
VMware ESXi vim-cmd Command: A Quick
Tutorial
Command lines are very important for system administrors when it comes to automation.

Although GUIs are more likely (not always as I’ve seen too many bad ones) to be more

intuitive and easier to get started with, sooner or later administrators will use command

lines more for better productivity. Check outDoubleCloud ICE if you want the best of both

GUI and command lines.

There are a few command line options in VMware ESXi, among which is the vim-cmd. If

you are familiar with vSphere API, you already know VIM is the original name for vSphere

management (Virtual Infrastructure Management). The vim-cmd is indeed associated with

the vSphere API – it’s built on top of the hostd which implements the APIs. With this

context in mind, you can guess out what you can do with the vim-cmd in general.

For lower level of management and control of ESXi, you want to check out theesxcli

command.

The following is a quick overview of the command and its subcommands.

Where Is It Installed?

On ESXi, the vim-cmd is at /bin/vim-cmd, which is actually a symbolic link to a host

executable as shown in the following.

~ # ls -l /bin/vim-cmd

lrwxrwxrwx 1 root root 11 Mar 23 2013 /bin/vim-cmd

-> /sbin/hostd

What You Can Do With It?

The vim-cmd has a few sub-commands. To find out, you can simply type vim-cmd at a SSH

shell as follows:

~ # vim-cmd

Commands available under /:

hbrsvc/ internalsvc/ solo/ vmsvc/

hostsvc/ proxysvc/ vimsvc/ help

As you can see, there are 7 sub-command categories with the help ignored (help is

important but it does not represent a type of itself). With these 7 types, you can remove the

svc (solo is exception) and get the types as: hbr, host, internal, proxy, solo, vim, and vm. I

think you can guess out what they are for at high level. Please note that the internal is not

really related to internal APIs of the ESXi.

Without further due, let’s drive down each categories.

http://www.doublecloud.net/product/ice.php
http://www.doublecloud.org/2015/05/vmware-esxi-esxcli-command-a-quick-tutorial/
http://www.doublecloud.org/2015/05/vmware-esxi-esxcli-command-a-quick-tutorial/

Virtual Machine Management Commands

Again, to find out what specific commands avaiable in each category, you just type the

subcommand such as vmsvc here.

~ # vim-cmd vmsvc

Commands available under vmsvc/:

acquiremksticket get.snapshotinfo

acquireticket get.spaceNeededForConsolidation

connect get.summary

convert.toTemplate get.tasklist

convert.toVm getallvms

createdummyvm gethostconstraints

destroy login

device.connection logout

device.connusbdev message

device.disconnusbdev power.getstate

device.diskadd power.hibernate

device.diskaddexisting power.off

device.diskremove power.on

device.getdevices power.reboot

device.toolsSyncSet power.reset

device.vmiadd power.shutdown

device.vmiremove power.suspend

devices.createnic power.suspendResume

disconnect queryftcompat

get.capability reload

get.config setscreenres

get.config.cpuidmask snapshot.create

get.configoption snapshot.dumpoption

get.datastores snapshot.get

get.disabledmethods snapshot.remove

get.environment snapshot.removeall

get.filelayout snapshot.revert

get.filelayoutex snapshot.setoption

get.guest tools.cancelinstall

get.guestheartbeatStatus tools.install

get.managedentitystatus tools.upgrade

get.networks unregister

get.runtime upgrade

As you can see, these subcommands are mostly mapped to the managed object type

VirtualMachine in vSphere API. Some of these commands need additional arguments to

carry out its duty. When it’s associated with a virtual machine, it’s the virtual machine ID.

What is it? You can find out with getallvms command – just watch out the first column. This

ID is in fact the same as the value of ManagedObjectReference. You can therefore optionally

find them out with the Managed Object Browser.

~ # vim-cmd vmsvc/getallvms

Vmid Name File Guest OS

Version Annotation

8 testVM [datastore1] testVM/testVM.vmx ubuntu64Guest

vmx-09

...

Note that the ID is simple an integer. If you see something like “vm-9”, you are most likely

get this from a vCenter MOB. You need to open URL to an ESXi for the vim-cmd command

here.

The following example shows the network a virtual machine (whose vmID is 8) connects to:

~ # vim-cmd vmsvc/get.networks 8

Networks:

(vim.Network.Summary) {

 dynamicType = <unset>,

 network = 'vim.Network:HaNetwork-VM Network',

 name = "VM Network",

 accessible = true,

 ipPoolName = "",

 ipPoolId = <unset>,

}

The following command list the taks related to the virtual machine. There is no task for the

moment the command was issued, therefore an empty array was returned.

~ # vim-cmd vmsvc/get.tasklist 8

(ManagedObjectReference) []

The following command shows the capability of the virtual machine. Remember the

property called capability defined with VirtualMachine managed object? They refer to the

same thing and hold the same values.

~ # vim-cmd vmsvc/get.capability 8

(vim.vm.Capability) {

 dynamicType = <unset>,

 snapshotOperationsSupported = true,

 multipleSnapshotsSupported = true,

 snapshotConfigSupported = true,

 poweredOffSnapshotsSupported = true,

 memorySnapshotsSupported = true,

 revertToSnapshotSupported = true,

 quiescedSnapshotsSupported = true,

 disableSnapshotsSupported = false,

 lockSnapshotsSupported = false,

 consolePreferencesSupported = false,

 cpuFeatureMaskSupported = true,

 s1AcpiManagementSupported = true,

 settingScreenResolutionSupported = false,

 toolsAutoUpdateSupported = false,

 vmNpivWwnSupported = true,

 npivWwnOnNonRdmVmSupported = true,

 vmNpivWwnDisableSupported = true,

 vmNpivWwnUpdateSupported = true,

 swapPlacementSupported = true,

 swapPreservationSupported = true,

 toolsSyncTimeSupported = true,

 virtualMmuUsageSupported = true,

 diskSharesSupported = true,

 bootOptionsSupported = true,

 bootRetryOptionsSupported = true,

 settingVideoRamSizeSupported = true,

 settingDisplayTopologySupported = false,

 settingDisplayTopologyModesSupported = true,

 recordReplaySupported = true,

 changeTrackingSupported = true,

 multipleCoresPerSocketSupported = true,

 hostBasedReplicationSupported = true,

 guestAutoLockSupported = true,

 memoryReservationLockSupported = true,

 featureRequirementSupported = true,

 poweredOnMonitorTypeChangeSupported = true,

 vmfsNativeSnapshotSupported = true,

 seSparseDiskSupported = true,

 nestedHVSupported = true,

 vPMCSupported = true,

}

We’ve seen several commands that read information from the command. How about doing

something? Here is a command that creates new dummy virtual machine. I will expand on

this in future posts.

~ # vim-cmd vmsvc/createdummyvm testVM [datastore1] /testVM/testVM.vmx

There are a few more sub-commands that I don’t intend to show samples – they are very

similar and you can explore them by yourself.

VIM Service Commands

This category of commands are related to authentication, license, task management, etc.

The following commands give you an idea what exactly they are and how to use some of

them.

~ # vim-cmd vimsvc/

Commands available under vimsvc/:

auth/ license property_dump task_info

connect login task_cancel task_list

disconnect logout task_description

~ # vim-cmd vimsvc/auth

Commands available under vimsvc/auth/:

entity_permission_add lockdown_mode_enter

role_permissions

entity_permission_remove lockdown_mode_exit role_remove

entity_permissions permissions roles

lockdown_is_enabled privileges

lockdown_is_possible role_add

~ # vim-cmd vimsvc/auth/role_add vm_test

Role created: 10

The property_dump is an interesting one and I think very helpful for debugging. Somehow I

haven’t figured out the right parameters to it. I will try more and update it later if I discover

more there. At the same time, should you know a sample, please feel free to share in the

comment.

~ # vim-cmd vimsvc/property_dump

(vmodl.fault.InvalidRequest) {

 dynamicType = <unset>,

 faultCause = (vmodl.MethodFault) null,

 msg = "",

}

Proxy Service Commands

This category of commands are associated with networking as you can see from the

following console output.

~ # vim-cmd proxysvc

Commands available under proxysvc/:

add_np_service disconnect port_info

add_tcp_service login remove_service

connect logout service_list

These commands are mostly straight-forward. Here is an example with port_info. The

information displayed from this command is consistent with the hostd configuration you

can find at /etc/vmware/rhttpproxy/endpoints.conf.

~ # vim-cmd proxysvc/port_info

Http Port: 80

Https Port: 443

~ # vim-cmd proxysvc/service_list

(vim.ProxyService.EndpointSpec) [

 (vim.ProxyService.LocalServiceSpec) {

 dynamicType = <unset>,

 serverNamespace = "/",

 accessMode = "httpsWithRedirect",

 port = 8309,

 },

 (vim.ProxyService.LocalServiceSpec) {

 dynamicType = <unset>,

 serverNamespace = "/client/clients.xml",

 accessMode = "httpAndHttps",

 port = 8309,

 },

 (vim.ProxyService.LocalServiceSpec) {

 dynamicType = <unset>,

 serverNamespace = "/ha-nfc",

 accessMode = "httpAndHttps",

 port = 12001,

 },

 (vim.ProxyService.NamedPipeServiceSpec) {

 dynamicType = <unset>,

 serverNamespace = "/mob",

 accessMode = "httpsWithRedirect",

 pipeName = "/var/run/vmware/proxy-mob",

 },

 (vim.ProxyService.LocalServiceSpec) {

 dynamicType = <unset>,

 serverNamespace = "/nfc",

 accessMode = "httpAndHttps",

 port = 12000,

 },

 (vim.ProxyService.LocalServiceSpec) {

 dynamicType = <unset>,

 serverNamespace = "/sdk",

 accessMode = "httpsWithRedirect",

 port = 8307,

 },

 (vim.ProxyService.NamedPipeTunnelSpec) {

 dynamicType = <unset>,

 serverNamespace = "/sdkTunnel",

 accessMode = "httpOnly",

 pipeName = "/var/run/vmware/proxy-sdk-tunnel",

 },

 (vim.ProxyService.LocalServiceSpec) {

 dynamicType = <unset>,

 serverNamespace = "/ui",

 accessMode = "httpsWithRedirect",

 port = 8308,

 },

 (vim.ProxyService.LocalServiceSpec) {

 dynamicType = <unset>,

 serverNamespace = "/vpxa",

 accessMode = "httpsOnly",

 port = 8089,

 },

 (vim.ProxyService.LocalServiceSpec) {

 dynamicType = <unset>,

 serverNamespace = "/wsman",

 accessMode = "httpsWithRedirect",

 port = 8889,

 }

]

~ # more /etc/vmware/rhttpproxy/endpoints.conf

/ local 8309

redirect allow

/sdk local 8307 redirect

allow

/client/clients.xml local 8309 allow

allow

/ui local 8308 redirect

allow

/vpxa local 8089 reject

allow

/mob namedpipe /var/run/vmware/proxy-mob redirect

allow

/wsman local 8889 redirect

allow

/sdkTunnel namedpipetunnel /var/run/vmware/proxy-sdk-tunnel allow

reject

/ha-nfc local 12001 allow

allow

/nfc local 12000 allow

allow

Solo Commands

Unlike other command category, it does not come with svc as suffix. To find out what it

does, just type in the following command:

~ # vim-cmd solo

Commands available under solo/:

connect environment logout querycfgoptdesc

disconnect login querycfgopt registervm

Most of the commands like environment, querycfgopt, querycfgoptdesc are for showing the

environment that a ComputeResource presents for creating and configuring a virtual

machine. The corresponding managed object is the EnvironmentBrowser in vSphere APIs.

~ # vim-cmd solo/querycfgoptdesc

(vim.vm.ConfigOptionDescriptor) [

 (vim.vm.ConfigOptionDescriptor) {

 dynamicType = <unset>,

 key = "vmx-03",

 description = "ESX 2.x virtual machine",

 createSupported = false,

 defaultConfigOption = false,

 runSupported = false,

 upgradeSupported = false,

 },

 (vim.vm.ConfigOptionDescriptor) {

 dynamicType = <unset>,

 key = "vmx-04",

 description = "ESX 3.x virtual machine",

 createSupported = true,

 defaultConfigOption = false,

 runSupported = true,

 upgradeSupported = true,

 },

 (vim.vm.ConfigOptionDescriptor) {

 dynamicType = <unset>,

 key = "vmx-07",

 description = "ESX/ESXi 4.x virtual machine",

 createSupported = true,

 defaultConfigOption = false,

 runSupported = true,

 upgradeSupported = true,

 },

 (vim.vm.ConfigOptionDescriptor) {

 dynamicType = <unset>,

 key = "vmx-08",

 description = "ESXi 5.0 virtual machine",

 createSupported = true,

 defaultConfigOption = false,

 runSupported = true,

 upgradeSupported = true,

 },

 (vim.vm.ConfigOptionDescriptor) {

 dynamicType = <unset>,

 key = "vmx-09",

 description = "ESXi 5.1 virtual machine",

 createSupported = true,

 defaultConfigOption = true,

 runSupported = true,

 upgradeSupported = true,

 }

]

The most important command there is the registervm command, which can be shown as

follows:

~ # vim-cmd solo/registervm "{[datastore1] testvm/testvm.vmx}"

(vim.fault.InvalidDatastorePath) {

 dynamicType = <unset>,

 faultCause = (vmodl.MethodFault) null,

 datastore = <unset>,

 name = "",

 datastorePath = "[]{[datastore1] testvm/testvm.vmx}",

 msg = "Invalid datastore path '[]{[datastore1] testvm/testvm.vmx}'.",

}

Ooops! The path to the datastore is not right. It turns out it has to be a path starts with

/vmfs:

~ # vim-cmd solo/registervm

Insufficient arguments.

Usage: registervm vm path [name] [resourcepool]

registervm [cfg path] [name(optional)] [resourcepool(optional)]

Register the vm

~ # vim-cmd solo/registervm /vmfs/volumes/datastore1/testvm/testvm.vmx

69

You may be wondering how to do the opposite – unregister a virtual machine. It’s in the

vmsvc category and can be done as follows:

~ # vim-cmd vmsvc/unregister 69

~ #

Host Service Commands

This category of commands represent the most complicated ones in the vim-cmd as it’s

further divided into many sub-categories. See these with / in the following output:

~ # vim-cmd hostsvc

Commands available under hostsvc/:

advopt/ enable_ssh

refresh_services

autostartmanager/ firewall_disable_ruleset reset_service

datastore/ firewall_enable_ruleset runtimeinfo

datastorebrowser/ get_service_status set_hostid

firmware/ hostconfig

standby_mode_enter

net/ hosthardware

standby_mode_exit

rsrc/ hostsummary

start_esx_shell

storage/ login start_service

summary/ logout start_ssh

vmotion/ maintenance_mode_enter stop_esx_shell

connect maintenance_mode_exit stop_service

cpuinfo pci_add stop_ssh

disable_esx_shell pci_remove task_list

disable_ssh queryconnectioninfo

updateSSLThumbprintsInfo

disconnect querydisabledmethods

enable_esx_shell refresh_firewall

Most of these command categories are self explantory, for example, datastore,

autostartmanager, datastore, datastorebrowser, firmware, storage, summary, vmotion. Note

that the summary is not really the same as you find from summary property of HostSystem

managed object in vSphere API.

To find out what is there in summary, just type the command:

~ # vim-cmd hostsvc/summary

Commands available under hostsvc/summary/:

fsvolume hba scsilun

The three commands there are really for listing file system volumes, host based adapters,

and SCSI LUNs.

Returning back to the direct commands under the hostsvc, there is one called advopt. This is

a shorthand for advanced options. The corresponding managed object in vSphere API is

OptionManager. If you’ve been familiar with OptionManager, it’s easy to figure out how to

use the commands.

Another command subcategory that does not seem straight-forward is the rsrc, which is for

grouping resource pool related sub-commands. I don’t know why rsrc is used, but I would

have named it rp if I had designed it. Anyway, a name is a name. Once you know what it is,

we can just focus on its functionalities.

Host Based Replication Commands

As you can guess, the hbr stands for host based replication. The following shows the sub-

commands. As you can see, you can use them to manage the full cycle of virtual machine

replicas, and monitor them accordingly.

~ # vim-cmd /hbrsvc

Commands available under /hbrsvc/:

vmreplica.abort vmreplica.pause

vmreplica.create vmreplica.queryReplicationState

vmreplica.disable vmreplica.reconfig

vmreplica.diskDisable vmreplica.resume

vmreplica.diskEnable vmreplica.startOfflineInstance

vmreplica.enable vmreplica.stopOfflineInstance

vmreplica.getConfig vmreplica.sync

vmreplica.getState

~ # vim-cmd /hbrsvc/vmreplica.getState

Insufficient arguments.

Usage: vmreplica.getState vmid

Get the state of the specified replication group

~ # vim-cmd /hbrsvc/vmreplica.getState 8

Retrieve VM running replication state:

(vim.fault.ReplicationVmFault) {

 dynamicType = <unset>,

 faultCause = (vmodl.MethodFault) null,

 reason = "notConfigured",

 state = <unset>,

 instanceId = <unset>,

 vm = 'vim.VirtualMachine:8',

 msg = "vSphere Replication operation error: Virtual machine is not configured for replication.",

}

Internal Service Commands

Again these commands are not related to the internal APIs, but rather services for performance management, log management, etc. To list out all the

possible commands, just type as follows:

<pre lang="bash">

~ # vim-cmd internalsvc

Commands available under internalsvc/:

perfcount/ host_mode_lock refresh set_log_level

vprobes/ login refresh_consolenic shutdown

access_address loglist refresh_datastores throw_exception

cold_quit logout refresh_gateway use_fds

connect redirect_stderr refresh_network

disconnect redirect_stdout refresh_pnic

Under the perfcount and vprobes, there are more sub-commands as follows:

<pre lang="bash">

~ # vim-cmd internalsvc/perfcount/

Commands available under internalsvc/perfcount/:

enumerate query_execute query_list query_regex

query_destroy query_info query_names scoreboard

~ # vim-cmd internalsvc/vprobes

Commands available under internalsvc/vprobes/:

listGlobals listProbes load reset version

Summary

vim-cmd commands are pretty powerful set of commands that are built on top of vSphere

APIs. Without deep knowledge of vSphere APIs, you can start to leverage the functionalities

of vSphere APIs from ESXi Shell. Combined with scripting capability of Linux Shell, you can

do a lot of automation work.

Walking through this basic tutorial, I believe you’ve got a high level overview of what the

command is designed for, and more importantly, how you can take advantage of it. At the

same time, there are still many details to be explored. You may want to give it a try by

yourself, which is the best way to learn new technologies.

