
TA70

VProbes: Diagnostics for
Production Software

Keith Adams
Sr. Staff Engineer

VMware, Inc.

Robert Benson
Engineer

VMware, Inc.

Alex Mirgorodskiy
Technical Staff

VMware, Inc.

Software Trouble-Shooting is Hard

Applications are built from
multiple components

Production environments
are fragile

Problems can be transient,
site-specific, etc.

VProbes Vision

Use V12n Layer to
collect user-specified
data

Exposes entire software
stack

Correlate application-level
events with system-level
ones

Instrumentation external
to application, OS, etc.

probes

VProbes Properties.

Dynamic.
No restart, recompile

Safe.
Inspect/record, but not modify, system state
Cannot impede forward progress

OS-independent.
System events described abstractly
Most scripts port easily across versions, even across
operating systems

Pre-alpha
Work in progress

VProbe Workflow

Specify event of interest
E.g.: entry to function “Foo” in application bar.exe, “open file”
system call, network IRQ …

Specify data to gather on each event
Value of variables, CPU registers, current process executable
name, hardware time stamp counter …

Gather data
Load probe into running VMware guest
Output accumulates while guest runs

Iterate as needed
Can remove, modify, or add new probes
Mix with replay for diagnosing “one-off” error conditions…

Example: guest profiler.

Guest_TimerTick {
ticks[EIP]++;

}

Example: guest top.

Guest_TimerTick {
ticks[curprocname()]++;

}

Demo: guest “top”

Sort of like “top”, except …
It works on Windows (and Linux. And Solaris. And …)

Doesn’t depend on “sane” guest environment

…

Callstack profiler

Guest_TimerTick {
ticks[gueststack()]++;

}

Strace.vp

Guest_SystemCall {
printf(“%s : %s\n”,

curprocname(),
syscallname(RAX));

}

Questions?

 TA70
 VProbes: Diagnostics for
Production Software

 Keith Adams, Robert Benson and
Alex Mirgorodskiy

 VMware, Inc.

TA70

VAssert: Write your own bug
detectors under VMware’s
record and replay

Min Xu

VMware, Inc.

Dmitry Grinberg (UIUC)

VMware, Inc.

Bug Detectors

In real life
So useful and effective Java has runtime array bound check!
As code and # of coders grow increasingly more important
Program evolves detector evolves too
Semantic gap detectors often need to be compiled with the
programs
Bottom line
You need to write your own detectors (which are specific to your code)

void writeArray(int index, int value)

{

static int array[16];

assert(index >= 0 && index < 16); A very simple bug detector
array[index] = value;

}

Summary of VAssert

Problems of current detectors
Slowdown due to checking, no-go for production

Probe-effects, undermine the effectiveness

Re-compilation, limit usefulness

Your new detector is built on VMware’s Record/Replay
Eliminate detector slowdown

Enable expensive checks

Eliminate detector probe-effects
100% reproducible

Avoid re-compilation VProbes

VAssert

Virtual Machine & Record/Replay

VMware Virtual Machine
A software layer (virtual machine monitor)

Between a (or multiple) “guest” OS and a “host” OS

Guest thinks it “owns” the hardware

Reality: hardware shared among guests and host

Record and Replay
Recreate a program execution deterministically

Instruction-exact between recording and replaying

Low overhead, compact log file

Recorder implementation

VMM (virtual machine monitor) is an ideal place
Observe all inputs

Control all internal interactions

Challenges
Instruction determinism …. correctness!

Instruction counting ………performance!

Input logging ………………performance!

Solutions
Direct execution, binary translation, interpretation

VM Replay Demo

VAssert – the idea

Native or
Not replaying
(w/o assert)

Replay
(w/ assert)

If (replay) {
assert(…)

}
== nop

call ret (undo assert side effects)

assert(…)

replay continue replay

VAssert SDK

Vassert(expr)
Like traditional assert()

Vlog(level, fmt, …)
Like printf()

Vwatchpoint(addr, size, callback)
Like hardware watchpoint in a debugger

Programmable

Support more watchpoints than hardware

A variation is vbreakpoint(addr, callback)

All of above happen only in determinisitic replay

Demo 1

Basic “Hello World”
How to use it

Demo 2

Real life scenario
Windows: firefox

Linux: rxvt-unicode (omitted)

Take away 1: avoid traditional assert

Take away 2: deterministic & offline automation

Take away 3: easy to integrate with existing code
Firefox: one (long) night

Rxvt-unicode: 2 hours

Demo 3

More sophisticated example
A linked list insert()

Now in the callback()

Take away: powerful tool in building custom bug detectors

void insert(int value) {

node *n = malloc(sizeof *n);

goodNodePtr.add(n);

vwatchpoint(&n->next, sizeof n->next, &callback);

n->next = …

}

Bool callback(node* n) {

assert(goodNodePtr.has(n));

}

Conclusion

VMware record & replay can help software QA
VAssert SDK is

Avoiding assertion slowdown

Deterministic & automated offline checking

Powerful tool in building custom bug detectors

Feedback wanted
Will you integrate this into your QA?

Will you write vassert-based bug detectors?

Questions?

 TA70
 VAssert: Write your own bug detectors under
VMware’s record and replay

 Min Xu and Dmitry Grinberg (UIUC)
 VMware, Inc.

	TA70�VProbes: Diagnostics for Production Software
	Software Trouble-Shooting is Hard
	VProbes Vision
	VProbes Properties.
	VProbe Workflow
	Example: guest profiler.
	Example: guest top.
	Demo: guest “top”
	Callstack profiler
	Strace.vp
	Questions?
	TA70�VAssert: Write your own bug detectors under VMware’s record and replay
	Bug Detectors
	Summary of VAssert
	Virtual Machine & Record/Replay
	Recorder implementation
	VM Replay Demo
	VAssert – the idea
	VAssert SDK
	Demo 1
	Demo 2
	Demo 3
	Conclusion
	Questions?

