct emac_statsemac_stats;
 struct bmac_statsbmac_stats;
};

struct mac_stx {
 /* in_bad_octets */
 uint32_t rx_stat_ifhcinbadoctets_hi;
 uint32_t rx_stat_ifhcinbadoctets_lo;

 /* out_bad_octets */
 uint32_t tx_stat_ifhcoutbadoctets_hi;
 uint32_t tx_stat_ifhcoutbadoctets_lo;

 /* crc_receive_errors */
 uint32_t rx_stat_dot3statsfcserrors_hi;
 uint32_t rx_stat_dot3statsfcserrors_lo;
 /* alignment_errors */
 uint32_t rx_stat_dot3statsalignmenterrors_hi;
 uint32_t rx_stat_dot3statsalignmenterrors_lo;
 /* carrier_sense_errors */
 uint32_t rx_stat_dot3statscarriersenseerrors_hi;
 uint32_t rx_stat_dot3statscarriersenseerrors_lo;
 /* false_carrier_detections */
 uint32_t rx_stat_falsecarriererrors_hi;
 uint32_t rx_stat_falsecarriererrors_lo;

 /* runt_packets_received */
 uint32_t rx_stat_etherstatsundersizepkts_hi;
 uint32_t rx_stat_etherstatsundersizepkts_lo;
 /* jabber_packets_received */
 uint32_t rx_stat_dot3statsframestoolong_hi;
 uint32_t rx_stat_dot3statsframestoolong_lo;

 /* error_runt_packets_received */
 uint32_t rx_stat_etherstatsfragments_hi;
 uint32_t rx_stat_etherstatsfragments_lo;
 /* error_jabber_packets_received */
 uint32_t rx_stat_etherstatsjabbers_hi;
 uint32_t rx_stat_etherstatsjabbers_lo;

 /* control_frames_received */
 uint32_t rx_stat_maccontrolframesreceived_hi;
 uint32_t rx_stat_maccontrolframesreceived_lo;
 uint32_t rx_stat_bmac_xpf_hi;
 uint32_t rx_stat_bmac_xpf_lo;
 uint32_t rx_stat_bmac_xcf_hi;
 uint32_t rx_stat_bmac_xcf_lo;

 /* xoff_state_entered */
 uint32_t rx_stat_xoffstateentered_hi;
Broadcom Corporation

Page 184 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 uint32_t rx_stat_xoffstateentered_lo;
 /* pause_xon_frames_received */
 uint32_t rx_stat_xonpauseframesreceived_hi;
 uint32_t rx_stat_xonpauseframesreceived_lo;
 /* pause_xoff_frames_received */
 uint32_t rx_stat_xoffpauseframesreceived_hi;
 uint32_t rx_stat_xoffpauseframesreceived_lo;
 /* pause_xon_frames_transmitted */
 uint32_t tx_stat_outxonsent_hi;
 uint32_t tx_stat_outxonsent_lo;
 /* pause_xoff_frames_transmitted */
 uint32_t tx_stat_outxoffsent_hi;
 uint32_t tx_stat_outxoffsent_lo;
 /* flow_control_done */
 uint32_t tx_stat_flowcontroldone_hi;
 uint32_t tx_stat_flowcontroldone_lo;

 /* ether_stats_collisions */
 uint32_t tx_stat_etherstatscollisions_hi;
 uint32_t tx_stat_etherstatscollisions_lo;
 /* single_collision_transmit_frames */
 uint32_t tx_stat_dot3statssinglecollisionframes_hi;
 uint32_t tx_stat_dot3statssinglecollisionframes_lo;
 /* multiple_collision_transmit_frames */
 uint32_t tx_stat_dot3statsmultiplecollisionframes_hi;
 uint32_t tx_stat_dot3statsmultiplecollisionframes_lo;
 /* deferred_transmissions */
 uint32_t tx_stat_dot3statsdeferredtransmissions_hi;
 uint32_t tx_stat_dot3statsdeferredtransmissions_lo;
 /* excessive_collision_frames */
 uint32_t tx_stat_dot3statsexcessivecollisions_hi;
 uint32_t tx_stat_dot3statsexcessivecollisions_lo;
 /* late_collision_frames */
 uint32_t tx_stat_dot3statslatecollisions_hi;
 uint32_t tx_stat_dot3statslatecollisions_lo;

 /* frames_transmitted_64_bytes */
 uint32_t tx_stat_etherstatspkts64octets_hi;
 uint32_t tx_stat_etherstatspkts64octets_lo;
 /* frames_transmitted_65_127_bytes */
 uint32_t tx_stat_etherstatspkts65octetsto127octets_hi;
 uint32_t tx_stat_etherstatspkts65octetsto127octets_lo;
 /* frames_transmitted_128_255_bytes */
 uint32_t tx_stat_etherstatspkts128octetsto255octets_hi;
 uint32_t tx_stat_etherstatspkts128octetsto255octets_lo;
 /* frames_transmitted_256_511_bytes */
 uint32_t tx_stat_etherstatspkts256octetsto511octets_hi;
 uint32_t tx_stat_etherstatspkts256octetsto511octets_lo;
 /* frames_transmitted_512_1023_bytes */
 uint32_t tx_stat_etherstatspkts512octetsto1023octets_hi;
 uint32_t tx_stat_etherstatspkts512octetsto1023octets_lo;
 /* frames_transmitted_1024_1522_bytes */
 uint32_t tx_stat_etherstatspkts1024octetsto1522octets_hi;
 uint32_t tx_stat_etherstatspkts1024octetsto1522octets_lo;
 /* frames_transmitted_1523_9022_bytes */
 uint32_t tx_stat_etherstatspktsover1522octets_hi;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 185

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 uint32_t tx_stat_etherstatspktsover1522octets_lo;
 uint32_t tx_stat_bmac_2047_hi;
 uint32_t tx_stat_bmac_2047_lo;
 uint32_t tx_stat_bmac_4095_hi;
 uint32_t tx_stat_bmac_4095_lo;
 uint32_t tx_stat_bmac_9216_hi;
 uint32_t tx_stat_bmac_9216_lo;
 uint32_t tx_stat_bmac_16383_hi;
 uint32_t tx_stat_bmac_16383_lo;

 /* internal_mac_transmit_errors */
 uint32_t tx_stat_dot3statsinternalmactransmiterrors_hi;
 uint32_t tx_stat_dot3statsinternalmactransmiterrors_lo;

 /* if_out_discards */
 uint32_t tx_stat_bmac_ufl_hi;
 uint32_t tx_stat_bmac_ufl_lo;
};

#define MAC_STX_IDX_MAX 2

struct host_port_stats {
 uint32_t host_port_stats_start;

 struct mac_stx mac_stx[MAC_STX_IDX_MAX];

 uint32_t brb_drop_hi;
 uint32_t brb_drop_lo;

 uint32_t host_port_stats_end;
};

struct host_func_stats {
 uint32_t host_func_stats_start;

 uint32_t total_bytes_received_hi;
 uint32_t total_bytes_received_lo;

 uint32_t total_bytes_transmitted_hi;
 uint32_t total_bytes_transmitted_lo;

 uint32_t total_unicast_packets_received_hi;
 uint32_t total_unicast_packets_received_lo;

 uint32_t total_multicast_packets_received_hi;
 uint32_t total_multicast_packets_received_lo;

 uint32_t total_broadcast_packets_received_hi;
 uint32_t total_broadcast_packets_received_lo;

 uint32_t total_unicast_packets_transmitted_hi;
 uint32_t total_unicast_packets_transmitted_lo;

 uint32_t total_multicast_packets_transmitted_hi;
Broadcom Corporation

Page 186 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 uint32_t total_multicast_packets_transmitted_lo;

 uint32_t total_broadcast_packets_transmitted_hi;
 uint32_t total_broadcast_packets_transmitted_lo;

 uint32_t valid_bytes_received_hi;
 uint32_t valid_bytes_received_lo;

 uint32_t host_func_stats_end;
};

#define BCM_5710_FW_MAJOR_VERSION4
#define BCM_5710_FW_MINOR_VERSION6
#define BCM_5710_FW_REVISION_VERSION18
#define BCM_5710_FW_ENGINEERING_VERSION 0
#define BCM_5710_FW_COMPILE_FLAGS1

/*
 * attention bits
 */
struct atten_def_status_block {

uint32_t attn_bits;
uint32_t attn_bits_ack;
uint8_t status_block_id;
uint8_t reserved0;
uint16_t attn_bits_index;
uint32_t reserved1;

};

/*
 * common data for all protocols
 */
struct doorbell_hdr {

uint8_t header;
#define DOORBELL_HDR_RX (0x1<<0)
#define DOORBELL_HDR_RX_SHIFT 0
#define DOORBELL_HDR_DB_TYPE (0x1<<1)
#define DOORBELL_HDR_DB_TYPE_SHIFT 1
#define DOORBELL_HDR_DPM_SIZE (0x3<<2)
#define DOORBELL_HDR_DPM_SIZE_SHIFT 2
#define DOORBELL_HDR_CONN_TYPE (0xF<<4)
#define DOORBELL_HDR_CONN_TYPE_SHIFT 4
};

/*
 * doorbell message sent to the chip
 */
struct doorbell {
#if defined(__BIG_ENDIAN)

uint16_t zero_fill2;
uint8_t zero_fill1;
struct doorbell_hdr header;

#elif defined(__LITTLE_ENDIAN)
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 187

BCM57710/BCM57711 Programmer’s Guide
09/25/09
struct doorbell_hdr header;
uint8_t zero_fill1;
uint16_t zero_fill2;

#endif
};

/*
 * IGU driver acknowledgement register
 */
struct igu_ack_register {
#if defined(__BIG_ENDIAN)

uint16_t sb_id_and_flags;
#define IGU_ACK_REGISTER_STATUS_BLOCK_ID (0x1F<<0)
#define IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT 0
#define IGU_ACK_REGISTER_STORM_ID (0x7<<5)
#define IGU_ACK_REGISTER_STORM_ID_SHIFT 5
#define IGU_ACK_REGISTER_UPDATE_INDEX (0x1<<8)
#define IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT 8
#define IGU_ACK_REGISTER_INTERRUPT_MODE (0x3<<9)
#define IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT 9
#define IGU_ACK_REGISTER_RESERVED (0x1F<<11)
#define IGU_ACK_REGISTER_RESERVED_SHIFT 11

uint16_t status_block_index;
#elif defined(__LITTLE_ENDIAN)

uint16_t status_block_index;
uint16_t sb_id_and_flags;

#define IGU_ACK_REGISTER_STATUS_BLOCK_ID (0x1F<<0)
#define IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT 0
#define IGU_ACK_REGISTER_STORM_ID (0x7<<5)
#define IGU_ACK_REGISTER_STORM_ID_SHIFT 5
#define IGU_ACK_REGISTER_UPDATE_INDEX (0x1<<8)
#define IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT 8
#define IGU_ACK_REGISTER_INTERRUPT_MODE (0x3<<9)
#define IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT 9
#define IGU_ACK_REGISTER_RESERVED (0x1F<<11)
#define IGU_ACK_REGISTER_RESERVED_SHIFT 11
#endif
};

/*
 * Parser parsing flags field
 */
struct parsing_flags {

uint16_t flags;
#define PARSING_FLAGS_ETHERNET_ADDRESS_TYPE (0x1<<0)
#define PARSING_FLAGS_ETHERNET_ADDRESS_TYPE_SHIFT 0
#define PARSING_FLAGS_VLAN (0x1<<1)
#define PARSING_FLAGS_VLAN_SHIFT 1
#define PARSING_FLAGS_EXTRA_VLAN (0x1<<2)
#define PARSING_FLAGS_EXTRA_VLAN_SHIFT 2
#define PARSING_FLAGS_OVER_ETHERNET_PROTOCOL (0x3<<3)
#define PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT 3
#define PARSING_FLAGS_IP_OPTIONS (0x1<<5)
#define PARSING_FLAGS_IP_OPTIONS_SHIFT 5
Broadcom Corporation

Page 188 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
#define PARSING_FLAGS_FRAGMENTATION_STATUS (0x1<<6)
#define PARSING_FLAGS_FRAGMENTATION_STATUS_SHIFT 6
#define PARSING_FLAGS_OVER_IP_PROTOCOL (0x3<<7)
#define PARSING_FLAGS_OVER_IP_PROTOCOL_SHIFT 7
#define PARSING_FLAGS_PURE_ACK_INDICATION (0x1<<9)
#define PARSING_FLAGS_PURE_ACK_INDICATION_SHIFT 9
#define PARSING_FLAGS_TCP_OPTIONS_EXIST (0x1<<10)
#define PARSING_FLAGS_TCP_OPTIONS_EXIST_SHIFT 10
#define PARSING_FLAGS_TIME_STAMP_EXIST_FLAG (0x1<<11)
#define PARSING_FLAGS_TIME_STAMP_EXIST_FLAG_SHIFT 11
#define PARSING_FLAGS_CONNECTION_MATCH (0x1<<12)
#define PARSING_FLAGS_CONNECTION_MATCH_SHIFT 12
#define PARSING_FLAGS_LLC_SNAP (0x1<<13)
#define PARSING_FLAGS_LLC_SNAP_SHIFT 13
#define PARSING_FLAGS_RESERVED0 (0x3<<14)
#define PARSING_FLAGS_RESERVED0_SHIFT 14
};

struct regpair {
uint32_t lo;
uint32_t hi;

};

/*
 * dmae command structure
 */
struct dmae_command {

uint32_t opcode;
#define DMAE_COMMAND_SRC (0x1<<0)
#define DMAE_COMMAND_SRC_SHIFT 0
#define DMAE_COMMAND_DST (0x3<<1)
#define DMAE_COMMAND_DST_SHIFT 1
#define DMAE_COMMAND_C_DST (0x1<<3)
#define DMAE_COMMAND_C_DST_SHIFT 3
#define DMAE_COMMAND_C_TYPE_ENABLE (0x1<<4)
#define DMAE_COMMAND_C_TYPE_ENABLE_SHIFT 4
#define DMAE_COMMAND_C_TYPE_CRC_ENABLE (0x1<<5)
#define DMAE_COMMAND_C_TYPE_CRC_ENABLE_SHIFT 5
#define DMAE_COMMAND_C_TYPE_CRC_OFFSET (0x7<<6)
#define DMAE_COMMAND_C_TYPE_CRC_OFFSET_SHIFT 6
#define DMAE_COMMAND_ENDIANITY (0x3<<9)
#define DMAE_COMMAND_ENDIANITY_SHIFT 9
#define DMAE_COMMAND_PORT (0x1<<11)
#define DMAE_COMMAND_PORT_SHIFT 11
#define DMAE_COMMAND_CRC_RESET (0x1<<12)
#define DMAE_COMMAND_CRC_RESET_SHIFT 12
#define DMAE_COMMAND_SRC_RESET (0x1<<13)
#define DMAE_COMMAND_SRC_RESET_SHIFT 13
#define DMAE_COMMAND_DST_RESET (0x1<<14)
#define DMAE_COMMAND_DST_RESET_SHIFT 14
#define DMAE_COMMAND_E1HVN (0x3<<15)
#define DMAE_COMMAND_E1HVN_SHIFT 15
#define DMAE_COMMAND_RESERVED0 (0x7FFF<<17)
#define DMAE_COMMAND_RESERVED0_SHIFT 17
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 189

BCM57710/BCM57711 Programmer’s Guide
09/25/09
uint32_t src_addr_lo;
uint32_t src_addr_hi;
uint32_t dst_addr_lo;
uint32_t dst_addr_hi;

#if defined(__BIG_ENDIAN)
uint16_t reserved1;
uint16_t len;

#elif defined(__LITTLE_ENDIAN)
uint16_t len;
uint16_t reserved1;

#endif
uint32_t comp_addr_lo;
uint32_t comp_addr_hi;
uint32_t comp_val;
uint32_t crc32;
uint32_t crc32_c;

#if defined(__BIG_ENDIAN)
uint16_t crc16_c;
uint16_t crc16;

#elif defined(__LITTLE_ENDIAN)
uint16_t crc16;
uint16_t crc16_c;

#endif
#if defined(__BIG_ENDIAN)

uint16_t reserved2;
uint16_t crc_t10;

#elif defined(__LITTLE_ENDIAN)
uint16_t crc_t10;
uint16_t reserved2;

#endif
#if defined(__BIG_ENDIAN)

uint16_t xsum8;
uint16_t xsum16;

#elif defined(__LITTLE_ENDIAN)
uint16_t xsum16;
uint16_t xsum8;

#endif
};

struct double_regpair {
uint32_t regpair0_lo;
uint32_t regpair0_hi;
uint32_t regpair1_lo;
uint32_t regpair1_hi;

};

/*
 * The eth storm context of Ustorm (configuration part)
 */
struct ustorm_eth_st_context_config {
#if defined(__BIG_ENDIAN)

uint8_t flags;
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT (0x1<<0)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT_SHIFT 0
Broadcom Corporation

Page 190 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_DYNAMIC_HC (0x1<<1)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_DYNAMIC_HC_SHIFT 1
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA (0x1<<2)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA_SHIFT 2
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_SGE_RING (0x1<<3)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_SGE_RING_SHIFT 3
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS (0x1<<4)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS_SHIFT 4
#define __USTORM_ETH_ST_CONTEXT_CONFIG_RESERVED0 (0x7<<5)
#define __USTORM_ETH_ST_CONTEXT_CONFIG_RESERVED0_SHIFT 5

uint8_t status_block_id;
uint8_t clientId;
uint8_t sb_index_numbers;

#define USTORM_ETH_ST_CONTEXT_CONFIG_CQE_SB_INDEX_NUMBER (0xF<<0)
#define USTORM_ETH_ST_CONTEXT_CONFIG_CQE_SB_INDEX_NUMBER_SHIFT 0
#define USTORM_ETH_ST_CONTEXT_CONFIG_BD_SB_INDEX_NUMBER (0xF<<4)
#define USTORM_ETH_ST_CONTEXT_CONFIG_BD_SB_INDEX_NUMBER_SHIFT 4
#elif defined(__LITTLE_ENDIAN)

uint8_t sb_index_numbers;
#define USTORM_ETH_ST_CONTEXT_CONFIG_CQE_SB_INDEX_NUMBER (0xF<<0)
#define USTORM_ETH_ST_CONTEXT_CONFIG_CQE_SB_INDEX_NUMBER_SHIFT 0
#define USTORM_ETH_ST_CONTEXT_CONFIG_BD_SB_INDEX_NUMBER (0xF<<4)
#define USTORM_ETH_ST_CONTEXT_CONFIG_BD_SB_INDEX_NUMBER_SHIFT 4

uint8_t clientId;
uint8_t status_block_id;
uint8_t flags;

#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT (0x1<<0)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT_SHIFT 0
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_DYNAMIC_HC (0x1<<1)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_DYNAMIC_HC_SHIFT 1
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA (0x1<<2)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA_SHIFT 2
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_SGE_RING (0x1<<3)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_SGE_RING_SHIFT 3
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS (0x1<<4)
#define USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS_SHIFT 4
#define __USTORM_ETH_ST_CONTEXT_CONFIG_RESERVED0 (0x7<<5)
#define __USTORM_ETH_ST_CONTEXT_CONFIG_RESERVED0_SHIFT 5
#endif
#if defined(__BIG_ENDIAN)

uint16_t bd_buff_size;
uint8_t statistics_counter_id;
uint8_t mc_alignment_log_size;

#elif defined(__LITTLE_ENDIAN)
uint8_t mc_alignment_log_size;
uint8_t statistics_counter_id;
uint16_t bd_buff_size;

#endif
#if defined(__BIG_ENDIAN)

uint8_t __local_sge_prod;
uint8_t __local_bd_prod;
uint16_t sge_buff_size;

#elif defined(__LITTLE_ENDIAN)
uint16_t sge_buff_size;
uint8_t __local_bd_prod;
uint8_t __local_sge_prod;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 191

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#endif
uint32_t reserved;
uint32_t bd_page_base_lo;
uint32_t bd_page_base_hi;
uint32_t sge_page_base_lo;
uint32_t sge_page_base_hi;

};

/*
 * The eth Rx Buffer Descriptor
 */
struct eth_rx_bd {

uint32_t addr_lo;
uint32_t addr_hi;

};

/*
 * The eth Rx SGE Descriptor
 */
struct eth_rx_sge {

uint32_t addr_lo;
uint32_t addr_hi;

};

/*
 * Local BDs and SGEs rings (in ETH)
 */
struct eth_local_rx_rings {

struct eth_rx_bd __local_bd_ring[16];
struct eth_rx_sge __local_sge_ring[12];

};

/*
 * The eth storm context of Ustorm
 */
struct ustorm_eth_st_context {

struct ustorm_eth_st_context_config common;
struct eth_local_rx_rings __rings;

};

/*
 * The eth storm context of Tstorm
 */
struct tstorm_eth_st_context {

uint32_t __reserved0[28];
};

/*
 * The eth aggregative context section of Xstorm
 */
struct xstorm_eth_extra_ag_context_section {
#if defined(__BIG_ENDIAN)

uint8_t __tcp_agg_vars1;
uint8_t __reserved50;
uint16_t __mss;

#elif defined(__LITTLE_ENDIAN)
Broadcom Corporation

Page 192 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
uint16_t __mss;
uint8_t __reserved50;
uint8_t __tcp_agg_vars1;

#endif
uint32_t __snd_nxt;
uint32_t __tx_wnd;
uint32_t __snd_una;
uint32_t __reserved53;

#if defined(__BIG_ENDIAN)
uint8_t __agg_val8_th;
uint8_t __agg_val8;
uint16_t __tcp_agg_vars2;

#elif defined(__LITTLE_ENDIAN)
uint16_t __tcp_agg_vars2;
uint8_t __agg_val8;
uint8_t __agg_val8_th;

#endif
uint32_t __reserved58;
uint32_t __reserved59;
uint32_t __reserved60;
uint32_t __reserved61;

#if defined(__BIG_ENDIAN)
uint16_t __agg_val7_th;
uint16_t __agg_val7;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_val7;
uint16_t __agg_val7_th;

#endif
#if defined(__BIG_ENDIAN)

uint8_t __tcp_agg_vars5;
uint8_t __tcp_agg_vars4;
uint8_t __tcp_agg_vars3;
uint8_t __reserved62;

#elif defined(__LITTLE_ENDIAN)
uint8_t __reserved62;
uint8_t __tcp_agg_vars3;
uint8_t __tcp_agg_vars4;
uint8_t __tcp_agg_vars5;

#endif
uint32_t __tcp_agg_vars6;

#if defined(__BIG_ENDIAN)
uint16_t __agg_misc6;
uint16_t __tcp_agg_vars7;

#elif defined(__LITTLE_ENDIAN)
uint16_t __tcp_agg_vars7;
uint16_t __agg_misc6;

#endif
uint32_t __agg_val10;
uint32_t __agg_val10_th;

#if defined(__BIG_ENDIAN)
uint16_t __reserved3;
uint8_t __reserved2;
uint8_t __da_only_cnt;

#elif defined(__LITTLE_ENDIAN)
uint8_t __da_only_cnt;
uint8_t __reserved2;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 193

BCM57710/BCM57711 Programmer’s Guide
09/25/09
uint16_t __reserved3;
#endif
};

/*
 * The eth aggregative context of Xstorm
 */
struct xstorm_eth_ag_context {
#if defined(__BIG_ENDIAN)

uint16_t __bd_prod;
uint8_t __agg_vars1;
uint8_t __state;

#elif defined(__LITTLE_ENDIAN)
uint8_t __state;
uint8_t __agg_vars1;
uint16_t __bd_prod;

#endif
#if defined(__BIG_ENDIAN)

uint8_t cdu_reserved;
uint8_t __agg_vars4;
uint8_t __agg_vars3;
uint8_t __agg_vars2;

#elif defined(__LITTLE_ENDIAN)
uint8_t __agg_vars2;
uint8_t __agg_vars3;
uint8_t __agg_vars4;
uint8_t cdu_reserved;

#endif
uint32_t __more_packets_to_send;

#if defined(__BIG_ENDIAN)
uint16_t __agg_vars5;
uint16_t __agg_val4_th;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_val4_th;
uint16_t __agg_vars5;

#endif
struct xstorm_eth_extra_ag_context_section __extra_section;

#if defined(__BIG_ENDIAN)
uint16_t __agg_vars7;
uint8_t __agg_val3_th;
uint8_t __agg_vars6;

#elif defined(__LITTLE_ENDIAN)
uint8_t __agg_vars6;
uint8_t __agg_val3_th;
uint16_t __agg_vars7;

#endif
#if defined(__BIG_ENDIAN)

uint16_t __agg_val11_th;
uint16_t __agg_val11;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_val11;
uint16_t __agg_val11_th;

#endif
#if defined(__BIG_ENDIAN)

uint8_t __reserved1;
uint8_t __agg_val6_th;
Broadcom Corporation

Page 194 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
uint16_t __agg_val9;
#elif defined(__LITTLE_ENDIAN)

uint16_t __agg_val9;
uint8_t __agg_val6_th;
uint8_t __reserved1;

#endif
#if defined(__BIG_ENDIAN)

uint16_t __agg_val2_th;
uint16_t __agg_val2;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_val2;
uint16_t __agg_val2_th;

#endif
uint32_t __agg_vars8;

#if defined(__BIG_ENDIAN)
uint16_t __agg_misc0;
uint16_t __agg_val4;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_val4;
uint16_t __agg_misc0;

#endif
#if defined(__BIG_ENDIAN)

uint8_t __agg_val3;
uint8_t __agg_val6;
uint8_t __agg_val5_th;
uint8_t __agg_val5;

#elif defined(__LITTLE_ENDIAN)
uint8_t __agg_val5;
uint8_t __agg_val5_th;
uint8_t __agg_val6;
uint8_t __agg_val3;

#endif
#if defined(__BIG_ENDIAN)

uint16_t __agg_misc1;
uint16_t __bd_ind_max_val;

#elif defined(__LITTLE_ENDIAN)
uint16_t __bd_ind_max_val;
uint16_t __agg_misc1;

#endif
uint32_t __reserved57;
uint32_t __agg_misc4;
uint32_t __agg_misc5;

};

/*
 * The eth extra aggregative context section of Tstorm
 */
struct tstorm_eth_extra_ag_context_section {

uint32_t __agg_val1;
#if defined(__BIG_ENDIAN)

uint8_t __tcp_agg_vars2;
uint8_t __agg_val3;
uint16_t __agg_val2;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_val2;
uint8_t __agg_val3;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 195

BCM57710/BCM57711 Programmer’s Guide
09/25/09
uint8_t __tcp_agg_vars2;
#endif
#if defined(__BIG_ENDIAN)

uint16_t __agg_val5;
uint8_t __agg_val6;
uint8_t __tcp_agg_vars3;

#elif defined(__LITTLE_ENDIAN)
uint8_t __tcp_agg_vars3;
uint8_t __agg_val6;
uint16_t __agg_val5;

#endif
uint32_t __reserved63;
uint32_t __reserved64;
uint32_t __reserved65;
uint32_t __reserved66;
uint32_t __reserved67;
uint32_t __tcp_agg_vars1;
uint32_t __reserved61;
uint32_t __reserved62;
uint32_t __reserved2;

};

/*
 * The eth aggregative context of Tstorm
 */
struct tstorm_eth_ag_context {
#if defined(__BIG_ENDIAN)

uint16_t __reserved54;
uint8_t __agg_vars1;
uint8_t __state;

#elif defined(__LITTLE_ENDIAN)
uint8_t __state;
uint8_t __agg_vars1;
uint16_t __reserved54;

#endif
#if defined(__BIG_ENDIAN)

uint16_t __agg_val4;
uint16_t __agg_vars2;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_vars2;
uint16_t __agg_val4;

#endif
struct tstorm_eth_extra_ag_context_section __extra_section;

};

/*
 * The eth aggregative context of Cstorm
 */
struct cstorm_eth_ag_context {

uint32_t __agg_vars1;
#if defined(__BIG_ENDIAN)

uint8_t __aux1_th;
uint8_t __aux1_val;
uint16_t __agg_vars2;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_vars2;
Broadcom Corporation

Page 196 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
uint8_t __aux1_val;
uint8_t __aux1_th;

#endif
uint32_t __num_of_treated_packet;
uint32_t __last_packet_treated;

#if defined(__BIG_ENDIAN)
uint16_t __reserved58;
uint16_t __reserved57;

#elif defined(__LITTLE_ENDIAN)
uint16_t __reserved57;
uint16_t __reserved58;

#endif
#if defined(__BIG_ENDIAN)

uint8_t __reserved62;
uint8_t __reserved61;
uint8_t __reserved60;
uint8_t __reserved59;

#elif defined(__LITTLE_ENDIAN)
uint8_t __reserved59;
uint8_t __reserved60;
uint8_t __reserved61;
uint8_t __reserved62;

#endif
#if defined(__BIG_ENDIAN)

uint16_t __reserved64;
uint16_t __reserved63;

#elif defined(__LITTLE_ENDIAN)
uint16_t __reserved63;
uint16_t __reserved64;

#endif
uint32_t __reserved65;

#if defined(__BIG_ENDIAN)
uint16_t __agg_vars3;
uint16_t __rq_inv_cnt;

#elif defined(__LITTLE_ENDIAN)
uint16_t __rq_inv_cnt;
uint16_t __agg_vars3;

#endif
#if defined(__BIG_ENDIAN)

uint16_t __packet_index_th;
uint16_t __packet_index;

#elif defined(__LITTLE_ENDIAN)
uint16_t __packet_index;
uint16_t __packet_index_th;

#endif
};

/*
 * The eth aggregative context of Ustorm
 */
struct ustorm_eth_ag_context {
#if defined(__BIG_ENDIAN)

uint8_t __aux_counter_flags;
uint8_t __agg_vars2;
uint8_t __agg_vars1;
uint8_t __state;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 197

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#elif defined(__LITTLE_ENDIAN)
uint8_t __state;
uint8_t __agg_vars1;
uint8_t __agg_vars2;
uint8_t __aux_counter_flags;

#endif
#if defined(__BIG_ENDIAN)

uint8_t cdu_usage;
uint8_t __agg_misc2;
uint16_t __agg_misc1;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_misc1;
uint8_t __agg_misc2;
uint8_t cdu_usage;

#endif
uint32_t __agg_misc4;

#if defined(__BIG_ENDIAN)
uint8_t __agg_val3_th;
uint8_t __agg_val3;
uint16_t __agg_misc3;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_misc3;
uint8_t __agg_val3;
uint8_t __agg_val3_th;

#endif
uint32_t __agg_val1;
uint32_t __agg_misc4_th;

#if defined(__BIG_ENDIAN)
uint16_t __agg_val2_th;
uint16_t __agg_val2;

#elif defined(__LITTLE_ENDIAN)
uint16_t __agg_val2;
uint16_t __agg_val2_th;

#endif
#if defined(__BIG_ENDIAN)

uint16_t __reserved2;
uint8_t __decision_rules;
uint8_t __decision_rule_enable_bits;

#elif defined(__LITTLE_ENDIAN)
uint8_t __decision_rule_enable_bits;
uint8_t __decision_rules;
uint16_t __reserved2;

#endif
};

/*
 * Timers connection context
 */
struct timers_block_context {

uint32_t __reserved_0;
uint32_t __reserved_1;
uint32_t __reserved_2;
uint32_t flags;

#define __TIMERS_BLOCK_CONTEXT_NUM_OF_ACTIVE_TIMERS (0x3<<0)
#define __TIMERS_BLOCK_CONTEXT_NUM_OF_ACTIVE_TIMERS_SHIFT 0
#define TIMERS_BLOCK_CONTEXT_CONN_VALID_FLG (0x1<<2)
Broadcom Corporation

Page 198 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
#define TIMERS_BLOCK_CONTEXT_CONN_VALID_FLG_SHIFT 2
#define __TIMERS_BLOCK_CONTEXT_RESERVED0 (0x1FFFFFFF<<3)
#define __TIMERS_BLOCK_CONTEXT_RESERVED0_SHIFT 3
};

/*
 * structure for easy accessbility to assembler
 */
struct eth_tx_bd_flags {

uint8_t as_bitfield;
#define ETH_TX_BD_FLAGS_VLAN_TAG (0x1<<0)
#define ETH_TX_BD_FLAGS_VLAN_TAG_SHIFT 0
#define ETH_TX_BD_FLAGS_IP_CSUM (0x1<<1)
#define ETH_TX_BD_FLAGS_IP_CSUM_SHIFT 1
#define ETH_TX_BD_FLAGS_TCP_CSUM (0x1<<2)
#define ETH_TX_BD_FLAGS_TCP_CSUM_SHIFT 2
#define ETH_TX_BD_FLAGS_END_BD (0x1<<3)
#define ETH_TX_BD_FLAGS_END_BD_SHIFT 3
#define ETH_TX_BD_FLAGS_START_BD (0x1<<4)
#define ETH_TX_BD_FLAGS_START_BD_SHIFT 4
#define ETH_TX_BD_FLAGS_HDR_POOL (0x1<<5)
#define ETH_TX_BD_FLAGS_HDR_POOL_SHIFT 5
#define ETH_TX_BD_FLAGS_SW_LSO (0x1<<6)
#define ETH_TX_BD_FLAGS_SW_LSO_SHIFT 6
#define ETH_TX_BD_FLAGS_IPV6 (0x1<<7)
#define ETH_TX_BD_FLAGS_IPV6_SHIFT 7
};

/*
 * The eth Tx Buffer Descriptor
 */
struct eth_tx_bd {

uint32_t addr_lo;
uint32_t addr_hi;
uint16_t nbd;
uint16_t nbytes;
uint16_t vlan;
struct eth_tx_bd_flags bd_flags;
uint8_t general_data;

#define ETH_TX_BD_HDR_NBDS (0x3F<<0)
#define ETH_TX_BD_HDR_NBDS_SHIFT 0
#define ETH_TX_BD_ETH_ADDR_TYPE (0x3<<6)
#define ETH_TX_BD_ETH_ADDR_TYPE_SHIFT 6
};

/*
 * Tx parsing BD structure for ETH,Relevant in START
 */
struct eth_tx_parse_bd {

uint8_t global_data;
#define ETH_TX_PARSE_BD_IP_HDR_START_OFFSET (0xF<<0)
#define ETH_TX_PARSE_BD_IP_HDR_START_OFFSET_SHIFT 0
#define ETH_TX_PARSE_BD_CS_ANY_FLG (0x1<<4)
#define ETH_TX_PARSE_BD_CS_ANY_FLG_SHIFT 4
#define ETH_TX_PARSE_BD_PSEUDO_CS_WITHOUT_LEN (0x1<<5)
#define ETH_TX_PARSE_BD_PSEUDO_CS_WITHOUT_LEN_SHIFT 5
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 199

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#define ETH_TX_PARSE_BD_LLC_SNAP_EN (0x1<<6)
#define ETH_TX_PARSE_BD_LLC_SNAP_EN_SHIFT 6
#define ETH_TX_PARSE_BD_NS_FLG (0x1<<7)
#define ETH_TX_PARSE_BD_NS_FLG_SHIFT 7

uint8_t tcp_flags;
#define ETH_TX_PARSE_BD_FIN_FLG (0x1<<0)
#define ETH_TX_PARSE_BD_FIN_FLG_SHIFT 0
#define ETH_TX_PARSE_BD_SYN_FLG (0x1<<1)
#define ETH_TX_PARSE_BD_SYN_FLG_SHIFT 1
#define ETH_TX_PARSE_BD_RST_FLG (0x1<<2)
#define ETH_TX_PARSE_BD_RST_FLG_SHIFT 2
#define ETH_TX_PARSE_BD_PSH_FLG (0x1<<3)
#define ETH_TX_PARSE_BD_PSH_FLG_SHIFT 3
#define ETH_TX_PARSE_BD_ACK_FLG (0x1<<4)
#define ETH_TX_PARSE_BD_ACK_FLG_SHIFT 4
#define ETH_TX_PARSE_BD_URG_FLG (0x1<<5)
#define ETH_TX_PARSE_BD_URG_FLG_SHIFT 5
#define ETH_TX_PARSE_BD_ECE_FLG (0x1<<6)
#define ETH_TX_PARSE_BD_ECE_FLG_SHIFT 6
#define ETH_TX_PARSE_BD_CWR_FLG (0x1<<7)
#define ETH_TX_PARSE_BD_CWR_FLG_SHIFT 7

uint8_t ip_hlen;
uint8_t cs_offset;
uint16_t total_hlen;
uint16_t lso_mss;
uint16_t tcp_pseudo_csum;
uint16_t ip_id;
uint32_t tcp_send_seq;

};

/*
 * The last BD in the BD memory will hold a pointer to the next BD memory
 */
struct eth_tx_next_bd {

uint32_t addr_lo;
uint32_t addr_hi;
uint8_t reserved[8];

};

/*
 * union for 3 Bd types
 */
union eth_tx_bd_types {

struct eth_tx_bd reg_bd;
struct eth_tx_parse_bd parse_bd;
struct eth_tx_next_bd next_bd;

};

/*
 * The eth storm context of Xstorm
 */
struct xstorm_eth_st_context {

uint32_t tx_bd_page_base_lo;
uint32_t tx_bd_page_base_hi;

#if defined(__BIG_ENDIAN)
uint16_t tx_bd_cons;
Broadcom Corporation

Page 200 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
uint8_t statistics_data;
#define XSTORM_ETH_ST_CONTEXT_STATISTICS_COUNTER_ID (0x7F<<0)
#define XSTORM_ETH_ST_CONTEXT_STATISTICS_COUNTER_ID_SHIFT 0
#define XSTORM_ETH_ST_CONTEXT_STATISTICS_ENABLE (0x1<<7)
#define XSTORM_ETH_ST_CONTEXT_STATISTICS_ENABLE_SHIFT 7

uint8_t __local_tx_bd_prod;
#elif defined(__LITTLE_ENDIAN)

uint8_t __local_tx_bd_prod;
uint8_t statistics_data;

#define XSTORM_ETH_ST_CONTEXT_STATISTICS_COUNTER_ID (0x7F<<0)
#define XSTORM_ETH_ST_CONTEXT_STATISTICS_COUNTER_ID_SHIFT 0
#define XSTORM_ETH_ST_CONTEXT_STATISTICS_ENABLE (0x1<<7)
#define XSTORM_ETH_ST_CONTEXT_STATISTICS_ENABLE_SHIFT 7

uint16_t tx_bd_cons;
#endif

uint32_t db_data_addr_lo;
uint32_t db_data_addr_hi;
uint32_t __pkt_cons;
uint32_t __gso_next;

#if defined(__BIG_ENDIAN)
uint8_t __reserved1;
uint8_t safc_group_num;
uint8_t safc_group_en;
uint8_t __is_eth_conn;

#elif defined(__LITTLE_ENDIAN)
uint8_t __is_eth_conn;
uint8_t safc_group_en;
uint8_t safc_group_num;
uint8_t __reserved1;

#endif
union eth_tx_bd_types __bds[13];

};

/*
 * The eth storm context of Cstorm
 */
struct cstorm_eth_st_context {
#if defined(__BIG_ENDIAN)

uint16_t __reserved0;
uint8_t sb_index_number;
uint8_t status_block_id;

#elif defined(__LITTLE_ENDIAN)
uint8_t status_block_id;
uint8_t sb_index_number;
uint16_t __reserved0;

#endif
uint32_t __reserved1[3];

};

/*
 * Ethernet connection context
 */
struct eth_context {

struct ustorm_eth_st_context ustorm_st_context;
struct tstorm_eth_st_context tstorm_st_context;
struct xstorm_eth_ag_context xstorm_ag_context;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 201

BCM57710/BCM57711 Programmer’s Guide
09/25/09
struct tstorm_eth_ag_context tstorm_ag_context;
struct cstorm_eth_ag_context cstorm_ag_context;
struct ustorm_eth_ag_context ustorm_ag_context;
struct timers_block_context timers_context;
struct xstorm_eth_st_context xstorm_st_context;
struct cstorm_eth_st_context cstorm_st_context;

};

/*
 * Ethernet doorbell
 */
struct eth_tx_doorbell {
#if defined(__BIG_ENDIAN)

uint16_t npackets;
uint8_t params;

#define ETH_TX_DOORBELL_NUM_BDS (0x3F<<0)
#define ETH_TX_DOORBELL_NUM_BDS_SHIFT 0
#define ETH_TX_DOORBELL_RESERVED_TX_FIN_FLAG (0x1<<6)
#define ETH_TX_DOORBELL_RESERVED_TX_FIN_FLAG_SHIFT 6
#define ETH_TX_DOORBELL_SPARE (0x1<<7)
#define ETH_TX_DOORBELL_SPARE_SHIFT 7

struct doorbell_hdr hdr;
#elif defined(__LITTLE_ENDIAN)

struct doorbell_hdr hdr;
uint8_t params;

#define ETH_TX_DOORBELL_NUM_BDS (0x3F<<0)
#define ETH_TX_DOORBELL_NUM_BDS_SHIFT 0
#define ETH_TX_DOORBELL_RESERVED_TX_FIN_FLAG (0x1<<6)
#define ETH_TX_DOORBELL_RESERVED_TX_FIN_FLAG_SHIFT 6
#define ETH_TX_DOORBELL_SPARE (0x1<<7)
#define ETH_TX_DOORBELL_SPARE_SHIFT 7

uint16_t npackets;
#endif
};

/*
 * ustorm status block
 */
struct ustorm_def_status_block {

uint16_t index_values[HC_USTORM_DEF_SB_NUM_INDICES];
uint16_t status_block_index;
uint8_t func;
uint8_t status_block_id;
uint32_t __flags;

};

/*
 * cstorm status block
 */
struct cstorm_def_status_block {

uint16_t index_values[HC_CSTORM_DEF_SB_NUM_INDICES];
uint16_t status_block_index;
uint8_t func;
uint8_t status_block_id;
Broadcom Corporation

Page 202 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
uint32_t __flags;
};

/*
 * xstorm status block
 */
struct xstorm_def_status_block {

uint16_t index_values[HC_XSTORM_DEF_SB_NUM_INDICES];
uint16_t status_block_index;
uint8_t func;
uint8_t status_block_id;
uint32_t __flags;

};

/*
 * tstorm status block
 */
struct tstorm_def_status_block {

uint16_t index_values[HC_TSTORM_DEF_SB_NUM_INDICES];
uint16_t status_block_index;
uint8_t func;
uint8_t status_block_id;
uint32_t __flags;

};

/*
 * host status block
 */
struct host_def_status_block {

struct atten_def_status_block atten_status_block;
struct ustorm_def_status_block u_def_status_block;
struct cstorm_def_status_block c_def_status_block;
struct xstorm_def_status_block x_def_status_block;
struct tstorm_def_status_block t_def_status_block;

};

/*
 * ustorm status block
 */
struct ustorm_status_block {

uint16_t index_values[HC_USTORM_SB_NUM_INDICES];
uint16_t status_block_index;
uint8_t func;
uint8_t status_block_id;
uint32_t __flags;

};

/*
 * cstorm status block
 */
struct cstorm_status_block {

uint16_t index_values[HC_CSTORM_SB_NUM_INDICES];
uint16_t status_block_index;
uint8_t func;
uint8_t status_block_id;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 203

BCM57710/BCM57711 Programmer’s Guide
09/25/09
uint32_t __flags;
};

/*
 * host status block
 */
struct host_status_block {

struct ustorm_status_block u_status_block;
struct cstorm_status_block c_status_block;

};

/*
 * The data for RSS setup ramrod
 */
struct eth_client_setup_ramrod_data {

uint32_t client_id;
uint8_t is_rdma;
uint8_t is_fcoe;
uint16_t reserved1;

};

/*
 * L2 dynamic host coalescing init parameters
 */
struct eth_dynamic_hc_config {

uint32_t threshold[3];
uint8_t hc_timeout[4];

};

/*
 * regular eth FP CQE parameters struct
 */
struct eth_fast_path_rx_cqe {

uint8_t type_error_flags;
#define ETH_FAST_PATH_RX_CQE_TYPE (0x1<<0)
#define ETH_FAST_PATH_RX_CQE_TYPE_SHIFT 0
#define ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG (0x1<<1)
#define ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG_SHIFT 1
#define ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG (0x1<<2)
#define ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG_SHIFT 2
#define ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG (0x1<<3)
#define ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG_SHIFT 3
#define ETH_FAST_PATH_RX_CQE_START_FLG (0x1<<4)
#define ETH_FAST_PATH_RX_CQE_START_FLG_SHIFT 4
#define ETH_FAST_PATH_RX_CQE_END_FLG (0x1<<5)
#define ETH_FAST_PATH_RX_CQE_END_FLG_SHIFT 5
#define ETH_FAST_PATH_RX_CQE_RESERVED0 (0x3<<6)
#define ETH_FAST_PATH_RX_CQE_RESERVED0_SHIFT 6

uint8_t status_flags;
#define ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE (0x7<<0)
#define ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE_SHIFT 0
#define ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG (0x1<<3)
#define ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG_SHIFT 3
Broadcom Corporation

Page 204 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
#define ETH_FAST_PATH_RX_CQE_BROADCAST_FLG (0x1<<4)
#define ETH_FAST_PATH_RX_CQE_BROADCAST_FLG_SHIFT 4
#define ETH_FAST_PATH_RX_CQE_MAC_MATCH_FLG (0x1<<5)
#define ETH_FAST_PATH_RX_CQE_MAC_MATCH_FLG_SHIFT 5
#define ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG (0x1<<6)
#define ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG_SHIFT 6
#define ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG (0x1<<7)
#define ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG_SHIFT 7

uint8_t placement_offset;
uint8_t queue_index;
uint32_t rss_hash_result;
uint16_t vlan_tag;
uint16_t pkt_len;
uint16_t len_on_bd;
struct parsing_flags pars_flags;
uint16_t sgl[8];

};

/*
 * The data for RSS setup ramrod
 */
struct eth_halt_ramrod_data {

uint32_t client_id;
uint32_t reserved0;

};

/*
 * The data for statistics query ramrod
 */
struct eth_query_ramrod_data {
#if defined(__BIG_ENDIAN)

uint8_t reserved0;
uint8_t collect_port;
uint16_t drv_counter;

#elif defined(__LITTLE_ENDIAN)
uint16_t drv_counter;
uint8_t collect_port;
uint8_t reserved0;

#endif
uint32_t ctr_id_vector;

};

/*
 * Place holder for ramrods protocol specific data
 */
struct ramrod_data {

uint32_t data_lo;
uint32_t data_hi;

};

/*
 * union for ramrod data for Ethernet protocol (CQE) (force size of 16 bits)
 */
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 205

BCM57710/BCM57711 Programmer’s Guide
09/25/09
union eth_ramrod_data {
struct ramrod_data general;

};

/*
 * Rx Last BD in page (in ETH)
 */
struct eth_rx_bd_next_page {

uint32_t addr_lo;
uint32_t addr_hi;
uint8_t reserved[8];

};

/*
 * Eth Rx Cqe structure- general structure for ramrods
 */
struct common_ramrod_eth_rx_cqe {

uint8_t ramrod_type;
#define COMMON_RAMROD_ETH_RX_CQE_TYPE (0x1<<0)
#define COMMON_RAMROD_ETH_RX_CQE_TYPE_SHIFT 0
#define COMMON_RAMROD_ETH_RX_CQE_RESERVED0 (0x7F<<1)
#define COMMON_RAMROD_ETH_RX_CQE_RESERVED0_SHIFT 1

uint8_t conn_type;
uint16_t reserved1;
uint32_t conn_and_cmd_data;

#define COMMON_RAMROD_ETH_RX_CQE_CID (0xFFFFFF<<0)
#define COMMON_RAMROD_ETH_RX_CQE_CID_SHIFT 0
#define COMMON_RAMROD_ETH_RX_CQE_CMD_ID (0xFF<<24)
#define COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT 24

struct ramrod_data protocol_data;
uint32_t reserved2[4];

};

/*
 * Rx Last CQE in page (in ETH)
 */
struct eth_rx_cqe_next_page {

uint32_t addr_lo;
uint32_t addr_hi;
uint32_t reserved[6];

};

/*
 * union for all eth rx cqe types (fix their sizes)
 */
union eth_rx_cqe {

struct eth_fast_path_rx_cqe fast_path_cqe;
struct common_ramrod_eth_rx_cqe ramrod_cqe;
struct eth_rx_cqe_next_page next_page_cqe;

};

/*
 * common data for all protocols
Broadcom Corporation

Page 206 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 */
struct spe_hdr {

uint32_t conn_and_cmd_data;
#define SPE_HDR_CID (0xFFFFFF<<0)
#define SPE_HDR_CID_SHIFT 0
#define SPE_HDR_CMD_ID (0xFF<<24)
#define SPE_HDR_CMD_ID_SHIFT 24

uint16_t type;
#define SPE_HDR_CONN_TYPE (0xFF<<0)
#define SPE_HDR_CONN_TYPE_SHIFT 0
#define SPE_HDR_COMMON_RAMROD (0xFF<<8)
#define SPE_HDR_COMMON_RAMROD_SHIFT 8

uint16_t reserved;
};

/*
 * Ethernet slow path element
 */
union eth_specific_data {

uint8_t protocol_data[8];
struct regpair mac_config_addr;
struct eth_client_setup_ramrod_data client_setup_ramrod_data;
struct eth_halt_ramrod_data halt_ramrod_data;
struct regpair leading_cqe_addr;
struct regpair update_data_addr;
struct eth_query_ramrod_data query_ramrod_data;

};

/*
 * Ethernet slow path element
 */
struct eth_spe {

struct spe_hdr hdr;
union eth_specific_data data;

};

/*
 * doorbell data in host memory
 */
struct eth_tx_db_data {

uint32_t packets_prod;
uint16_t bds_prod;
uint16_t reserved;

};

/*
 * Common configuration parameters per function in Tstorm
 */
struct tstorm_eth_function_common_config {
#if defined(__BIG_ENDIAN)

uint8_t leading_client_id;
uint8_t rss_result_mask;
uint16_t config_flags;

#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY (0x1<<0)
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 207

BCM57710/BCM57711 Programmer’s Guide
09/25/09
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY_SHIFT 0
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY (0x1<<1)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY_SHIFT 1
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY (0x1<<2)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY_SHIFT 2
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY (0x1<<3)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY_SHIFT 3
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_MODE (0x7<<4)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_MODE_SHIFT 4
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_DEFAULT_ENABLE (0x1<<7)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_DEFAULT_ENABLE_SHIFT 7
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_VLAN_IN_CAM (0x1<<8)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_VLAN_IN_CAM_SHIFT 8
#define __TSTORM_ETH_FUNCTION_COMMON_CONFIG_RESERVED0 (0x7F<<9)
#define __TSTORM_ETH_FUNCTION_COMMON_CONFIG_RESERVED0_SHIFT 9
#elif defined(__LITTLE_ENDIAN)

uint16_t config_flags;
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY (0x1<<0)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY_SHIFT 0
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY (0x1<<1)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY_SHIFT 1
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY (0x1<<2)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY_SHIFT 2
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY (0x1<<3)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY_SHIFT 3
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_MODE (0x7<<4)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_MODE_SHIFT 4
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_DEFAULT_ENABLE (0x1<<7)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_DEFAULT_ENABLE_SHIFT 7
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_VLAN_IN_CAM (0x1<<8)
#define TSTORM_ETH_FUNCTION_COMMON_CONFIG_VLAN_IN_CAM_SHIFT 8
#define __TSTORM_ETH_FUNCTION_COMMON_CONFIG_RESERVED0 (0x7F<<9)
#define __TSTORM_ETH_FUNCTION_COMMON_CONFIG_RESERVED0_SHIFT 9

uint8_t rss_result_mask;
uint8_t leading_client_id;

#endif
uint16_t vlan_id[2];

};

/*
 * parameters for eth update ramrod
 */
struct eth_update_ramrod_data {

struct tstorm_eth_function_common_config func_config;
uint8_t indirectionTable[128];

};

/*
 * MAC filtering configuration command header
 */
struct mac_configuration_hdr {

uint8_t length;
uint8_t offset;
uint16_t client_id;
uint32_t reserved1;
Broadcom Corporation

Page 208 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
};

/*
 * MAC address in list for ramrod
 */
struct tstorm_cam_entry {

uint16_t lsb_mac_addr;
uint16_t middle_mac_addr;
uint16_t msb_mac_addr;
uint16_t flags;

#define TSTORM_CAM_ENTRY_PORT_ID (0x1<<0)
#define TSTORM_CAM_ENTRY_PORT_ID_SHIFT 0
#define TSTORM_CAM_ENTRY_RSRVVAL0 (0x7<<1)
#define TSTORM_CAM_ENTRY_RSRVVAL0_SHIFT 1
#define TSTORM_CAM_ENTRY_RESERVED0 (0xFFF<<4)
#define TSTORM_CAM_ENTRY_RESERVED0_SHIFT 4
};

/*
 * MAC filtering: CAM target table entry
 */
struct tstorm_cam_target_table_entry {

uint8_t flags;
#define TSTORM_CAM_TARGET_TABLE_ENTRY_BROADCAST (0x1<<0)
#define TSTORM_CAM_TARGET_TABLE_ENTRY_BROADCAST_SHIFT 0
#define TSTORM_CAM_TARGET_TABLE_ENTRY_OVERRIDE_VLAN_REMOVAL (0x1<<1)
#define TSTORM_CAM_TARGET_TABLE_ENTRY_OVERRIDE_VLAN_REMOVAL_SHIFT 1
#define TSTORM_CAM_TARGET_TABLE_ENTRY_ACTION_TYPE (0x1<<2)
#define TSTORM_CAM_TARGET_TABLE_ENTRY_ACTION_TYPE_SHIFT 2
#define TSTORM_CAM_TARGET_TABLE_ENTRY_RDMA_MAC (0x1<<3)
#define TSTORM_CAM_TARGET_TABLE_ENTRY_RDMA_MAC_SHIFT 3
#define TSTORM_CAM_TARGET_TABLE_ENTRY_RESERVED0 (0xF<<4)
#define TSTORM_CAM_TARGET_TABLE_ENTRY_RESERVED0_SHIFT 4

uint8_t client_id;
uint16_t vlan_id;

};

/*
 * MAC address in list for ramrod
 */
struct mac_configuration_entry {

struct tstorm_cam_entry cam_entry;
struct tstorm_cam_target_table_entry target_table_entry;

};

/*
 * MAC filtering configuration command
 */
struct mac_configuration_cmd {

struct mac_configuration_hdr hdr;
struct mac_configuration_entry config_table[64];

};

/*
 * MAC address in list for ramrod
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 209

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 */
struct mac_configuration_entry_e1h {

uint16_t lsb_mac_addr;
uint16_t middle_mac_addr;
uint16_t msb_mac_addr;
uint16_t vlan_id;
uint16_t e1hov_id;
uint8_t client_id;
uint8_t flags;

#define MAC_CONFIGURATION_ENTRY_E1H_PORT (0x1<<0)
#define MAC_CONFIGURATION_ENTRY_E1H_PORT_SHIFT 0
#define MAC_CONFIGURATION_ENTRY_E1H_ACTION_TYPE (0x1<<1)
#define MAC_CONFIGURATION_ENTRY_E1H_ACTION_TYPE_SHIFT 1
#define MAC_CONFIGURATION_ENTRY_E1H_RDMA_MAC (0x1<<2)
#define MAC_CONFIGURATION_ENTRY_E1H_RDMA_MAC_SHIFT 2
#define MAC_CONFIGURATION_ENTRY_E1H_RESERVED0 (0x1F<<3)
#define MAC_CONFIGURATION_ENTRY_E1H_RESERVED0_SHIFT 3
};

/*
 * MAC filtering configuration command
 */
struct mac_configuration_cmd_e1h {

struct mac_configuration_hdr hdr;
struct mac_configuration_entry_e1h config_table[32];

};

/*
 * approximate-match multicast filtering for E1H per function in Tstorm
 */
struct tstorm_eth_approximate_match_multicast_filtering {

uint32_t mcast_add_hash_bit_array[8];
};

/*
 * Configuration parameters per client in Tstorm
 */
struct tstorm_eth_client_config {
#if defined(__BIG_ENDIAN)

uint8_t max_sges_for_packet;
uint8_t statistics_counter_id;
uint16_t mtu;

#elif defined(__LITTLE_ENDIAN)
uint16_t mtu;
uint8_t statistics_counter_id;
uint8_t max_sges_for_packet;

#endif
#if defined(__BIG_ENDIAN)

uint16_t drop_flags;
#define TSTORM_ETH_CLIENT_CONFIG_DROP_IP_CS_ERR (0x1<<0)
#define TSTORM_ETH_CLIENT_CONFIG_DROP_IP_CS_ERR_SHIFT 0
#define TSTORM_ETH_CLIENT_CONFIG_DROP_TCP_CS_ERR (0x1<<1)
#define TSTORM_ETH_CLIENT_CONFIG_DROP_TCP_CS_ERR_SHIFT 1
#define TSTORM_ETH_CLIENT_CONFIG_DROP_TTL0 (0x1<<2)
Broadcom Corporation

Page 210 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
#define TSTORM_ETH_CLIENT_CONFIG_DROP_TTL0_SHIFT 2
#define TSTORM_ETH_CLIENT_CONFIG_DROP_UDP_CS_ERR (0x1<<3)
#define TSTORM_ETH_CLIENT_CONFIG_DROP_UDP_CS_ERR_SHIFT 3
#define __TSTORM_ETH_CLIENT_CONFIG_RESERVED1 (0xFFF<<4)
#define __TSTORM_ETH_CLIENT_CONFIG_RESERVED1_SHIFT 4

uint16_t config_flags;
#define TSTORM_ETH_CLIENT_CONFIG_VLAN_REMOVAL_ENABLE (0x1<<0)
#define TSTORM_ETH_CLIENT_CONFIG_VLAN_REMOVAL_ENABLE_SHIFT 0
#define TSTORM_ETH_CLIENT_CONFIG_E1HOV_REMOVAL_ENABLE (0x1<<1)
#define TSTORM_ETH_CLIENT_CONFIG_E1HOV_REMOVAL_ENABLE_SHIFT 1
#define TSTORM_ETH_CLIENT_CONFIG_STATSITICS_ENABLE (0x1<<2)
#define TSTORM_ETH_CLIENT_CONFIG_STATSITICS_ENABLE_SHIFT 2
#define TSTORM_ETH_CLIENT_CONFIG_ENABLE_SGE_RING (0x1<<3)
#define TSTORM_ETH_CLIENT_CONFIG_ENABLE_SGE_RING_SHIFT 3
#define __TSTORM_ETH_CLIENT_CONFIG_RESERVED0 (0xFFF<<4)
#define __TSTORM_ETH_CLIENT_CONFIG_RESERVED0_SHIFT 4
#elif defined(__LITTLE_ENDIAN)

uint16_t config_flags;
#define TSTORM_ETH_CLIENT_CONFIG_VLAN_REMOVAL_ENABLE (0x1<<0)
#define TSTORM_ETH_CLIENT_CONFIG_VLAN_REMOVAL_ENABLE_SHIFT 0
#define TSTORM_ETH_CLIENT_CONFIG_E1HOV_REMOVAL_ENABLE (0x1<<1)
#define TSTORM_ETH_CLIENT_CONFIG_E1HOV_REMOVAL_ENABLE_SHIFT 1
#define TSTORM_ETH_CLIENT_CONFIG_STATSITICS_ENABLE (0x1<<2)
#define TSTORM_ETH_CLIENT_CONFIG_STATSITICS_ENABLE_SHIFT 2
#define TSTORM_ETH_CLIENT_CONFIG_ENABLE_SGE_RING (0x1<<3)
#define TSTORM_ETH_CLIENT_CONFIG_ENABLE_SGE_RING_SHIFT 3
#define __TSTORM_ETH_CLIENT_CONFIG_RESERVED0 (0xFFF<<4)
#define __TSTORM_ETH_CLIENT_CONFIG_RESERVED0_SHIFT 4

uint16_t drop_flags;
#define TSTORM_ETH_CLIENT_CONFIG_DROP_IP_CS_ERR (0x1<<0)
#define TSTORM_ETH_CLIENT_CONFIG_DROP_IP_CS_ERR_SHIFT 0
#define TSTORM_ETH_CLIENT_CONFIG_DROP_TCP_CS_ERR (0x1<<1)
#define TSTORM_ETH_CLIENT_CONFIG_DROP_TCP_CS_ERR_SHIFT 1
#define TSTORM_ETH_CLIENT_CONFIG_DROP_TTL0 (0x1<<2)
#define TSTORM_ETH_CLIENT_CONFIG_DROP_TTL0_SHIFT 2
#define TSTORM_ETH_CLIENT_CONFIG_DROP_UDP_CS_ERR (0x1<<3)
#define TSTORM_ETH_CLIENT_CONFIG_DROP_UDP_CS_ERR_SHIFT 3
#define __TSTORM_ETH_CLIENT_CONFIG_RESERVED1 (0xFFF<<4)
#define __TSTORM_ETH_CLIENT_CONFIG_RESERVED1_SHIFT 4
#endif
};

/*
 * MAC filtering configuration parameters per port in Tstorm
 */
struct tstorm_eth_mac_filter_config {

uint32_t ucast_drop_all;
uint32_t ucast_accept_all;
uint32_t mcast_drop_all;
uint32_t mcast_accept_all;
uint32_t bcast_drop_all;
uint32_t bcast_accept_all;
uint32_t strict_vlan;
uint32_t vlan_filter[2];
uint32_t reserved;
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 211

BCM57710/BCM57711 Programmer’s Guide
09/25/09
};

/*
 * common flag to indicate existance of TPA.
 */
struct tstorm_eth_tpa_exist {
#if defined(__BIG_ENDIAN)

uint16_t reserved1;
uint8_t reserved0;
uint8_t tpa_exist;

#elif defined(__LITTLE_ENDIAN)
uint8_t tpa_exist;
uint8_t reserved0;
uint16_t reserved1;

#endif
uint32_t reserved2;

};

/*
 * rx rings pause data for E1h only
 */
struct ustorm_eth_rx_pause_data_e1h {
#if defined(__BIG_ENDIAN)

uint16_t bd_thr_low;
uint16_t cqe_thr_low;

#elif defined(__LITTLE_ENDIAN)
uint16_t cqe_thr_low;
uint16_t bd_thr_low;

#endif
#if defined(__BIG_ENDIAN)

uint16_t cos;
uint16_t sge_thr_low;

#elif defined(__LITTLE_ENDIAN)
uint16_t sge_thr_low;
uint16_t cos;

#endif
#if defined(__BIG_ENDIAN)

uint16_t bd_thr_high;
uint16_t cqe_thr_high;

#elif defined(__LITTLE_ENDIAN)
uint16_t cqe_thr_high;
uint16_t bd_thr_high;

#endif
#if defined(__BIG_ENDIAN)

uint16_t reserved0;
uint16_t sge_thr_high;

#elif defined(__LITTLE_ENDIAN)
uint16_t sge_thr_high;
uint16_t reserved0;

#endif
};

/*
Broadcom Corporation

Page 212 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 * Three RX producers for ETH
 */
struct ustorm_eth_rx_producers {
#if defined(__BIG_ENDIAN)

uint16_t bd_prod;
uint16_t cqe_prod;

#elif defined(__LITTLE_ENDIAN)
uint16_t cqe_prod;
uint16_t bd_prod;

#endif
#if defined(__BIG_ENDIAN)

uint16_t reserved;
uint16_t sge_prod;

#elif defined(__LITTLE_ENDIAN)
uint16_t sge_prod;
uint16_t reserved;

#endif
};

/*
 * per-port SAFC demo variables
 */
struct cmng_flags_per_port {

uint8_t con_number[NUM_OF_PROTOCOLS];
#if defined(__BIG_ENDIAN)

uint8_t fairness_enable;
uint8_t rate_shaping_enable;
uint8_t cmng_protocol_enable;
uint8_t cmng_vn_enable;

#elif defined(__LITTLE_ENDIAN)
uint8_t cmng_vn_enable;
uint8_t cmng_protocol_enable;
uint8_t rate_shaping_enable;
uint8_t fairness_enable;

#endif
};

/*
 * per-port rate shaping variables
 */
struct rate_shaping_vars_per_port {

uint32_t rs_periodic_timeout;
uint32_t rs_threshold;

};

/*
 * per-port fairness variables
 */
struct fairness_vars_per_port {

uint32_t upper_bound;
uint32_t fair_threshold;
uint32_t fairness_timeout;

};
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 213

BCM57710/BCM57711 Programmer’s Guide
09/25/09
/*
 * per-port SAFC variables
 */
struct safc_struct_per_port {
#if defined(__BIG_ENDIAN)

uint16_t __reserved1;
uint8_t __reserved0;
uint8_t safc_timeout_usec;

#elif defined(__LITTLE_ENDIAN)
uint8_t safc_timeout_usec;
uint8_t __reserved0;
uint16_t __reserved1;

#endif
uint16_t cos_to_pause_mask[MAX_COS_NUMBER];

};

/*
 * Per-port congestion management variables
 */
struct cmng_struct_per_port {

struct rate_shaping_vars_per_port rs_vars;
struct fairness_vars_per_port fair_vars;
struct safc_struct_per_port safc_vars;
struct cmng_flags_per_port flags;

};

/*
 * Protocol-common statistics collected by the Xstorm (per client)
 */
struct xstorm_per_client_stats {

struct regpair total_sent_bytes;
uint32_t total_sent_pkts;
uint32_t unicast_pkts_sent;
struct regpair unicast_bytes_sent;
struct regpair multicast_bytes_sent;
uint32_t multicast_pkts_sent;
uint32_t broadcast_pkts_sent;
struct regpair broadcast_bytes_sent;
uint16_t stats_counter;
uint16_t reserved0;
uint32_t reserved1;

};

/*
 * Common statistics collected by the Xstorm (per port)
 */
struct xstorm_common_stats {
 struct xstorm_per_client_stats client_statistics[MAX_X_STAT_COUNTER_ID];
};
Broadcom Corporation

Page 214 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
/*
 * Protocol-common statistics collected by the Tstorm (per port)
 */
struct tstorm_per_port_stats {

uint32_t mac_filter_discard;
uint32_t xxoverflow_discard;
uint32_t brb_truncate_discard;
uint32_t mac_discard;

};

/*
 * Protocol-common statistics collected by the Tstorm (per client)
 */
struct tstorm_per_client_stats {

struct regpair total_rcv_bytes;
struct regpair rcv_unicast_bytes;
struct regpair rcv_broadcast_bytes;
struct regpair rcv_multicast_bytes;
struct regpair rcv_error_bytes;
uint32_t checksum_discard;
uint32_t packets_too_big_discard;
uint32_t total_rcv_pkts;
uint32_t rcv_unicast_pkts;
uint32_t rcv_broadcast_pkts;
uint32_t rcv_multicast_pkts;
uint32_t no_buff_discard;
uint32_t ttl0_discard;
uint16_t stats_counter;
uint16_t reserved0;
uint32_t reserved1;

};

/*
 * Protocol-common statistics collected by the Tstorm
 */
struct tstorm_common_stats {

struct tstorm_per_port_stats port_statistics;
 struct tstorm_per_client_stats client_statistics[MAX_T_STAT_COUNTER_ID];
};

/*
 * Protocol-common statistics collected by the Ustorm (per client)
 */
struct ustorm_per_client_stats {

struct regpair rcv_error_bytes;
uint32_t no_buff_discard;
uint16_t stats_counter;
uint16_t reserved0;

};

/*
 * Protocol-common statistics collected by the Ustorm
 */
struct ustorm_common_stats {
 struct ustorm_per_client_stats client_statistics[MAX_U_STAT_COUNTER_ID];
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 215

BCM57710/BCM57711 Programmer’s Guide
09/25/09
};

/*
 * Eth statistics query structure for the eth_stats_query ramrod
 */
struct eth_stats_query {

struct xstorm_common_stats xstorm_common;
struct tstorm_common_stats tstorm_common;
struct ustorm_common_stats ustorm_common;

};

/*
 * per-vnic fairness variables
 */
struct fairness_vars_per_vn {

uint32_t protocol_credit_delta[NUM_OF_PROTOCOLS];
uint32_t vn_credit_delta;
uint32_t __reserved0;

};

/*
 * FW version stored in the Xstorm RAM
 */
struct fw_version {
#if defined(__BIG_ENDIAN)

uint8_t engineering;
uint8_t revision;
uint8_t minor;
uint8_t major;

#elif defined(__LITTLE_ENDIAN)
uint8_t major;
uint8_t minor;
uint8_t revision;
uint8_t engineering;

#endif
uint32_t flags;

#define FW_VERSION_OPTIMIZED (0x1<<0)
#define FW_VERSION_OPTIMIZED_SHIFT 0
#define FW_VERSION_BIG_ENDIEN (0x1<<1)
#define FW_VERSION_BIG_ENDIEN_SHIFT 1
#define FW_VERSION_CHIP_VERSION (0x3<<2)
#define FW_VERSION_CHIP_VERSION_SHIFT 2
#define __FW_VERSION_RESERVED (0xFFFFFFF<<4)
#define __FW_VERSION_RESERVED_SHIFT 4
};

/*
 * FW version stored in first line of pram
 */
struct pram_fw_version {

uint8_t major;
uint8_t minor;
uint8_t revision;
Broadcom Corporation

Page 216 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
uint8_t engineering;
uint8_t flags;

#define PRAM_FW_VERSION_OPTIMIZED (0x1<<0)
#define PRAM_FW_VERSION_OPTIMIZED_SHIFT 0
#define PRAM_FW_VERSION_STORM_ID (0x3<<1)
#define PRAM_FW_VERSION_STORM_ID_SHIFT 1
#define PRAM_FW_VERSION_BIG_ENDIEN (0x1<<3)
#define PRAM_FW_VERSION_BIG_ENDIEN_SHIFT 3
#define PRAM_FW_VERSION_CHIP_VERSION (0x3<<4)
#define PRAM_FW_VERSION_CHIP_VERSION_SHIFT 4
#define __PRAM_FW_VERSION_RESERVED0 (0x3<<6)
#define __PRAM_FW_VERSION_RESERVED0_SHIFT 6
};

/*
 * a single rate shaping counter. can be used as protocol or vnic counter
 */
struct rate_shaping_counter {

uint32_t quota;
#if defined(__BIG_ENDIAN)

uint16_t __reserved0;
uint16_t rate;

#elif defined(__LITTLE_ENDIAN)
uint16_t rate;
uint16_t __reserved0;

#endif
};

/*
 * per-vnic rate shaping variables
 */
struct rate_shaping_vars_per_vn {

struct rate_shaping_counter protocol_counters[NUM_OF_PROTOCOLS];
struct rate_shaping_counter vn_counter;

};

/*
 * The send queue element
 */
struct slow_path_element {

struct spe_hdr hdr;
uint8_t protocol_data[8];

};

/*
 * eth/toe flags that indicate if to query
 */
struct stats_indication_flags {

uint32_t collect_eth;
uint32_t collect_toe;

};

/* ToDo: Are these still needed? */
Broadcom Corporation
Document 57710_57711-PG200-R Internal PHY Page 217

BCM57710/BCM57711 Programmer’s Guide
09/25/09
typedef struct drv_fw_mb drv_fw_mb_t;
typedef struct shared_hw_cfg shared_hw_cfg_t;
typedef struct port_hw_cfg port_hw_cfg_t;
typedef struct shared_feat_cfg shared_feat_cfg_t;
typedef struct port_feat_cfg port_feat_cfg_t;
typedef struct dev_info dev_info_t;
typedef struct mgmtfw_state mgmtfw_state_t;
typedef struct shmem_region shmem_region_t;
Broadcom Corporation

Page 218 Internal PHY Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
Appendix B: Programming the Non-Volati le
Memory

Access to the non-volatile memory interface is controlled through internal configuration, command, and status registers in
the NVRAM register block. The NVRAM can be accessed with automated 32-bit read and write commands or configured for
bit-bang operation through the NVM control registers. A semaphore register (MCP_REG_MCPR_NVM_SW_ARB) allows
up to four software entities to share access to the NVRAM device.

NVRAM ACCESS EXAMPLE CODE

The C code given below uses the MODE_256 (MCP_REG_MCPR_NVM_COMMAND MODE_256 bit set to 1) for accessing
the Flash devices. So no logical to physical address mapping or vice versa is necessary. lm_device_t is a driver structure
for storing and sharing the device specific information across driver functions.
#define LM_STATUS_SUCCESS 0
#define LM_STATUS_FAILURE 1
#define LM_STATUS_BUSY 18

/* NVRAM flags for nvram_write_dword and nvram_read_dword. */
#define NVRAM_FLAG_NONE 0x00
#define NVRAM_FLAG_SET_FIRST_CMD_BIT 0x01
#define NVRAM_FLAG_SET_LAST_CMD_BIT 0x02
#define NVRAM_FLAG_BUFFERED_FLASH 0x04

#define GRCBASE_MCP 0x080000

#define MCP_REG_MCPR_NVM_COMMAND 0x6400
 #define MCPR_NVM_COMMAND_RST (1L<<0)
 #define MCPR_NVM_COMMAND_RST_BITSHIFT 0
 #define MCPR_NVM_COMMAND_DONE (1L<<3)
 #define MCPR_NVM_COMMAND_DONE_BITSHIFT 3
 #define MCPR_NVM_COMMAND_DOIT (1L<<4)
 #define MCPR_NVM_COMMAND_DOIT_BITSHIFT 4
 #define MCPR_NVM_COMMAND_WR (1L<<5)
 #define MCPR_NVM_COMMAND_WR_BITSHIFT 5
 #define MCPR_NVM_COMMAND_ERASE (1L<<6)
 #define MCPR_NVM_COMMAND_ERASE_BITSHIFT 6
 #define MCPR_NVM_COMMAND_FIRST (1L<<7)
 #define MCPR_NVM_COMMAND_FIRST_BITSHIFT 7
 #define MCPR_NVM_COMMAND_LAST (1L<<8)
 #define MCPR_NVM_COMMAND_LAST_BITSHIFT 8
 #define MCPR_NVM_COMMAND_WREN (1L<<16)
 #define MCPR_NVM_COMMAND_WREN_BITSHIFT 16
 #define MCPR_NVM_COMMAND_WRDI (1L<<17)
 #define MCPR_NVM_COMMAND_WRDI_BITSHIFT 17
 #define MCPR_NVM_COMMAND_RD_ID (1L<<20)
 #define MCPR_NVM_COMMAND_RD_ID_BITSHIFT 20
 #define MCPR_NVM_COMMAND_RD_STATUS (1L<<21)

Note: Request level 0 is the highest priority arbitration request level and is reserved for BCM57710/BCM57711C
firmware/bootcode.
Broadcom Corporation
Document 57710_57711-PG200-R NVRAM Access Example Code Page 219

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 #define MCPR_NVM_COMMAND_RD_STATUS_BITSHIFT 21
 #define MCPR_NVM_COMMAND_MODE_256 (1L<<22)
 #define MCPR_NVM_COMMAND_MODE_256_BITSHIFT 22

#define MCP_REG_MCPR_NVM_STATUS 0x6404
 #define MCPR_NVM_STATUS_SPI_FSM_STATE (0x1fL<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_IDLE (0L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_IDLE_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CMD0 (1L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CMD0_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CMD1 (2L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CMD1_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CMD_FINISH0 (3L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CMD_FINISH0_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CMD_FINISH1 (4L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CMD_FINISH1_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_ADDR0 (5L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_ADDR0_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_WRITE_DATA0 (6L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_WRITE_DATA0_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_WRITE_DATA1 (7L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_WRITE_DATA1_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_WRITE_DATA2 (8L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_WRITE_DATA2_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_DATA0 (9L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_DATA0_BITSHIFT0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_DATA1 (10L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_DATA1_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_DATA2 (11L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_DATA2_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID0 (12L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID0_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID1 (13L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID1_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID2 (14L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID2_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID3 (15L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID3_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID4 (16L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_READ_STATUS_RDID4_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CHECK_BUSY0 (17L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_CHECK_BUSY0_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_ST_WREN (18L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_ST_WREN_BITSHIFT 0
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_WAIT (19L<<0)
 #define MCPR_NVM_STATUS_SPI_FSM_STATE_SPI_WAIT_BITSHIFT 0

#define MCP_REG_MCPR_NVM_WRITE 0x6408
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE (0xffffffffL<<0)
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_BITSHIFT 0
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_BIT_BANG (0L<<0)
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_BIT_BANG_BITSHIFT 0
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_SI (1L<<0)
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_SI_BITSHIFT 0
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_SO (2L<<0)
Broadcom Corporation

Page 220 NVRAM Access Example Code Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_SO_BITSHIFT 0
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_CS_B (4L<<0)
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_CS_B_BITSHIFT 0
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_SCLK (8L<<0)
 #define MCPR_NVM_WRITE_NVM_WRITE_VALUE_SCLK_BITSHIFT 0

#define MCP_REG_MCPR_NVM_ADDR 0x640c
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE (0xffffffL<<0)
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_BITSHIFT 0
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_BIT_BANG (0L<<0)
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_BIT_BANG_BITSHIFT 0
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_SI (1L<<0)
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_SI_BITSHIFT 0
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_SO (2L<<0)
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_SO_BITSHIFT 0
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_CS_B (4L<<0)
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_CS_B_BITSHIFT 0
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_SCLK (8L<<0)
 #define MCPR_NVM_ADDR_NVM_ADDR_VALUE_SCLK_BITSHIFT 0

#define MCP_REG_MCPR_NVM_READ 0x6410
 #define MCPR_NVM_READ_NVM_READ_VALUE (0xffffffffL<<0)
 #define MCPR_NVM_READ_NVM_READ_VALUE_BITSHIFT 0
 #define MCPR_NVM_READ_NVM_READ_VALUE_BIT_BANG (0L<<0)
 #define MCPR_NVM_READ_NVM_READ_VALUE_BIT_BANG_BITSHIFT 0
 #define MCPR_NVM_READ_NVM_READ_VALUE_SI (1L<<0)
 #define MCPR_NVM_READ_NVM_READ_VALUE_SI_BITSHIFT 0
 #define MCPR_NVM_READ_NVM_READ_VALUE_SO (2L<<0)
 #define MCPR_NVM_READ_NVM_READ_VALUE_SO_BITSHIFT 0
 #define MCPR_NVM_READ_NVM_READ_VALUE_CS_B (4L<<0)
 #define MCPR_NVM_READ_NVM_READ_VALUE_CS_B_BITSHIFT 0
 #define MCPR_NVM_READ_NVM_READ_VALUE_SCLK (8L<<0)
 #define MCPR_NVM_READ_NVM_READ_VALUE_SCLK_BITSHIFT 0

#define MCP_REG_MCPR_NVM_CFG1 0x6414
 #define MCPR_NVM_CFG1_FLASH_MODE (1L<<0)
 #define MCPR_NVM_CFG1_FLASH_MODE_BITSHIFT 0
 #define MCPR_NVM_CFG1_BUFFER_MODE (1L<<1)
 #define MCPR_NVM_CFG1_BUFFER_MODE_BITSHIFT 1
 #define MCPR_NVM_CFG1_PASS_MODE (1L<<2)
 #define MCPR_NVM_CFG1_PASS_MODE_BITSHIFT 2
 #define MCPR_NVM_CFG1_BITBANG_MODE (1L<<3)
 #define MCPR_NVM_CFG1_BITBANG_MODE_BITSHIFT 3
 #define MCPR_NVM_CFG1_STATUS_BIT (0x7L<<4)
 #define MCPR_NVM_CFG1_STATUS_BIT_BITSHIFT 4
 #define MCPR_NVM_CFG1_SPI_CLK_DIV (0xfL<<7)
 #define MCPR_NVM_CFG1_SPI_CLK_DIV_BITSHIFT 7
 #define MCPR_NVM_CFG1_SEE_CLK_DIV (0x7ffL<<11)
 #define MCPR_NVM_CFG1_SEE_CLK_DIV_BITSHIFT 11
 #define MCPR_NVM_CFG1_STRAP_CONTROL_0 (1L<<23)
 #define MCPR_NVM_CFG1_STRAP_CONTROL_0_BITSHIFT 23
 #define MCPR_NVM_CFG1_PROTECT_MODE (1L<<24)
 #define MCPR_NVM_CFG1_PROTECT_MODE_BITSHIFT 24
 #define MCPR_NVM_CFG1_FLASH_SIZE (1L<<25)
 #define MCPR_NVM_CFG1_FLASH_SIZE_BITSHIFT 25
 #define MCPR_NVM_CFG1_FW_USTRAP_1 (1L<<26)
Broadcom Corporation
Document 57710_57711-PG200-R NVRAM Access Example Code Page 221

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 #define MCPR_NVM_CFG1_FW_USTRAP_1_BITSHIFT 26
 #define MCPR_NVM_CFG1_FW_USTRAP_0 (1L<<27)
 #define MCPR_NVM_CFG1_FW_USTRAP_0_BITSHIFT 27
 #define MCPR_NVM_CFG1_FW_USTRAP_2 (1L<<28)
 #define MCPR_NVM_CFG1_FW_USTRAP_2_BITSHIFT 28
 #define MCPR_NVM_CFG1_FW_USTRAP_3 (1L<<29)
 #define MCPR_NVM_CFG1_FW_USTRAP_3_BITSHIFT 29
 #define MCPR_NVM_CFG1_FW_FLASH_TYPE_EN (1L<<30)
 #define MCPR_NVM_CFG1_FW_FLASH_TYPE_EN_BITSHIFT 30
 #define MCPR_NVM_CFG1_COMPAT_BYPASSS (1L<<31)
 #define MCPR_NVM_CFG1_COMPAT_BYPASSS_BITSHIFT 31

#define MCP_REG_MCPR_NVM_CFG2 0x6418
 #define MCPR_NVM_CFG2_ERASE_CMD (0xffL<<0)
 #define MCPR_NVM_CFG2_ERASE_CMD_BITSHIFT 0
 #define MCPR_NVM_CFG2_STATUS_CMD (0xffL<<16)
 #define MCPR_NVM_CFG2_STATUS_CMD_BITSHIFT 16
 #define MCPR_NVM_CFG2_READ_ID (0xffL<<24)
 #define MCPR_NVM_CFG2_READ_ID_BITSHIFT 24

#define MCP_REG_MCPR_NVM_CFG3 0x641c
 #define MCPR_NVM_CFG3_BUFFER_RD_CMD (0xffL<<0)
 #define MCPR_NVM_CFG3_BUFFER_RD_CMD_BITSHIFT 0
 #define MCPR_NVM_CFG3_WRITE_CMD (0xffL<<8)
 #define MCPR_NVM_CFG3_WRITE_CMD_BITSHIFT 8
 #define MCPR_NVM_CFG3_READ_CMD (0xffL<<24)
 #define MCPR_NVM_CFG3_READ_CMD_BITSHIFT 24

#define MCP_REG_MCPR_NVM_SW_ARB 0x6420
 #define MCPR_NVM_SW_ARB_ARB_REQ_SET0 (1L<<0)
 #define MCPR_NVM_SW_ARB_ARB_REQ_SET0_BITSHIFT 0
 #define MCPR_NVM_SW_ARB_ARB_REQ_SET1 (1L<<1)
 #define MCPR_NVM_SW_ARB_ARB_REQ_SET1_BITSHIFT 1
 #define MCPR_NVM_SW_ARB_ARB_REQ_SET2 (1L<<2)
 #define MCPR_NVM_SW_ARB_ARB_REQ_SET2_BITSHIFT 2
 #define MCPR_NVM_SW_ARB_ARB_REQ_SET3 (1L<<3)
 #define MCPR_NVM_SW_ARB_ARB_REQ_SET3_BITSHIFT 3
 #define MCPR_NVM_SW_ARB_ARB_REQ_CLR0 (1L<<4)
 #define MCPR_NVM_SW_ARB_ARB_REQ_CLR0_BITSHIFT 4
 #define MCPR_NVM_SW_ARB_ARB_REQ_CLR1 (1L<<5)
 #define MCPR_NVM_SW_ARB_ARB_REQ_CLR1_BITSHIFT 5
 #define MCPR_NVM_SW_ARB_ARB_REQ_CLR2 (1L<<6)
 #define MCPR_NVM_SW_ARB_ARB_REQ_CLR2_BITSHIFT 6
 #define MCPR_NVM_SW_ARB_ARB_REQ_CLR3 (1L<<7)
 #define MCPR_NVM_SW_ARB_ARB_REQ_CLR3_BITSHIFT 7
 #define MCPR_NVM_SW_ARB_ARB_ARB0 (1L<<8)
 #define MCPR_NVM_SW_ARB_ARB_ARB0_BITSHIFT 8
 #define MCPR_NVM_SW_ARB_ARB_ARB1 (1L<<9)
 #define MCPR_NVM_SW_ARB_ARB_ARB1_BITSHIFT 9
 #define MCPR_NVM_SW_ARB_ARB_ARB2 (1L<<10)
 #define MCPR_NVM_SW_ARB_ARB_ARB2_BITSHIFT 10
 #define MCPR_NVM_SW_ARB_ARB_ARB3 (1L<<11)
 #define MCPR_NVM_SW_ARB_ARB_ARB3_BITSHIFT 11
 #define MCPR_NVM_SW_ARB_REQ0 (1L<<12)
 #define MCPR_NVM_SW_ARB_REQ0_BITSHIFT 12
 #define MCPR_NVM_SW_ARB_REQ1 (1L<<13)
Broadcom Corporation

Page 222 NVRAM Access Example Code Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 #define MCPR_NVM_SW_ARB_REQ1_BITSHIFT 13
 #define MCPR_NVM_SW_ARB_REQ2 (1L<<14)
 #define MCPR_NVM_SW_ARB_REQ2_BITSHIFT 14
 #define MCPR_NVM_SW_ARB_REQ3 (1L<<15)
 #define MCPR_NVM_SW_ARB_REQ3_BITSHIFT 15

#define MCP_REG_MCPR_NVM_ACCESS_ENABLE 0x6424
 #define MCPR_NVM_ACCESS_ENABLE_EN (1L<<0)
 #define MCPR_NVM_ACCESS_ENABLE_EN_BITSHIFT 0
 #define MCPR_NVM_ACCESS_ENABLE_WR_EN (1L<<1)
 #define MCPR_NVM_ACCESS_ENABLE_WR_EN_BITSHIFT 1

#define NVRAM_TIMEOUT_COUNT 30000

typedef unsigned int U32;
typedef U32 u32_t;
typedef u32_t lm_status_t;

/***
 * This function is called during the driver initialization and is used to *
 * determine Flash device type, size, and page_size parameters which are *
 * required when accessing the Flash device *
 ***/
static lm_status_t lm_get_nvm_info(lm_device_t *pdev)
{

u32_t val = 0;
REG_RD(pdev,GRCBASE_MCP,MCP_REG_MCPR_NVM_CFG4,&val);
pdev->hw_info.flash_spec.total_size = NVRAM_1MB_SIZE << (val &

MCPR_NVM_CFG4_FLASH_SIZE);
pdev->hw_info.flash_spec.page_size = NVRAM_PAGE_SIZE;
return LM_STATUS_SUCCESS;

}

/***
 * This function acquires the NVRAM arbitration lock. *
 ***/
static lm_status_t acquire_nvram_lock(lm_device_t *pdev)
{
 lm_status_t lm_status;
 u32_t j, cnt;
 u32_t val;

 cnt = NVRAM_TIMEOUT_COUNT;
 val = 0;

 /* Request access to the flash interface. */
 REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_SW_ARB, MCPR_NVM_SW_ARB_ARB_REQ_SET1);

 /* Wait in a loop until access is granted or timeout */
 for(j = 0; j < cnt*10; j++)
 {
 REG_RD(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_SW_ARB,&val);
 if(val & MCPR_NVM_SW_ARB_ARB_ARB1)
 {
Broadcom Corporation
Document 57710_57711-PG200-R NVRAM Access Example Code Page 223

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 break;
 }

 mm_wait(5);
 }

 if(val & MCPR_NVM_SW_ARB_ARB_ARB1)
 {
 lm_status = LM_STATUS_SUCCESS;
 }
 else
 {
 lm_status = LM_STATUS_BUSY;
 }

 return lm_status;
} /* acquire_nvram_lock */

/***
 * This function releases the NVRAM arbitration lock. *
 ***/
static void release_nvram_lock(lm_device_t *pdev)
{
 u32_t j, cnt;
 u32_t val;

 cnt = NVRAM_TIMEOUT_COUNT;
 val = 0;

 /* Relinquish nvram interface. */
 REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_SW_ARB, MCPR_NVM_SW_ARB_ARB_REQ_CLR1);

 /* Wait for completion */
 for(j = 0; j < cnt; j++)
 {
 REG_RD(pdev,GRCBASE_MCP, MCP_REG_MCPR_NVM_SW_ARB,&val);

 if(!(val & MCPR_NVM_SW_ARB_ARB_ARB1))
 {
 break;
 }

 mm_wait(5);
 }
} /* release_nvram_lock */

/***
 * Sends Write Enable command on SPI interface *
 ***/
static lm_status_t enable_nvram_write(lm_device_t *pdev)
{

u32_t val, j, cnt;
lm_status_t lm_status;

/* Need to clear DONE bit separately. */
Broadcom Corporation

Page 224 NVRAM Access Example Code Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);

/* Issue a write enable command. */
REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DOIT |

MCPR_NVM_COMMAND_WREN);

cnt = NVRAM_TIMEOUT_COUNT;
lm_status = LM_STATUS_BUSY;

 /* Wait for completion */
for(j = 0; j < cnt; j++)
{

 /* OS specific function for a delay of 5 uS. */
mm_wait(pdev, 5);

REG_RD(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, &val);
if(val & MCPR_NVM_COMMAND_DONE)
{

lm_status = LM_STATUS_SUCCESS;
break;

}
}
return lm_status;

} /* enable_nvram_write */

/***
 * Sends Write Disable command on SPI interface. *
 ***/
static lm_status_t disable_nvram_write(lm_device_t *pdev)
{

lm_status_t lm_status;
u32_t cnt,j,val;

/* Need to clear DONE bit separately. */
REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);

/* Issue a write enable command. */
REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DOIT |

MCPR_NVM_COMMAND_WRDI);

cnt = NVRAM_TIMEOUT_COUNT;
lm_status = LM_STATUS_BUSY;

for(j = 0; j < cnt; j++)
{

 /* OS specific function for a delay of 5 uS. */
mm_wait(pdev, 5);

REG_RD(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, &val);
if(val & MCPR_NVM_COMMAND_DONE)
{

lm_status = LM_STATUS_SUCCESS;
break;

}
}

Broadcom Corporation
Document 57710_57711-PG200-R NVRAM Access Example Code Page 225

BCM57710/BCM57711 Programmer’s Guide
09/25/09
return lm_status;
} /* disable_nvram_write */

/***
 * Enable accessing of NVRAM interface registers. *
 ***/
static lm_status_t enable_nvram_access(lm_device_t *pdev)
{

u32_t val;

REG_RD(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_ACCESS_ENABLE, &val);

/* Enable both bits, even on read. */
REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_ACCESS_ENABLE, val |

MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN);

return LM_STATUS_SUCCESS;
} /* enable_nvram_access */

/***
 * Disable accessing of NVRAM interface registers. *
 ***/
static lm_status_t disable_nvram_access(lm_device_t *pdev)
{

u32_t val;

REG_RD(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_ACCESS_ENABLE, &val);

/* Disable both bits, even after read. */
REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_ACCESS_ENABLE, val &

~(MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));

return LM_STATUS_SUCCESS;
} /* disable_nvram_access */

/***
 * Read a DWORD from NVRAM. This function should be called only after nvram *
 * lock is acquired and nvram interface register access is enabled *
 ***/
static lm_status_t nvram_read_dword(lm_device_t *pdev, u32_t offset, u32_t *ret_val, u32_t
nvram_flags)
{
 lm_status_t lm_status;
 u32_t cmd_flags;
 u32_t val;
 u32_t j, cnt;

 /* Build the command word. */
 cmd_flags = nvram_flags | MCPR_NVM_COMMAND_DOIT ;

 /* Need to clear DONE bit separately. */
 REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
Broadcom Corporation

Page 226 NVRAM Access Example Code Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 /* Address of the NVRAM to read from. */
 REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_ADDR, offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE);

 /* Issue a read command. */
 REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);

 cnt = NVRAM_TIMEOUT_COUNT;

 /* Wait for completion. */
 lm_status = LM_STATUS_BUSY;
 for(j = 0; j < cnt; j++)
 {
 mm_wait(pdev, 5);

 REG_RD(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, &val);
 if(val & MCPR_NVM_COMMAND_DONE)
 {

 REG_RD(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_READ, &val);

 /* Change to little endian if required. */
 #if defined(LITTLE_ENDIAN)
 val = ((val & 0xff) << 24) | ((val & 0xff00) << 8) |
 ((val & 0xff0000) >> 8) | ((val >> 24) & 0xff);
 #endif

 *ret_val = val;

 lm_status = LM_STATUS_SUCCESS;

 break;
 }
 }

 return lm_status;
} /* nvram_read_dword */

/***/
 * Write a DWORD into NVRAM. This function should be called only after nvram *
 * lock is acquired and nvram register access is enabled *
 ***/
static lm_status_t nvram_write_dword(lm_device_t *pdev, u32_t offset, u32_t val, u32_t
nvram_flags)
{
 lm_status_t lm_status;
 u32_t cmd_flags;
 u32_t j, cnt;

 /* Build the command word. */
 cmd_flags = nvram_flags | MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR;

 /* Change to little endian if required. */
 #if defined(LITTLE_ENDIAN)
 val = ((val & 0xff) << 24) | ((val & 0xff00) << 8) |
 ((val & 0xff0000) >> 8) | ((val >> 24) & 0xff);
 #endif
Broadcom Corporation
Document 57710_57711-PG200-R NVRAM Access Example Code Page 227

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 /* Need to clear DONE bit separately. */
 REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);

 /* Write the data. */
 REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_WRITE, val);

 /* Address of the NVRAM to write to. */
 REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_ADDR, offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE);

 /* Issue the write command. */
 REG_WR(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);

 cnt = NVRAM_TIMEOUT_COUNT;

 /* Wait for completion. */
 lm_status = LM_STATUS_BUSY;
 for(j = 0; j < cnt; j++)
 {
 mm_wait(pdev, 5);

 REG_RD(pdev, GRCBASE_MCP, MCP_REG_MCPR_NVM_COMMAND, &val);
 if(val & MCPR_NVM_COMMAND_DONE)
 {
 lm_status = LM_STATUS_SUCCESS;
 break;
 }
 }

 return lm_status;
} /* nvram_write_dword */

/***
 * Read the buf_size number of DWORDs from NVRAM into ret_buf[] *
 ***/
lm_status_t lm_nvram_read(lm_device_t *pdev, u32_t offset, u32_t *ret_buf, u32_t buf_size)
{
 lm_status_t lm_status;
 u32_t cmd_flags;

 /* Return Failure if either buf_size or offset is not DWORD aligned.*/
 if((buf_size & 0x03) || (offset & 0x03))
 {
 return LM_STATUS_FAILURE;
 }

 /* Return Failure if the given offset+buf_size crosses the total NVRAM size.*/
 /* total_size is determined during the nvram initialization of the driver
 initialization based on the detected NVRAM type*/
 if(offset + buf_size > pdev->hw_info.flash_spec.total_size)
 {
 return LM_STATUS_FAILURE;
 }

 /* Request access to the flash interface. */
 lm_status = acquire_nvram_lock(pdev);
Broadcom Corporation

Page 228 NVRAM Access Example Code Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 if(lm_status != LM_STATUS_SUCCESS)
 {
 return lm_status;
 }

 /* Enable access to flash interface */
 lm_status = enable_nvram_access(pdev);
 if(lm_status != LM_STATUS_SUCCESS)
 {

 return lm_status;
 }

 /* Read the first word. Note the use if MODE_256 bit*/
 cmd_flags = MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_MODE_256;
 while(buf_size > sizeof(u32_t) && lm_status == LM_STATUS_SUCCESS)
 {
 lm_status = nvram_read_dword(pdev, offset, ret_buf, cmd_flags);

 /* Advance to the next dword. */
 offset += sizeof(u32_t);
 ret_buf++;
 buf_size -= sizeof(u32_t);
 cmd_flags = 0;
 }

 if(lm_status == LM_STATUS_SUCCESS)
 {
 cmd_flags |= MCPR_NVM_COMMAND_LAST;
 lm_status = nvram_read_dword(pdev, offset, ret_buf, cmd_flags);
 }

 /* Disable access to flash interface */
 disable_nvram_access(pdev);

 /* Release the NVRAM access arbitration lock */
 release_nvram_lock(pdev);

 return lm_status;
} /* lm_nvram_read */

/***
 * Write the buf_size number of DWORDs from data_buf[] into NVRAM *
 ***/
lm_status_t lm_nvram_write(lm_device_t *pdev, u32_t offset, u32_t *data_buf, u32_t buf_size)
{
 lm_status_t lm_status;
 u32_t cmd_flags;
 u32_t written_so_far, page_start, page_end, data_start, data_end;
 u32_t idx, *ptr32, addr;
 static u32_t flash_buffer[NVRAM_PAGE_SIZE/4];

 /* Return Failure if offset is not DWORD aligned.*/
 if(offset & 0x03)
 {
 return LM_STATUS_FAILURE;
Broadcom Corporation
Document 57710_57711-PG200-R NVRAM Access Example Code Page 229

BCM57710/BCM57711 Programmer’s Guide
09/25/09
 }

 /* Return Failure if the given offset+buf_size crosses the total NVRAM size.*/
 /* pdev->hw_info.flash_spec.total_size is determined during the nvram
 initialization of the driver initialization based on the detected NVRAM type*/
 if(offset + buf_size > pdev->hw_info.flash_spec.total_size)
 {
 return LM_STATUS_FAILURE;
 }

 lm_status = LM_STATUS_SUCCESS;

 written_so_far = 0;
 ptr32 = data_buf;

 while (written_so_far < buf_size)
 {
 /* Find the page_start addr */
 page_start = offset + written_so_far;

 /* page_size is determined during the nvram initialization of the driver
 initialization based on the detected NVRAM type*/
 page_start -= (page_start % pdev->hw_info.flash_spec.page_size);

 /* Find the page_end addr */
 page_end = page_start + pdev->hw_info.flash_spec.page_size;

 /* Find the data_start addr */
 data_start = (written_so_far==0) ? offset : page_start;

 /* Find the data_end addr */
 data_end = (page_end > offset + buf_size) ?
 (offset+buf_size) : page_end;

 /* Read the whole page into the buffer (non-buffer flash only) */
 lm_status = lm_nvram_read (pdev, page_start, flash_buffer, pdev-
>hw_info.flash_spec.page_size);
 if(lm_status != LM_STATUS_SUCCESS)

 return lm_status;

 /* Request access to the flash interface. */

 lm_status = acquire_nvram_lock(pdev);
 if(lm_status != LM_STATUS_SUCCESS)

 return lm_status;

 /* Enable access to flash interface */
 lm_status = enable_nvram_access(pdev);
 if(lm_status != LM_STATUS_SUCCESS)
 {
 release_nvram_lock(pdev);
 return lm_status;
 }

 /* Enable writes to flash interface (unlock write-protect) */
 lm_status = enable_nvram_write(pdev);
 if(lm_status != LM_STATUS_SUCCESS)
Broadcom Corporation

Page 230 NVRAM Access Example Code Document 57710_57711-PG200-R

Programmer’s Guide BCM57710/BCM57711
09/25/09
 {
 disable_nvram_access(pdev);
 release_nvram_lock(pdev);
 return lm_status;
 }

 /* Loop to write back the buffer data from page_start to data_start */
 cmd_flags = MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_MODE_256;
 idx = 0;
 for (addr=page_start; addr<data_start; addr+=4, idx++)
 {
 /* Write back only for non-buffered flash */
 nvram_write_dword(pdev, addr, flash_buffer[idx], cmd_flags);
 cmd_flags = 0;
 }

 /* Loop to write the new data from data_start to data_end */
 for (addr=data_start; addr<data_end; addr+=4, idx++)
 {
 if (addr==(page_end-4)) {
 cmd_flags = MCPR_NVM_COMMAND_LAST;
 }
 nvram_write_dword(pdev, addr, *ptr32, cmd_flags);
 cmd_flags = 0;
 ptr32++;
 }

 /* Loop to write back the buffer data from data_end to page_end */
 for (addr=data_end; addr<page_end; addr+=4, idx++)
 {
 /* Write back only for non-buffered flash */
 if (addr == page_end-4)
 {
 cmd_flags = MCPR_NVM_COMMAND_LAST;
 }
 nvram_write_dword(pdev, addr, flash_buffer[idx], cmd_flags);
 cmd_flags = 0;
 }

 /* Disable writes to flash interface (lock write-protect) */
 disable_nvram_write(pdev);

 /* Disable access to flash interface */
 disable_nvram_access(pdev);

 release_nvram_lock(pdev);

 /* Increment written_so_far */
 written_so_far += data_end - data_start;
 } // while

 return lm_status;

} /* lm_nvram_write */
Broadcom Corporation
Document 57710_57711-PG200-R NVRAM Access Example Code Page 231

BCM57710/BCM57711 Programmer’s Guide
09/25/09
Document 57710_57711-PG200-R

Broadcom Corporation

5300 Calilfornia Avenue
Irvine, CA 92617

Phone: 949-926-5000
Fax: 949-926-5203

Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.
Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation

does not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1: Introduction
	Functional Description
	Supported Devices
	Abbreviations and Definitions

	Section 2: Hardware Architecture
	Theory of Operations
	TCP-Offload
	iSCSI Offload
	Remote PHY
	Basic Operation Between Device and Remote Copper PHY
	SerDes
	MAC
	Receive Front End
	Network Interface Glue
	Arbiter/Filter
	Big Receive Buffer
	Parser
	Searcher
	TSTORM (aka L4 Rx Processor or TCP Rx Processor)
	USTORM (aka L5 Rx Processor or ULP Rx Processor)
	XSTORM (aka Tx Processor)
	CSTORM (aka Ack/Completion Processor)

	Segmentation and Framing Unit (aka Packet Builder and Framer-PBF)
	Marker and CRC Removal (aka ULP Packet Builder-UPB)
	PCIe
	Management Control Processor
	Device Address Space
	Host Bar Memory Map
	MCP Memory Map

	Section 3: NVRAM Configuration
	NVRAM Map
	Code Directory
	Manufacturing Information
	Feature Configuration Information
	Virtual Product Data Region
	Program Images
	Calculating the CRC 32 Checksum
	Flash Controller
	Self Configuration
	Atmel Page Sizes
	Programming the Non-Volatile Memory

	Section 4: Data Structures
	Host Memory L2 Data Structures
	Virtual Versus Physical Address Views
	Buffer Descriptor Chains
	RX Buffer Descriptor Format
	RX Completion Queue Entry Format
	Fast Path Rx CQE
	Ramrod Rx CQE
	Next Page Rx CQE

	TX Buffer Descriptor Format
	Tx Parsing Information BD
	Next Page Tx BD

	Status Block Format
	Fast Path Status Block
	Default Status Block

	Section 5: Host Driver Flows
	Device Initialization and Shutdown
	MCP Interface
	Heart Beat/Pulse
	NIG Drain
	Hardware Block Initialization and STORM Firmware Download
	Host Driver Initialization
	Ramrod
	Device Shutdown

	Interrupt Handling and Attention
	Interrupt modes
	BCM57710/BCM57711 Interrupt generation
	Status Blocks
	ISR Mode
	Interrupt Configuration and Control
	Host Driver Interrupt Handler Flow
	HC Registers
	Attention Signals
	Attention Routing
	Signal Monitoring
	Masking
	Dynamic vs. Static Interrupt Groups
	Attention Initialization by the Host Driver
	Handling Attentions in the Host Driver

	L2 Transmit Flow
	ASIC/Firmware Flow
	Driver Flow
	Tx Interrupt Handling

	L2 Receive Flow
	ASIC Flow
	TStorm
	USTORM
	Driver Flow
	Rx Interrupt Handling
	Interrupt Coalescing

	Transparent Packet Aggregation
	Glossary
	Theory of Operations
	How Does Aggregation Work?
	When to Aggregate?
	When to Stop Aggregation?
	Implementation Assumptions
	TPA Implementation
	Required Firmware Version
	Firmware Data Structures
	USTORM
	Host Data Structures
	Scatter Gather Queue
	Scatter Gather Entry
	Completion Queue Entry
	High Level Outline
	Initialization
	Fastpath Operation

	Large Send Offload
	Device Statistics
	Direct Memory Access Engine (DMAE)
	The “Go” Register
	The Opcode
	Architecture

	Section 6: PCIe
	Introduction
	Supported Features
	Configuration Space
	Required Registers
	Capabilities Registers
	Device-Specific Registers
	Expansion ROM
	Operational Characteristics

	Section 7: Ethernet Link Configuration
	Overview
	MDIO Interface
	Clause 22 Overview
	Clause 45 Overview
	Accessing PHY Registers
	Auto-Polling Mode
	Bit-Bang Mode
	Auto-Access Mode

	Internal PHY

	Appendix A: bxe_hsi.h
	Appendix B: Programming the Non-Volatile Memory
	NVRAM Access Example Code

