
Developing Plug-Ins with VMware
vCenter Orchestrator

vCenter Orchestrator 5.1

This document supports the version of each product listed and
supports all subsequent versions until the document is replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-000999-00

http://www.vmware.com/support/pubs

Developing Plug-Ins with VMware vCenter Orchestrator

2 VMware, Inc.

You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2013 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual
property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

http://www.vmware.com/support/
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents

Contents

Developing Plug-Ins with VMware vCenter Orchestrator 7

1 Overview of Plug-Ins 9

Exposing an External API to Orchestrator 10
Components of a Plug-In 10
Role of the vso.xml File 11
Roles of the Plug-In Adapter 12
Roles of the Plug-In Factory 12
Role of Finder Objects 13
Role of Scripting Objects 14
Role of Event Handlers 14

2 Getting Started with the vCenter Orchestrator Plug-In SDK 17

Introduction to the vCO Plug-In SDK 17
vCO Plug-In SDK Hardware and Software Prerequisites 18
vCO Plug-In SDK Supported Platforms 18
Set the HTTP and HTTPS Proxies in Eclipse 18
Install the vCO Plug-In SDK 19
Create a Plug-In Skeleton from an Existing Java Library 20
Create a Plug-In Skeleton from an Inventory Definition 20
Create a Plug-In Skeleton with Configuration and Installation Elements 21
Create a Skeleton Project 22
Create an Orchestrator Plug-in Project from Samples 23
Copy and Paste Project Files 23

3 Contents and Structure of a Plug-In 25

Defining the Application Mapping in the vso.xml File 25
Format of the vso.xml Plug-In Definition File 26
Naming Plug-In Objects 27

Plug-In Object Naming Conventions 28
File Structure of the Plug-In 28

4 Create an Orchestrator Plug-In 31

Accessing the Orchestrator Plug-In API 32
Obtain an Application to Plug in to Orchestrator 33
Components of the Solar System Application 33

CelestialBody.java Class 34
Star.java Class 34
Planet.java Class 34
Moon.java Class 35
ISolarSystemListener.java Class 35

VMware, Inc. 3

SolarSystemEventHandler.java Class 35
SolarSystemRepository.java Class 36

Components of the Solar System Plug-In 36
Create a Plug-In Factory 37

Set Up the Plug-In Factory Implementation 38
Set Up Event Listeners and Notification Handlers 39
Find Objects By Identifier in the Plugged-In Technology 40
Find Objects in the Plugged-In Technology By a Query 41
Find Objects By Relation Type in the Plugged-In Technology 42
Discover Whether an Object has Children of a Given Relation Type 43

Create a Plug-In Event Listener 44
Set Up the Event Listener Implementation 44
Register the Event Listener with the Plugged-In Technology 45
Notify Orchestrator of Events in the Plugged-In Technology 46

Create a Plug-In Event Generator 47
Set Up the Event Generator 48
Create Event Publishers 49
Define and Publish Events to Orchestrator 50

Create a Plug-In Workflow Trigger 52
Set Up the Workflow Trigger 53
Create Instances of the PluginTrigger Class 54
Set the Properties that a Workflow Trigger Monitors 54

Create Plug-In Watchers 56
Set Up the Watcher Implementation 56
Create Instances of the PluginWatcher Class 58
Publish Plug-In Watchers 58

Define Objects and Methods to Map to the Orchestrator JavaScript API 60
Create a Plug-In Adapter 62

Set Up the Plug-In Adapter Implementation 62
Instantiate the Plug-In Factory 63
Manage Plug-In Events 64
Add Plug-In Watchers 65

Add a Tab to the Configuration Interface 66
Set Up the Configuration Adapter 67
Load and Save Configuration Information in the Configuration Server 68
Create a Configuration Action to Obtain Configuration Information from the User 71
Create a Struts-Based Web Application to Add to the Configuration Interface 73

Map the Application in the vso.xml File 75
Set Up the Global Plug-In Information 76
Map Objects in the Plugged-In Technology to Scripting Types and Inventory Objects 77
Define Enumerations 80
Map Classes and Methods to Classes and Methods in the JavaScript API 80

Create the Plug-In DAR Archive 82
Build the Solar System Application and Plug-In 83
Contents of the Solar System DAR File 84

Install a Plug-In in the Orchestrator Server 84
Interact with the Solar System Application by Using Orchestrator 85

View Plug-In Scripting Objects in the JavaScript API 86
Run Workflows on Plug-In Objects in the Inventory 86

Developing Plug-Ins with VMware vCenter Orchestrator

4 VMware, Inc.

Monitor Plug-In Events by Using Policies 87
Monitor Plug-In Events by Using Workflows 88
Access Plug-In Objects and Operations by Using a Web View 89

5 API Enhancements for Plug-In Development 91

Orchestrator Annotations API 91
Enable Annotation-Based Configuration 91
Annotating Objects 92
Java-Based Configuration API for the Plug-In Definition File 92
Using Java-Based Configuration 93

Orchestrator Spring-Based Plug-In API 94
Spring-Based API Basic Configuration 94

Orchestrator Workflow Generation API 95
Generating Actions 95
Generating Workflows 95

Orchestrator SSL Configuration API 96
SSL Configuration Methods 96
The HostValidator Helper Class 98

6 Orchestrator Plug-In API Reference 99

IAop Interface 100
IConfigurationAdaptor Interface 100
IDynamicFinder Interface 101
IPluginAdaptor Interface 101
IPluginEventPublisher Interface 102
IPluginFactory Interface 102
IPluginNotificationHandler Interface 103
IPluginPublisher Interface 104
WebConfigurationAdaptor Interface 104
BaseAction Class 104
ConfigurationError Class 105
PluginLicense Class 105
PluginTrigger Class 106
PluginWatcher Class 107
QueryResult Class 107
SDKFinderProperty Class 108
SDKHelper Class 109
PluginExecutionException Class 110
PluginLicenseException Class 110
PluginOperationException Class 110
ConfigurationError.Severity Enumeration 111
ErrorLevel Enumeration 111
HasChildrenResult Enumeration 112
ScriptingAttribute Annotation Type 113
ScriptingFunction Annotation Type 113
ScriptingParameter Annotation Type 113

Contents

VMware, Inc. 5

7 Elements of the vso.xml Plug-In Definition File 115
module Element 116
configuration Element 117
description Element 118
deprecated Element 118
url Element 118
installation Element 119
action Element 119
webview-components-library Element 119
finder-datasources Element 120
finder-datasource Element 120
inventory Element 121
finders Element 121
finder Element 122
properties Element 123
property Element 123
relations Element 124
relation Element 124
id Element 124
inventory-children Element 125
relation-link Element 125
events Element 125
trigger Element 125
trigger-properties Element 126
trigger-property Element 126
gauge Element 126
scripting-objects Element 127
object Element 127
constructors Element 128
constructor Element 128
Constructor parameters Element 128
Constructor parameter Element 128
attributes Element 129
attribute Element 129
methods Element 130
method Element 130
example Element 131
code Element 131
Method parameters Element 131
Method parameter Element 131
singleton Element 132
enumerations Element 132
enumeration Element 132
entries Element 133
entry Element 133

Index 135

Developing Plug-Ins with VMware vCenter Orchestrator

6 VMware, Inc.

Developing Plug-Ins with VMware vCenter
Orchestrator

Developing Plug-Ins with VMware vCenter Orchestrator provides information about developing plug-ins with
VMware vCenter Orchestrator.

Intended Audience
This information is intended for plug-in developers who are familiar with virtual machine technology,
datacenter operations, and vCenter Orchestrator.

VMware, Inc. 7

Developing Plug-Ins with VMware vCenter Orchestrator

8 VMware, Inc.

Overview of Plug-Ins 1
Orchestrator plug-ins must include a standard set of components and must adhere to a standard architecture.
These practices help you to create plug-ins for the widest possible variety of external technologies.

n Exposing an External API to Orchestrator on page 10
You expose an API from an external product to the Orchestrator platform by creating an Orchestrator
plug-in. You can create a plug-in for any technology that exposes an API that you can map into JavaScript
objects that Orchestrator can use.

n Components of a Plug-In on page 10
Plug-ins are composed of a standard set of components that expose the objects in the plugged-in
technology to the Orchestrator platform.

n Role of the vso.xml File on page 11
You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in technology
to Orchestrator inventory objects, scripting types, scripting classes, scripting methods, and attributes.
The vso.xml file also defines the configuration and start-up behavior of the plug-in.

n Roles of the Plug-In Adapter on page 12
The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in adapter serves
as the datastore for the plugged-in technology in the Orchestrator server, creates the plug-in factory, and
manages events that occur in the plugged-in technology.

n Roles of the Plug-In Factory on page 12
The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and performs
operations on the objects.

n Role of Finder Objects on page 13
Finder objects identify and locate specific instances of managed object types in the plugged-in technology.
Orchestrator can modify and interact with objects that it finds in the plugged-in technology by running
workflows on the finder objects.

n Role of Scripting Objects on page 14
Scripting objects are JavaScript representations of objects from the plugged-in technology. Scripting
objects from plug-ins appear in the Orchestrator Javascript API and you can use them in scripted elements
in workflows and actions.

n Role of Event Handlers on page 14
Events are changes in the states or attributes of the objects that Orchestrator finds in the plugged-in
technology. Orchestrator monitors events by implementing event handlers.

VMware, Inc. 9

Exposing an External API to Orchestrator
You expose an API from an external product to the Orchestrator platform by creating an Orchestrator plug-
in. You can create a plug-in for any technology that exposes an API that you can map into JavaScript objects
that Orchestrator can use.

Plug-ins map Java objects and methods to JavaScript objects that they add to the Orchestrator scripting API.
If an external technology exposes a Java API, you can map the API directly to JavaScript for Orchestrator to
use in workflows and actions.

You can create plug-ins for applications that expose an API in a language other than Java by using WSDL (Web
service definition language), REST (Representational state transfer), or a messaging service to integrate the
exposed API with Java objects. You then map the integrated Java objects to JavaScript for Orchestrator to use.

The plugged-in technology is independent from Orchestrator. You can create Orchestrator plug-ins for external
products even if you only have access to binary code, for example in Java archives (JAR files), rather than
source code.

Components of a Plug-In
Plug-ins are composed of a standard set of components that expose the objects in the plugged-in technology
to the Orchestrator platform.

The main components of a plug-in are the plug-in adapter, factory, and event implementations. You map the
objects and operations defined in the adapter, factory, and event implementations to Orchestrator objects in
an XML definition file named vso.xml. The vso.xml file maps objects and functions from the plugged in
technology to JavaScript scripting objects that appear in the Orchestrator JavaScript API. The vso.xml file also
maps object types from the plugged-in technology to finders, that appear in the Orchestrator Inventory tab.

Plug-ins are composed of the following components.

Plug-In Module The plug-in itself, as defined by a set of Java classes, a vso.xml file, and packages
of the workflows and actions that interact with the objects that you access
through the plug-in. The plug-in module is mandatory.

Plug-In Adapter Defines the interface between the plugged-in technology and the Orchestrator
server. The adapter is the entry point of the plug-in to the Orchestrator
platform. The adapter creates the plug-in factory, manages the loading and
unloading of the plug-in, and manages the events that occur on the objects in
the plugged-in technology. The plug-in adapter is mandatory.

Plug-In Factory Defines how Orchestrator finds objects in the plugged-in technology and
performs operations on them. The adapter creates a factory for the client session
that opens between Orchestrator and a plugged-in technology. The factory
allows you either to share a session between all client connections or to open
one session per client connection. The plug-in factory is mandatory.

Configuration You can add a tab to the Orchestrator configuration interface in which you can
configure the plug-in after you install it. For example, you can add a tab to the
Orchestrator configuration interface in which users provide information about
the environment where the plugged-in technology runs. Orchestrator does not
define a standard way for the plug-in to store its configuration. You can store
configuration information by using Windows Registries, static configuration
files, storing information in a database, or in XML files. The plug-in
configuration tab is optional.

Developing Plug-Ins with VMware vCenter Orchestrator

10 VMware, Inc.

Finders Interaction rules that define how Orchestrator locates and represents the
objects in the plugged-in technology. Finders retrieve objects from the set of
objects that the plugged-in technology exposes to Orchestrator. You define in
the vso.xml file the relations between objects to allow you to navigate through
the network of objects. Orchestrator represents the object model of the plugged-
in technology in the Inventory tab. Finders are mandatory if you want to expose
objects in the plugged-in technology to Orchestrator.

Scripting Objects JavaScript object types that provide access to the objects, operations, and
attributes in the plugged-in technology. Scripting objects define how
Orchestrator accesses the object model of the plugged-in technology through
JavaScript. You map the classes and methods of the plugged-in technology to
JavaScript objects in the vso.xml file. You can access the JavaScript objects in
the Orchestrator scripting API and integrate them into Orchestrator scripted
tasks, actions, and workflows. Scripting objects are mandatory if you want to
add scripting types, classes, and methods to the Orchestrator JavaScript API.

Inventory Instances of objects in the plugged-in technology that Orchestrator locates by
using finders appear in the Inventory view in the Orchestrator client. You can
perform operations on the objects in the inventory by running workflows on
them. The inventory is optional. You can create a plug-in that only adds
scripting types and classes to the Orchestrator JavaScript API and does not
expose any instances of objects in the inventory.

Events Changes in the state of an object in the plugged-in technology. Orchestrator
can listen passively for events that occur in the plugged-in technology.
Orchestrator can also actively trigger events in the plugged-in technology.
Events are optional.

Role of the vso.xml File
You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in technology to
Orchestrator inventory objects, scripting types, scripting classes, scripting methods, and attributes. The
vso.xml file also defines the configuration and start-up behavior of the plug-in.

The vso.xml file performs the following principal roles.

Start-Up and
Configuration Behavior

Defines the manner in which the plug-in starts and locates any configuration
implementations that the plug-in defines. Loads the plug-in adapter.

Inventory Objects Defines the types of objects that the plug-in accesses in the plugged-in
technology. The finder methods of the plug-in factory implementation locate
instances of these objects and display them in the Orchestrator inventory.

Scripting Types Adds scripting types to the Orchestrator JavaScript API to represent the
different types of object in the inventory. You can use these scripting types as
input parameters in workflows.

Scripting Classes Adds classes to the Orchestrator JavaScript API that you can use in scripted
elements in workflows, actions, policies, and so on.

Scripting Methods Adds methods to the Orchestrator JavaScript API that you can use in scripted
elements in workflows, actions, policies, and so on.

Scripting Attributes Adds the attributes of the objects in the plugged-in technology to the
Orchestrator JavaScript API that you can use in scripted elements in workflows,
actions, policies, and so on.

Chapter 1 Overview of Plug-Ins

VMware, Inc. 11

Roles of the Plug-In Adapter
The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in adapter serves as
the datastore for the plugged-in technology in the Orchestrator server, creates the plug-in factory, and manages
events that occur in the plugged-in technology.

To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface.

The plug-in adapter class that you create manages the plug-in factory, events, and triggers in the plugged-in
technology. The IPluginAdaptor interface provides methods that you use to perform these tasks.

The plug-in adapter performs the following principal roles.

Creates a factory The most important role of the plug-in adapter is to load and unload one plug-
in factory instance for every connection from Orchestrator to the plugged-in
technology. The plug-in adapter class calls the
IPluginAdaptor.createPluginFactory() method to create an instance of a class
that implements the IPluginFactory interface.

Manages events The plug-in adapter is the interface between the Orchestrator server and the
plugged-in technology. The plug-in adapter manages the events that
Orchestrator performs or watches for on the objects in the plugged-in
technology. The adapter manages events through event publishers. Event
publishers are instances of the IPluginEventPublisher interface that the
adapter creates by calling the IPluginAdaptor.registerEventPublisher()
method. Event publishers set triggers and gauges on objects in the plugged-in
technology, to allow Orchestrator to launch defined actions if certain events
occur on the object, or if the object's values pass certain thresholds. Similarly,
you can define PluginTrigger and PluginWatcher instances that define events
that Wait Event elements in long-running workflows await.

Sets the plug-in name You provide a name for the plug-in in the vso.xml file. The plug-in adapter gets
this name from the vso.xml file and publishes it in the Orchestrator client
Inventory view.

Installs licenses You can call methods to install any license files that the plugged-in technology
requires in the adapter implement.

For full details of the IPluginAdaptor interface, all of its methods, and all of the other classes of the plug-in
API, see Chapter 6, “Orchestrator Plug-In API Reference,” on page 99. For an examination of an example
implementation of the IPluginAdaptor interface, see “Create a Plug-In Adapter,” on page 62.

Roles of the Plug-In Factory
The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and performs
operations on the objects.

To create the plug-in factory, you must implement and extend the IPluginFactory interface from the
Orchestrator plug-in API. The plug-in factory class that you create defines the finder functions that Orchestrator
uses to access objects in the plugged-in technology. The factory allows the Orchestrator server to find objects
by their ID, by their relation to other objects, or by searching for a query string.

Developing Plug-Ins with VMware vCenter Orchestrator

12 VMware, Inc.

The plug-in factory performs the following principal tasks.

Finds objects You can create functions that find objects according to their name and type.
You find objects by name and type by using the IPluginFactory.find()
method.

Finds objects related to
other objects

You can create functions to find objects that relate to a given object by a given
relation type. You define relations in the vso.xml file. You can also create finders
to find dependent child objects that relate to all parents by a given relation type.
You implement the IPluginFactory.findRelation() method to find any
objects that are related to a given parent object by a given relation type. You
implement the IPluginFactory.hasChildrenInRelation() method to discover
whether at least one child object exists for a parent instance.

Define queries to find
objects according to
your own criteria

You can create object finders that implement query rules that you define. You
implement the IPluginFactory.findAll() method to find all objects that satisfy
query rules you define when the factory calls this method. You obtain the
results of the findAll() method in a QueryResult object that contains a list of
all of the objects found that match the query rules you define.

For more information about the IPluginFactory interface, all of its methods, and all of the other classes of the
plug-in API, see Chapter 6, “Orchestrator Plug-In API Reference,” on page 99. For an examination of an
example implementation of the IPluginFactory interface, see “Create a Plug-In Factory,” on page 37.

Role of Finder Objects
Finder objects identify and locate specific instances of managed object types in the plugged-in technology.
Orchestrator can modify and interact with objects that it finds in the plugged-in technology by running
workflows on the finder objects.

Every instance of a given managed object type in the plugged-in technology must have a unique identifier so
that Orchestrator finder objects can find them. The plugged-in technology provides the unique identifiers for
the object instances as strings. When a workflow runs, Orchestrator sets the unique identifiers of the objects
that it finds as workflow attribute values. Workflows that require an object of a given type as an input parameter
run on a specific instance of that type of object.

Finder objects that plug-ins add to the Orchestrator JavaScript API have the plug-in name as a prefix. For
example, the VirtualMachine managed object type from the vCenter Server API appears in Orchestrator as the
VC:VirtualMachine JavaScript type.

For example, Orchestrator accesses a specific VC:VirtualMachine instance through the vCenter Server plug-in
by implementing a finder object that uses the id attribute of the virtual machine as its unique identifier. You
can pass this object instance to workflow elements as attribute values.

An Orchestrator plug-in maps the objects from the plugged-in technology to equivalent Orchestrator finder
objects in the <finder> elements in the vso.xml file. The <finder> elements identify the method or function
from the plugged-in technology that obtains the unique identifier for a specific instance of an object. The
<finder> elements also define relations between objects, to find objects by the manner in which they relate to
other objects.

Finder objects appear in the Orchestrator Inventory tab under the plug-in that contains them.

Chapter 1 Overview of Plug-Ins

VMware, Inc. 13

Role of Scripting Objects
Scripting objects are JavaScript representations of objects from the plugged-in technology. Scripting objects
from plug-ins appear in the Orchestrator Javascript API and you can use them in scripted elements in
workflows and actions.

Scripting objects from plug-ins appear in the Orchestrator JavaScript API as JavaScript modules, types, and
classes. Most finder objects have a scripting object representation. The JavaScript classes can add methods and
attributes to the Orchestrator JavaScript API that represent the methods and attributes from objects from the
API of the plugged-in technology. The plugged-in technology provides the implementations of the objects,
types, classes, attributes, and methods independently of Orchestrator. For example, the vCenter Server plug-
in represents all the objects from the vCenter Server API as JavaScript objects in the Orchestrator JavaScript
API, with JavaScript representations of all the classes, methods and attributes that the vCenter Server API
defines. You can use the vCenter Server scripting classes and the methods and attributes they define in
Orchestrator scripted functions.

For example, the VirtualMachine managed object type from the vCenter Server API is found by the
VC:VirtualMachine finder and appears in the Orchestrator JavaScript API as the VcVirtualMachine JavaScript
class. The VcVirtualMachine JavaScript class in the Orchestrator JavaScript API defines all of the same methods
and attributes as the VirtualMachine managed object from the vCenter Server API.

An Orchestrator plug-in maps the objects, types, classes, attributes, and methods from the plugged-in
technology to equivalent Orchestrator JavaScript objects, types, classes, attributes, and methods in the
<scripting-objects> element in the vso.xml file.

Role of Event Handlers
Events are changes in the states or attributes of the objects that Orchestrator finds in the plugged-in technology.
Orchestrator monitors events by implementing event handlers.

Orchestrator plug-ins allow you to monitor events in a plugged-in technology in different ways. The
Orchestrator plug-in API allows you to create the following types of event handlers to monitor events in a
plugged-in technology.

Listeners Passively monitor objects in the plugged-in technology for changes in their
state. The plugged-in technology or the plug-in implementation defines the
events that listeners monitor. Listeners do not initiate events, but notify
Orchestrator when the events occur. Listeners detect events either by polling
the plugged-in technology or by receiving notifications from the plugged-in
technology. When events occur, Orchestrator policies or workflows that are
waiting for the event can react by starting operations in the Orchestrator server.
Listener components are optional.

Policies Monitor certain events in the plugged-in technology and start operations in the
Orchestrator server if the events occur. Policies can monitor policy triggers and
policy gauges. Policy triggers define an event in the plugged-in technology
that, when it occurs, causes a running policy to start an operation in the
Orchestrator server, for example running a workflow. Policy gauges define
ranges of values for the attributes of an object in the plugged-in technology
that, when exceeded, cause Orchestrator to start an operation. Policies are
optional.

Developing Plug-Ins with VMware vCenter Orchestrator

14 VMware, Inc.

Workflow triggers If a running workflow contains a Wait Event element, when it reaches that
element it suspends its run and waits for an event to occur in a plugged-in
technology. Workflow triggers define the events in the plugged-in technology
that Waiting Event elements in workflows await. You register workflow
triggers with watchers. Workflow triggers are optional.

Watchers Watch workflow triggers for a certain event in the plugged-in technology, on
behalf of a Waiting Event element in a workflow. When the event occurs, the
watchers notify any worklows that are waiting for that event. Watchers are
optional.

Chapter 1 Overview of Plug-Ins

VMware, Inc. 15

Developing Plug-Ins with VMware vCenter Orchestrator

16 VMware, Inc.

Getting Started with the vCenter
Orchestrator Plug-In SDK 2

By using the vCenter Orchestrator Plug-in SDK (vCO Plug-in SDK) within the Eclipse for Java Developers IDE,
you can create a Orchestrator plug-in project, customize the plug-in, package it, and deploy it.

The vCO Plug-in SDK is integrated with the Eclipse for Java Developers IDE. Formerly, Orchestrator plug-in
development was only available by command line.

This chapter includes the following topics:

n “Introduction to the vCO Plug-In SDK,” on page 17

n “vCO Plug-In SDK Hardware and Software Prerequisites,” on page 18

n “vCO Plug-In SDK Supported Platforms,” on page 18

n “Set the HTTP and HTTPS Proxies in Eclipse,” on page 18

n “Install the vCO Plug-In SDK,” on page 19

n “Create a Plug-In Skeleton from an Existing Java Library,” on page 20

n “Create a Plug-In Skeleton from an Inventory Definition,” on page 20

n “Create a Plug-In Skeleton with Configuration and Installation Elements,” on page 21

n “Create a Skeleton Project,” on page 22

n “Create an Orchestrator Plug-in Project from Samples,” on page 23

n “Copy and Paste Project Files,” on page 23

Introduction to the vCO Plug-In SDK
The vCO Plug-in SDK integrates Orchestrator plug-in examples and APIs into the Eclipse for Java Developers
IDE. This allows you to take full advantage of the features of the integrated Eclipse Java Development Tools,
such as Java editor, auto-build, and Java package explorer.

The Orchestrator plug-in API provides Java interfaces that you implement to create the plug-in adapter and
plug-in factory. The plug-in adapter and factory expose the objects and operations of the plugged-in technology
to the Orchestrator server.

The plug-in API includes interfaces, classes, and annotations that you can use when you create the plug-in
adapter, factory, and event management implementations.

VMware, Inc. 17

vCO Plug-In SDK Hardware and Software Prerequisites
Verify that your system meets the minimum hardware and software requirements before you install the vCO
Plug-in SDK.

n A 64-bit computer for development of your plug-in

n Java Development Kit

n vCenter Orchestrator 5.1

n Eclipse

vCO Plug-In SDK Supported Platforms
To be able to install and use the vCO Plug-in SDK, you must install a supported version of Eclipse on a
supported operating system.

Supported Eclipse Versions
n Eclipse 3.6.x 64-bit

n Eclipse 3.7.x 64-bit

n STS 2.x.x 64-bit

Supported Operating Systems
n Windows XP 64-bit

n Windows 7 64-bit

n RedHat 6 64-bit

n CentOS 6 64-bit

Set the HTTP and HTTPS Proxies in Eclipse
The first time you start working with Orchestrator in Eclipse, you must set proxies for HTTP and HTTPS as
well as proxy bypasses for local machines that you will connect to.

Procedure

1 In the Eclipse interface, select Windows > Preferences.

2 Open General and select Network Connections.

3 From the Active Provider drop-down menu, select Manual.

4 Set the HTTP proxy settings.

a Select HTTP and click Edit.

b Verify the proxy server name and port number are correct, or type the correct proxy and port
information.

c Click OK.

Developing Plug-Ins with VMware vCenter Orchestrator

18 VMware, Inc.

5 Set the HTTPS proxy settings.

a Select HTTPS and click Edit.

b Verify the proxy server name and port number are correct, or type the correct proxy and port
information.

c Click OK.

CAUTION Do not edit the SOCKS proxy. Modifying the SOCKS proxy might cause errors.

6 In the Proxy bypass list, add systems on your intranet that you want Eclipse to be able to find.

The following example shows various types of entries you might want to add.

10.*

*.example.com

127.0.0.1

localhost

Wildcards can be used for IP addresses and domain names. Domain names can only have three parts.

7 Click Apply to save changes, and click OK.

Install the vCO Plug-In SDK
To be able to use the vCO Plug-in SDK, you must download a ZIP file and install it in the Eclipse interface.

Prerequisites

Obtain the UpdateSite-VCOPSK-com.vmware.vide-3.0.0.build_number.zip file, by downloading and
unzipping the VMware-VCO-Plug-In-SDK-5.1.0-build_number.zip file from the VMware Communities site.

Procedure

1 In the Eclipse interface, select Help > Install New Software.

2 Click Add.

3 In the Location text box, provide the URL of the UpdateSite-VCOPSK-
com.vmware.vide-3.0.0.build_number.zip file and click OK.

4 Select the check box next to vCenter Orchestrator Plug-in and Starter Kit, and click Next.

This starts the install process and also downloads and installs the necessary Eclipse plug-ins and features.

5 Review the Install Details and click Next.

6 To continue with the installation, review the license notice, select I accept the terms of the license
agreements, and click Finish.

You cannot install the software without agreeing to the license terms. The installation can take several
minutes to complete.

When the installation is complete, a dialog box advises you to restart Eclipse for the changes to take effect.

7 Click Restart Now.

Chapter 2 Getting Started with the vCenter Orchestrator Plug-In SDK

VMware, Inc. 19

Create a Plug-In Skeleton from an Existing Java Library
You can create a plug-in skeleton from an existing Java library.

Procedure

1 If the Package Explorer pane is not showing, open the Java Perspective in the Eclipse interface by selecting
Window > Open Perspective > Java.

2 Right-click in the Package Explorer pane and select New VMware Project/File > Development Kit
Projects.

3 In the New VMware Development Kit Project wizard, expand vCenter Orchestrator Plug-in
Development.

4 Expand Create Plug-in skeleton from, select Existing java library, and click Next.

5 On the New VMware Development Kit Project page, type the project name in the Project name text box.

By default, the project directory is created under the workspace, and has the specified project name.

6 (Optional) To create the project in a custom location, deselect the Use default location check box and
specify a custom location.

7 Click Next.

8 In the Project Information page, you can specify plug-in name, alias, build number and version, package
name, and source library.

You must provide the abolute path to the .jar file in the Source Library text box.

9 (Optional) Specify the ignored classes, methods, and method classes that you do not want to expose to
plug-in users.

NOTE You must specify fully qualified names for ignored classes and method classes, and simple method
names for ignored methods.

10 Click Finish.

Project creation starts and compiles the project.

Create a Plug-In Skeleton from an Inventory Definition
You can create a plug-in skeleton from an inventory definition.

Procedure

1 If the Package Explorer pane is not showing, open the Java Perspective in the Eclipse interface by selecting
Window > Open Perspective > Java.

2 Right-click in the Package Explorer pane and select New VMware Project/File > Development Kit
Projects.

3 In the New VMware Development Kit Project wizard, expand vCenter Orchestrator Plug-in
Development.

4 Expand Create Plug-in skeleton from, select Inventory definition, and click Next.

5 On the New VMware Development Kit Project page, type the project name in the Project name text box.

By default, the project directory is created under the workspace, and has the specified project name.

6 (Optional) To create the project in a custom location, deselect the Use default location check box and
specify a custom location.

Developing Plug-Ins with VMware vCenter Orchestrator

20 VMware, Inc.

7 Click Next.

8 In the Project Information page, you can specify plug-in name, alias, build number and version, package
name, and source library.

You must provide the abolute path to the .jar file in the Source Library text box.

9 (Optional) Specify the ignored classes, methods, and method classes that you do not want to expose to
plug-in users.

NOTE You must specify fully qualified names for ignored classes and method classes, and simple method
names for ignored methods.

10 In the Inventory XML text box, provide the inventory in XML form.

The following is an XML code example.

<inventory><item type="Parent"><item type="ChildrenA"><item type="GrandchildrenA" /><item

type="GrandchildrenB" /></item><item type="ChildrenB" /></item></inventory>

11 From the Plug-in Template drop-down menu, select the type of template that you want to use.

Option Description

normal-template Allows you to use standard features.

spring-template Allows you to use Spring features.

12 Click Finish.

Project creation starts and compiles the project.

Create a Plug-In Skeleton with Configuration and Installation Elements
You can create a plug-in skeleton with a configuration element, installation element, or both configuration and
installation elements.

Procedure

1 If the Package Explorer pane is not showing, open the Java Perspective in the Eclipse interface by selecting
Window > Open Perspective > Java.

2 Right-click in the Package Explorer pane and select New VMware Project/File > Development Kit
Projects.

3 In the New VMware Development Kit Project wizard, expand vCenter Orchestrator Plug-in
Development.

4 Expand Create Plug-in skeleton from > With configuration and installation elements, select an option,
and click Next.

Option Description

Both configuration and installation
element

Creates a plug-in skeleton with configuration and installation elements.

Configuration element Creates a plug-in skeleton with a configuration element only.

Installation element Creates a plug-in skeleton with an installation element only.

5 On the New VMware Development Kit Project page, type the project name in the Project name text box.

By default, the project directory is created under the workspace, and has the specified project name.

6 (Optional) To create the project in a custom location, deselect the Use default location check box and
specify a custom location.

Chapter 2 Getting Started with the vCenter Orchestrator Plug-In SDK

VMware, Inc. 21

7 Click Next.

8 In the Project Information page, specify the settings, depending on the type of project you selected.

Project Type Description

Both configuration and installation
element

You can specify the location of the configuration source or .war file,
configuration .war file name, configuration adapter class, library for the
configuration adapter, location of the resource file, installation mode, action
type, and plug-in template type.
NOTE If you provide the configuration source code, you must provide a
configuration .war file name, and the folder that contains the source code
must have all dependencies to compile the code and a build.xml file. The
generated .war file should be placed in the root folder.

Configuration element You can specify the location of the configuration source or .war file,
configuration .war file name, configuration adapter class, library for the
configuration adapter, and plug-in template type.
NOTE If you provide the configuration source code, you must provide a
configuration .war file name, and the folder that contains the source code
must have all dependencies to compile the code and a build.xml file. The
generated .war file should be placed in the root folder.

Installation element You can specify the location of the resource file, installation mode, action
type, and plug-in template type.

You must provide the absolute path to the .jar file in the Source Library text box. Depending on the type
of project that you selected, you must also provide the absolute paths to other .jar, .war, and .package
files in their respective text box.

9 (Optional) Specify the ignored classes, methods, and method classes that you do not want to expose to
plug-in users.

NOTE You must specify fully qualified names for ignored classes and method classes, and simple method
names for ignored methods.

10 Click Finish.

Project creation starts and compiles the project.

Create a Skeleton Project
You can create a skeleton project and populate it with your own custom files.

Procedure

1 If the Package Explorer pane is not showing, open the Java Perspective in the Eclipse interface by selecting
Window > Open Perspective > Java.

2 Right-click in the Package Explorer pane and select New VMware Project/File > Development Kit
Projects.

3 In the New VMware Development Kit Project wizard, expand vCenter Orchestrator Plug-in
Development.

4 Expand Create new vCenter Orchestrator plug-in project, select Create a skeleton vCenter Orchestrator
plug-in project, and click Next.

5 On the New VMware Development Kit Project page, type the project name in the Project name text box.

By default, the project directory is created under the workspace, and has the specified project name.

6 (Optional) To create the project in a custom location, deselect the Use default location check box and
specify a custom location.

Developing Plug-Ins with VMware vCenter Orchestrator

22 VMware, Inc.

7 Click Next.

8 In the Project Information page, you can specify plug-in name, version, a description, root of object type,
scripting object name, and base Java package name.

9 Click Finish.

Project creation starts and compiles the project. The classpath for the Orchestrator plug-in APIs is configured,
and the vso.xml file is generated based on the inputs on the project information page.

Create an Orchestrator Plug-in Project from Samples
You can create a project from sample code.

To create a plug-in, you must have an application to expose for Orchestrator to manage. If you want to
familiarize yourself with the Orchestrator plug-in API, VMware supplies a sample application and plug-in for
you to experiment with, the Solar System sample.

Procedure

1 If the Package Explorer pane is not showing, open the Java Perspective in the Eclipse interface by selecting
Window > Open Perspective > Java.

2 Right-click in the Package Explorer pane and select New VMware Project/File > Development Kit
Projects.

3 In the New VMware Development Kit Project wizard, expand vCenter Orchestrator Plug-in
Development.

4 Expand Create vCenter Orchestrator plug-in project from samples, select a project, and click Next.

n For a simple Hello World plug-in, select Create Hello World plug-in project.

n For the Solar System sample, select one of the following projects.

n Create Solar System plug-in project

n Create Solar System REST plug-in project

n Create Solar System SOAP plug-in project

5 On the New VMware Development Kit Project page, type the project name in the Project name text box.

By default, the project directory is created under the workspace, and has the specified project name.

6 (Optional) To create the project in a custom location, deselect the Use default location check box and
specify a custom location.

7 Click Finish.

Project creation starts and compiles the project.

Copy and Paste Project Files
To view your plug-in in Orchestrator, you can copy and paste files from your Orchestrator plug-in project to
your Orchestrator server platform by using the Remote System Explorer perspective.

Procedure

1 In the Package Explorer pane, copy the plug-in DAR file from the dist folder in your Orchestrator project.

2 In the Eclipse interface, select Window > Open Perspective > Other > Remote System Explorer.

The Remote System Explorer perspective appears.

Chapter 2 Getting Started with the vCenter Orchestrator Plug-In SDK

VMware, Inc. 23

3 In the Remote Systems pane, select the following folder.

C:\Program Files\VMware\Infrastructure\Orchestrator\app-server\server\vmo\plugins

4 Paste the plug-in DAR file in the selected folder.

Developing Plug-Ins with VMware vCenter Orchestrator

24 VMware, Inc.

Contents and Structure of a Plug-In 3
Orchestrator plug-ins must contain a standard set of components and conform to a standard file structure. For
a plug-in to conform to the standard file structure, it must include specific folders and files.

To create an Orchestrator plug-in, you define how Orchestrator accesses and interacts with the objects in the
plugged-in technology. And, you map all of the objects and functions of the plugged-in technology to
corresponding Orchestrator objects and functions in the vso.xml file.

The vso.xml file must include a reference to every type of object or operation to expose to Orchestrator. Every
object that the plug-in finds in the plugged-in technology must have a unique identifier that you provide. You
define the object names in the finder elements and in the object elements in the vso.xml file.

A plug-in can be delivered as a standard Java archive file (JAR) or a ZIP file, but in either case, the file must
be renamed with a .dar extension.

NOTE You can use the Orchestrator configuration interface to import a DAR file to the Orchestrator server.

n Defining the Application Mapping in the vso.xml File on page 25
Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting API,
or as finder objects in the Orchestrator Inventory tab.

n Format of the vso.xml Plug-In Definition File on page 26
The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology. You must
include a reference to every type of object or operation to expose to Orchestrator in the vso.xml file.

n Naming Plug-In Objects on page 27
You must provide a unique identifier for every object that the plug-in finds in the plugged-in technology.
You define the object names in the <finder> elements and in the <object> elements in the vso.xml file.

n File Structure of the Plug-In on page 28
A plug-in must conform to a standard file structure and must include certain specific folders and files.
You deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with the .dar
extension.

Defining the Application Mapping in the vso.xml File
Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting API, or as
finder objects in the Orchestrator Inventory tab.

The vso.xml file provides the following information to the Orchestrator server:

n A version, name, and description for the plug-in

n References to the classes of the plugged-in technology and to the associated plug-in adapter

VMware, Inc. 25

n Initializes the plug-in when the Orchestrator server starts

n Scripting types to represent the types of objects in the plugged-in technology

n The relationships between object types to define how the objects display in the Orchestrator Inventory

n Scripting classes that map the objects and operations in the plugged-in technology to functions and object
types in the Orchestrator JavaScript API

n Enumerations to define a list of constant values that apply to all objects of a certain type

n Events that Orchestrator monitors in the plugged-in technology

The vso.xml file must conform to the XML schema definition of Orchestrator plug-ins. You can access the
schema definition at the VMware support site.

http://www.vmware.com/support/orchestrator/plugin-4-1.xsd

For descriptions of all of the elements of the vso.xml file, see Chapter 7, “Elements of the vso.xml Plug-In
Definition File,” on page 115.

Format of the vso.xml Plug-In Definition File
The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology. You must
include a reference to every type of object or operation to expose to Orchestrator in the vso.xml file.

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting API, or as
finder objects in the Orchestrator Inventory tab.

As part of the open architecture and standardized implementation of plug-ins, the vso.xml file must adhere to
a standard format.

The following diagram shows the format of the vso.xml plug-in definition file and how the elements nest within
each other.

Developing Plug-Ins with VMware vCenter Orchestrator

26 VMware, Inc.

Figure 3-1. Format of the vso.xml Plug-In Definition File

versionheader

inventory

module

factories

scripts
installation

relations

packages

datasource

properties

adaptor

finders

events

classes

scripting objects

parameters

finders

constructors

objects

enumerations

parametersmethods

static
attributes

dynamic

configuration

configuration
adaptor

configuration
WAR

XML

DB

Naming Plug-In Objects
You must provide a unique identifier for every object that the plug-in finds in the plugged-in technology. You
define the object names in the <finder> elements and in the <object> elements in the vso.xml file.

The finder operations that you define in the factory implementation find objects in the plugged-in technology.
When the plug-in finds objects, you can use them in Orchestrator workflows and pass them from one workflow
element to another. The unique identifiers that you provide for the objects allows them to pass between the
elements in a workflow.

The Orchestrator server stores only the type and identifier of each object that it processes, and stores no
information about where or how Orchestrator obtained the object. You must name objects consistently in the
plug-in implementation so that you can track the objects you obtain from plug-ins.

If the Orchestrator server stops while workflows are running, when you restart the server the workflows
resume at the workflow element that was running when the server stopped. The workflow uses the identifiers
to retrieve objects that the element was processing when the server stopped.

Chapter 3 Contents and Structure of a Plug-In

VMware, Inc. 27

Plug-In Object Naming Conventions
You must follow Java class naming conventions when you name all objects in plug-ins.

IMPORTANT Because of the way in which the workflow engine performs data serialization, do not use the
following string sequences in object names. Using these character sequences in object identifiers causes the
workflow engine to parse workflows incorrectly, which can cause unexpected behavior when you run the
workflows.

n #;#

n #,#

n #=#

Use these guidelines when you name objects in plug-ins.

n Use an initial uppercase letter for each word in the name.

n Do not use spaces to separate words.

n For letters, only use the standard characters A to Z and a to z.

n Do not use special characters, such as accents.

n Do not use a number as the first character of a name.

n Where possible, use fewer than 10 characters.

Table 3-1 shows rules that apply to individual object types.

Table 3-1. Plug-In Object Naming Rules

Object Type Naming Rules

Plug-In n Defined in the <module> element in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique. You cannot run two plug-ins with the same name in an Orchestrator server.

Finder object n Defined in the <finder> elements in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique in the plug-in.
Orchestrator adds the plug-in name and a colon to the finder object names in the finder object
types in the Orchestrator scripting API. For example, the VirtualMachine object type from the
vCenter Server plug-in appears in the Orchestrator scripting API as VC:VirtualMachine.

Scripting object n Defined in the <scripting-object> elements in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique in the Orchestrator server.
n To avoid confusing scripting objects with finder objects of the same name or with scripting

objects from other plug-ins, always prefix the scripting object name with the name of the
plug-in, but do not add a colon. For example, the VirtualMachine class from the vCenter
Server plug-in appears in the Orchestrator scripting API as the VcVirtualMachine class.

File Structure of the Plug-In
A plug-in must conform to a standard file structure and must include certain specific folders and files. You
deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with the .dar extension.

The contents of the DAR archive must use the following folder structure and naming conventions.

Developing Plug-Ins with VMware vCenter Orchestrator

28 VMware, Inc.

Table 3-2. Structure of the DAR Archive

Folders Description

plug-in_name\VSO-INF\ Contains the vso.xml file that defines the mapping of the
objects in the plugged-in technology to Orchestrator objects.
The VSO-INF folder and the vso.xml file are mandatory.

plug-in_name\lib\ Contains the JAR files that contain the binaries of the
plugged-in technology. Also contains JAR files that contain
the implementations of the adapter, factory, notification
handlers, and other interfaces in the plug-in.
The lib folder and JAR files are mandatory.

plug-in_name\resources\ Contains resource files that the plug-in requires. The
resources folder can include the following types of element:
n Image files, to represent the objects of the plug-in in the

Orchestrator Inventory tab.
n Scripts, to define initialization behavior when the plug-

in starts.
n Orchestrator packages, that can contain custom

workflows, actions, Web views, and other resources that
interact with the objects that you access by using the
plug-in.

You can organize resources in subfolders. For example,
resources\images\, resources\scripts\, or
resources\packages\.
The resources folder is optional.

plug-in_name\webapps\ Contains the WAR file of the Web application that adds a tab
for the plug-in to the Orchestrator configuration interface or
the files of a Web view for the plug-in.
The webapps folder is optional.

You use the Orchestrator configuration interface to import a DAR file to the Orchestrator server.

Chapter 3 Contents and Structure of a Plug-In

VMware, Inc. 29

Developing Plug-Ins with VMware vCenter Orchestrator

30 VMware, Inc.

Create an Orchestrator Plug-In 4
To create a plug-in to use Orchestrator to manage an external application, you must create a plug-in adapter
and a plug-in factory, create any event handlers, and map the objects from the plugged-in application to
Orchestrator objects in the vso.xml file.

The procedure to create a plug-in consists of several subprocedures. These procedures demonstrate the plug-
in creation process by examining the Java classes, resources, and vso.xml file for a plug-in to an example Java
application. The example application that these procedures examine represents the solar system. The example
contains Java objects to represent the Sun, the planets, and their moons. The Java objects also define operations
that you can perform on the objects. The Orchestrator plug-in for this application allows you to use Orchestrator
to manage the solar system application. When you install the example plug-in, you can use Orchestrator to
perform the operations on the objects of the solar system application by running workflows and setting policies.

Procedure

1 Accessing the Orchestrator Plug-In API on page 32
The Orchestrator plug-in API provides Java interfaces that you implement to create the plug-in adapter
and plug-in factory. The plug-in adapter and factory expose the objects and operations of the plugged-
in technology to the Orchestrator server.

2 Obtain an Application to Plug in to Orchestrator on page 33
To create a plug-in, you must have an application to expose for Orchestrator to manage.

3 Components of the Solar System Application on page 33
The solar system application replicates a solar system and includes objects to represent stars, planets,
and moons. The solar system application also defines operations that you can perform on these objects.

4 Components of the Solar System Plug-In on page 36
The solar system plug-in implements a plug-in adapter, plug-in factory, and event handlers to expose
the objects and functions of the solar system application to Orchestrator.

5 Create a Plug-In Factory on page 37
To create a plug-in factory, you create a Java class that implements the IPluginFactory interface from
the Orchestrator plug-in API.

6 Create a Plug-In Event Listener on page 44
Plug-in event listeners allow Orchestrator to monitor events that occur in the plugged-in technology. To
create a plug-in event listener, you create a Java class that implements the
IPluginNotificationHandler interface from the Orchestrator plug-in API.

7 Create a Plug-In Event Generator on page 47
You can create one or more event generators in a plug-in to perform operations on the objects in the
plugged-in technology. The event generator generates events that the Orchestrator plug-in, rather than
the plugged-in technology, defines.

VMware, Inc. 31

8 Create a Plug-In Workflow Trigger on page 52
You can create plug-in workflow triggers to monitor events in the plugged-in technology on behalf of a
Wait Event element in a workflow. To create a workflow trigger, you create a Java class that implements
the PluginTrigger class from the Orchestrator plug-in API.

9 Create Plug-In Watchers on page 56
Plug-in watchers watch triggers on behalf of workflows that are waiting for the event that the trigger
starts. To create a plug-in watcher, you create a Java class that implements the PluginWatcher class from
the Orchestrator plug-in API. You publish the watcher on the Orchestrator notification server by
implementing the IPluginPublisher interface.

10 Define Objects and Methods to Map to the Orchestrator JavaScript API on page 60
You can map the object types, classes, and methods of the plugged-in technology and the plug-in itself
to JavaScript types, classes, and methods that you add to the Orchestrator JavaScript API.

11 Create a Plug-In Adapter on page 62
To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface from
the Orchestrator plug-in API. The adapter instantiates the plug-in factory and event management
implementations.

12 Add a Tab to the Configuration Interface on page 66
You can add a tab to the Orchestrator configuration interface to allow users to provide information to
the plug-in configuration that is specific to their environment or preferences.

13 Map the Application in the vso.xml File on page 75
The vso.xml file defines how Orchestrator accesses and interacts with the plugged-in technology. The
vso.xml file maps objects and operations in the plugged-in technology and in the plug-in implementation
to Orchestrator objects and operations.

14 Create the Plug-In DAR Archive on page 82
The final stage in the creation of a plug-in is to create the DAR archive that you import to Orchestrator.

15 Install a Plug-In in the Orchestrator Server on page 84
After you create the plug-in DAR file, you must install it in the Orchestrator server. You install plug-ins
in the Orchestrator configuration interface.

16 Interact with the Solar System Application by Using Orchestrator on page 85
After you install a plug-in in the Orchestrator server, you can use the objects that it adds to the
Orchestrator JavaScript API to create workflows, actions, policies, Web views, and so on. You use these
items to interact with the plugged-in technology using Orchestrator.

Accessing the Orchestrator Plug-In API
The Orchestrator plug-in API provides Java interfaces that you implement to create the plug-in adapter and
plug-in factory. The plug-in adapter and factory expose the objects and operations of the plugged-in technology
to the Orchestrator server.

The plug-in API includes interfaces, classes, and annotations that you can use when you create the plug-in
adapter, factory, and event management implementations. For the full list of the classes in the Orchestrator
plug-in API, see Chapter 6, “Orchestrator Plug-In API Reference,” on page 99.

Locating the Plug-In API Java Archives
Orchestrator provides the classes of the plug-in API in the Orchestrator plug-in API Java archive (JAR) file,
o11n-sdkapi.jar. To develop the plug-in adapter and factory implementations, you must include the o11n-
sdkapi.jar file in your classpath. You might also need the utility classes that the o11n-util.jar archive
provides.

Developing Plug-Ins with VMware vCenter Orchestrator

32 VMware, Inc.

Table 4-1. Locations of JAR File and Utility Class Archive

Option Location

If you installed the standalone version of Orchestrator. install-directory\VMware\Orchestrator\app-
server\server\vmo\lib\o11n

If the vCenter Server installer installed Orchestrator. install-
directory\VMware\Infrastructure\Orchestrator\ap
p-server\server\vmo\lib\o11n

If you develop a plug-in that requires a tab in the Orchestrator configuration interface, you must include the
o11n-webconfigurationapi.jar file in your classpath.

Table 4-2. Location of the Orchestrator Configuration Tab JAR File

Option Location

If you installed the standalone version of Orchestrator. install-
directory\VMware\Orchestrator\configuration\jet
ty\lib\ext

If the vCenter Server installer installed Orchestrator. install-
directory\VMware\Infrastructure\Orchestrator\co
nfiguration\jetty\lib\ext

Obtain an Application to Plug in to Orchestrator
To create a plug-in, you must have an application to expose for Orchestrator to manage.

The solar system example application demonstrates how to create a plug-in. The vCO Plug-in SDK ZIP file
that you can download from the VMware Communities site contains the source files for the solar system
application, and the source files for its plug-in implementation.

You can examine the source files of the solar system application and solar system plug-in. You can modify the
source files to adapt and extend the solar system application and solar system plug-in, and build a DAR file
to incorporate your modifications in the plug-in.

Procedure

1 Download the vCO Plug-in SDK ZIP file from the VMware Communities site.

2 Unzip the bundle to an appropriate location.

3 Navigate to the following location to view the files of the solar system application and the solar system
plug-in.

install_directory\VMware-VCO-Plug-In-SDK\samples\vCOPluginSDKSamplePlugin-SolarSystem

Components of the Solar System Application
The solar system application replicates a solar system and includes objects to represent stars, planets, and
moons. The solar system application also defines operations that you can perform on these objects.

You can find the source files of the solar system application in the VMware-VCO-Plug-In-
SDK\samples\vCOPluginSDKSamplePlugin-SolarSystem\src\o11nplugin-solarsystem-

model\src\main\java\com\vmware\solarsystem\ folder in the vCO Plug-in SDK samples bundle.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 33

For simplicity, the solar system application runs in the JVM of the Orchestrator server when you install the
solar system plug-in. You can create plug-ins for technologies that run independently of Orchestrator by
defining how Orchestrator connects to the application in a function in the plug-in. For example, you can add
connection information in a tab for the plug-in in the Orchestrator configuration interface.

NOTE The source files of the solar system example application and solar system plug-in are provided for
reference purposes, so that you can see the details of the application that the solar system plug-in exposes and
of the plug-in implementation. If you adapt the code of the solar system application or the solar system plug-
in, you can build the application and the DAR file to incorporate your adaptations.

CelestialBody.java Class
The CelestialBody.java class is a serializable class that defines a generic celestial body, that can be a star, a
planet, or a moon.

The CelestialBody class declares the following constructor and methods:

n CelestialBody() constructor, to create a generic celestial body instance

n getId() method, to return an object identifier

n setId() method, to set an object identifier

n getName() method, to return an object name

n setName() method, to set an object name

Star.java Class
The Star.java class extends CelestialBody to create star objects.

The Star class adds the following constructor and methods:

n Star() constructor, to create star instances

n getCircumference() method, to return the circumference of a star

n setCircumference() method, to set the circumference of a star

n getSurfaceTemp() method, to return the surface temperature of a star

n setSurfaceTemp() method, to set the surface temperature of a star

n getPlanets() method, to return a list of planets that orbit a star

n addPlanet() method, to add a planet to the list of planets that orbit a star

n removePlanet() method, to remove a planet from the list of planets that orbit a star

Planet.java Class
The Planet.java class extends CelestialBody to create planet objects.

The Planet class declares the following constructor and methods:

n Planet() constructor, to create planet instances

n getCircumference() method, to return the circumference of a planet

n setCircumference() method, to set the circumference of a planet

n getGravity() method, to return the gravity of a planet

n setGravity() method, to set the gravity of a planet

n getMoons() method, to return a list of moons that orbit a planet

Developing Plug-Ins with VMware vCenter Orchestrator

34 VMware, Inc.

n addMoon() method, to add a moon to the list of moons that orbit a planet

n removeMoon() method, to remove a moon from the list of moons that orbit a planet

n getStarId() method, to return the identifier of the star that the planet orbits

n setStarId() method, to set the identifier of the star that the planet orbits

Moon.java Class
The Moon.java class extends CelestialBody to create moon objects.

The Moon class declares the following constructor and methods:

n Moon() constructor, to create moon instances

n getVolume() method, to return the volume of a moon

n setVolume() method, to set the volume of a moon

n getPlanetId() method, to return the identifier of the planet that this moon orbits

n setPlanetId() method, to set the identifier of the planet that this moon orbits

ISolarSystemListener.java Class
The ISolarSystemListener.java class extends java.util.EventListener to create a listener that monitors
events in the solar system application.

The ISolarSystemListener class declares the following methods:

n circumferenceChanged(), to monitor changes in the circumference of a planet

n gravityChanged(), to monitor changes in the gravity of a planet

n planetAdded(), to monitor the creation of new planets

n planetRemoved(), to monitor the destruction of planets

SolarSystemEventHandler.java Class
The SolarSystemEventHandler.java class creates an array of ISolarSystemListener instances and defines
methods to handle the events that the ISolarSystemListener instances observe.

The SolarSystemEventHandler defines the following methods:

n registerListener(), to add a listener to the array of ISolarSystemListener instances

n unregisterListener(), to remove a listener from the array of ISolarSystemListener instances

n fireCircumferenceChanged(), to register a change in the circumference of a planet

n fireGravityChanged(), to register a change in the gravity of a planet

n firePlanetAdded(), to register the creation of a planet

n firePlanetRemoved(), to register the destruction of a planet

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 35

SolarSystemRepository.java Class
The SolarSystemRepository.java class implements all of the classes of the solar system application to create
an instance of a solar system.

When the solar system application runs, it creates a unique SolarSystemRepository instance that represents
Earth's solar system. The SolarSystemRepository starts a SolarSystemEventHandler instance to monitor events
in the solar system, and creates instances of the Star, Planet, and Moon classes that represent the Sun, Earth,
Mars, Titan, and so on. The SolarSystemRepository constructor calls the Star.addPlanet() and
Planet.addMoon() methods to add the planets to the Sun and the moons to the planets, and sets their respective
names, identifiers, and attributes.

The SolarSystemRepository class defines the following constructor and methods:

n SolarSystemRepository() constructor, to create a unique SolarSystemRepository instance and a
SolarSystemEventHandler instance

n getUniqueInstance(), to return a unique SolarSystemRepository instance

n getStar(), to return the star of this solar system instance

n getAllPlanets(), to return a list of the planets that orbit the star

n getPlanetById(), to return a planet by its unique identifier

n getAllMoons(), to return a list of the moons that orbit a planet

n getMoonById(), to return a moon by its unique identifier

Components of the Solar System Plug-In
The solar system plug-in implements a plug-in adapter, plug-in factory, and event handlers to expose the
objects and functions of the solar system application to Orchestrator.

You find the source files of the solar system plug-in in the VMware-VCO-Plug-In-
SDK\samples\vCOPluginSDKSamplePlugin-SolarSystem\src\o11nplugin-solarsystem-

core\src\main\java\com\vmware\orchestrator\api\sample\solarsystem\ folder in the vCO Plug-in SDK
samples bundle .

The SolarSystemConfigureAction.java file is in the o11nplugin-solarsystem-config directory rather than in
o11nplugin-solarsystem-core.

NOTE The source files of the solar system example application and solar system plug-in are provided for
reference purposes, so that you can see the details of the application that the solar system plug-in exposes and
of the plug-in implementation. If you adapt the code of the solar system application or the solar system plug-
in, you can build the application and the DAR file to incorporate your adaptations.

The following table lists the Java files of the solar system application.

Table 4-3. Source Files for the Solar System Plug-In Implementation

Class Name Description

SolarSystemAdapter.java Implements the IPluginAdaptor interface that defines for
Orchestrator the entry point of the solar system application.
Instantiates the solar system factory and creates instances of
event generators, publishers, and watchers.

SolarSystemFactory.java Implements the IPluginFactory interface that defines how
Orchestrator uses the plug-in to find solar system objects,
and how to perform operations on those objects.

Developing Plug-Ins with VMware vCenter Orchestrator

36 VMware, Inc.

Table 4-3. Source Files for the Solar System Plug-In Implementation (Continued)

Class Name Description

SolarSystemEventGenerator.java Defines methods to publish events to Orchestrator and a
method to generate solar flares on Star objects in the solar
system application. Creates a StarFlareEventListener
object that listens for solar flare events on Star objects in the
solar system application.

SolarSystemEventListener.java Implements the IPluginNotificationHandler interface,
registers listeners with the notification handler to listen for
events in the solar system application, and sends
notifications of the events to Orchestrator.

SolarSystemTriggerGenerator.java Creates triggers that allow you to start solar flare events in
the solar system application from Orchestrator.

SolarSystemWatchersManager.java Implements StarFlareEventListener to monitor solar
flare events in the solar system application and performs
functions in Orchestrator if the solar flare exceeds a certain
magnitude.

Create a Plug-In Factory
To create a plug-in factory, you create a Java class that implements the IPluginFactory interface from the
Orchestrator plug-in API.

These procedures present the steps involved in creating a plug-in factory. To illustrate the process, they present
code from the SolarSystemFactory class from the solar system plug-in.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources of
the solar system example application and plug-in.

For a description of the role of the plug-in factory and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 9. For information about all of the methods and parameters of the factory
interface, see “IPluginFactory Interface,” on page 102.

Procedure

1 Set Up the Plug-In Factory Implementation on page 38
To create a plug-in factory, you create an implementation of the IPluginFactory interface from the
Orchestrator plug-in API.

2 Set Up Event Listeners and Notification Handlers on page 39
You activate event listeners and notification handlers for a plug-in in the factory implementation.

3 Find Objects By Identifier in the Plugged-In Technology on page 40
You can find objects by their identifier in the plugged-in technology by using the
IPluginFactory.find() method.

4 Find Objects in the Plugged-In Technology By a Query on page 41
You can find objects in the plugged-in technology by defining a query in the
IPluginFactory.findAll() method.

5 Find Objects By Relation Type in the Plugged-In Technology on page 42
You can find objects by their relationship to other objects in the plugged-in technology by using the
IPluginFactory.findRelation() method. You can also determine whether an object has any dependent
child objects by using the IPluginFactory.hasChildrenInRelation() method.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 37

6 Discover Whether an Object has Children of a Given Relation Type on page 43
You implement the IPluginFactory.hasChildrenInRelation() method to discover whether an object
relates to any children by a given type of relation.

Set Up the Plug-In Factory Implementation
To create a plug-in factory, you create an implementation of the IPluginFactory interface from the Orchestrator
plug-in API.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Verify that you have access to the Orchestrator plug-in API JAR file.

Procedure

1 Create and save a Java file for the plug-in factory implementation named ApplicationNameFactory.java.

In the solar system example, the factory class is named SolarSystemFactory.java.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the following Orchestrator plug-in API classes with a Java import statement.

import ch.dunes.vso.sdk.api.HasChildrenResult;

import ch.dunes.vso.sdk.api.IPluginFactory;

import ch.dunes.vso.sdk.api.IPluginNotificationHandler;

import ch.dunes.vso.sdk.api.PluginExecutionException;

import ch.dunes.vso.sdk.api.QueryResult;

4 Import the following classes of the application to plug in with a Java import statement.

import com.vmware.solarsystem.Planet;

import com.vmware.solarsystem.SolarSystemRepository;

5 Import any other classes that the factory implementation requires.

In the solar system example, the factory implementation requires the following classes.

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

import org.apache.log4j.Logger;

6 Declare a public class that implements the IPluginFactory interface from the Orchestrator plug-in API.

The solar system example factory declares the SolarSystemFactory class.

public class SolarSystemFactory implements IPluginFactory {

}

What to do next

Set up event listeners and notifications in the plug-in factory.

Developing Plug-Ins with VMware vCenter Orchestrator

38 VMware, Inc.

Set Up Event Listeners and Notification Handlers
You activate event listeners and notification handlers for a plug-in in the factory implementation.

The plug-in adapter creates one plug-in factory for each connection between Orchestrator and the plugged-in
technology. Consequently, you set up event listeners and notification handlers in the plug-in factory to listen
for events through the connection and to send notifications about the events that the listeners discover.

Prerequisites

n Set up the factory implementation class.

n Declare a public class that implements the IPluginFactory interface.

Procedure

1 Set up logging so that Orchestrator can record in the logs the events that occur in the plugged-in
technology.

The solar system example uses an instance of org.apache.log4j.Logger to log events.

public class SolarSystemFactory implements IPluginFactory {

 private static final Logger log = Logger.getLogger(SolarSystemFactory.class);

}

2 Set up a notification handler by implementing the IPluginNotificationHandler interface from the
Orchestrator API.

The SolarSystemFactory constructor gets an instance of IPluginNotificationHandler named
notificationHandler.

public class SolarSystemFactory implements IPluginFactory {

 private static final Logger log = Logger.getLogger(SolarSystemFactory.class);

 public SolarSystemFactory(IPluginNotificationHandler notificationHandler) {

 }

}

3 Create an instance of an event listener that implements the java.util.EventListener class.

The solar system plug-in factory creates an instance of the SolarSystemEventListener class. The
SolarSystemEventListener instance monitors an instance of the SolarSystemRepository class from the
solar system application.

public class SolarSystemFactory implements IPluginFactory {

 private static final Logger log = Logger.getLogger(SolarSystemFactory.class);

 public SolarSystemFactory(IPluginNotificationHandler notificationHandler) {

 super();

 new SolarSystemEventListener(

 SolarSystemRepository.getUniqueInstance(), notificationHandler);

 }

}

NOTE The SolarSystemEventListener class is an implementation of the ISolarSystemListener listener
that the solar system application defines. ISolarSystemListener implements java.util.EventListener.
For information about the implementation of SolarSystemEventListener, see “Create a Plug-In Event
Listener,” on page 44.

You set up the event listeners and notification handlers in the plug-in factory, to listen for events in the plugged-
in technology and to send notifications about the events.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 39

What to do next

Define methods in the plug-in factory to find objects in the plugged-in technology by name, type, and by their
relation to other objects.

Find Objects By Identifier in the Plugged-In Technology
You can find objects by their identifier in the plugged-in technology by using the IPluginFactory.find()
method.

All instances of objects in the plugged-in technology must have a unique name or identifier for Orchestrator
to find them. The IPluginFactory.find() method uses the type and identifier to find an object in the plugged-
in technology and returns objects of the type java.lang.Object.

Prerequisites

n Set up the factory implementation class.

n Create a public constructor that implements the IPluginFactory interface.

Procedure

1 Declare the IPluginFactory.find() method to find objects of the type java.lang.Object.

public Object find(String type, String id) {

}

2 Write in the logs the type and identifier of the objects that the plug-in factory finds.

public Object find(String type, String id) {

 log.debug("find: " + type + ", " + id);

}

3 Call the appropriate methods from the plugged-in technology to obtain the identifiers of objects of each
different type.

The SolarSystemFactory class uses an if-else statement to call the SolarSystemRepository.getStar(),
getPlanetById(), and getMoonById() methods.

public Object find(String type, String id) {

 log.debug("find: " + type + ", " + id);

 if (type.equals("Star")) {

 return SolarSystemRepository.getUniqueInstance().getStar();

 } else if (type.equals("Planet")) {

 return SolarSystemRepository.getUniqueInstance().getPlanetById(id);

 } else if (type.equals("Moon")) {

 return SolarSystemRepository.getUniqueInstance().getMoonById(id);

 } else if (type.equals("Galaxy")) {

 return null; // No object for galaxy defined yet

 } else {

 throw new IndexOutOfBoundsException("Type " + type + "

 + unknown for plugin SolarSystem");

 }

}

You implemented the IPluginFactory.find() method to find objects by identifier in the plugged-in
technology.

What to do next

Define methods in the plug-in factory to find all objects of a certain type.

Developing Plug-Ins with VMware vCenter Orchestrator

40 VMware, Inc.

Find Objects in the Plugged-In Technology By a Query
You can find objects in the plugged-in technology by defining a query in the IPluginFactory.findAll()
method.

The findAll() method takes the object type and a query as parameters. You can define the syntax of the query
in the IPluginFactory implementation to narrow the search. If you do not define query syntax, findAll()
returns all objects of the specified type. You can ignore the query and find objects by type, ignore the type and
find objects by query, or find objects by both query and type.

The findAll() method returns a QueryResult object that contains a list of the objects of the corresponding type
that the plugged-in technology contains. For information about QueryResult objects, see “QueryResult
Class,” on page 107.

Prerequisites

n Set up the factory implementation class.

n Create a public constructor that implements the IPluginFactory interface.

Procedure

1 Declare the IPluginFactory.findAll() method to obtain a QueryResult object.

public QueryResult findAll(String type, String query) {

}

2 Write in the logs the type of the objects that the plug-in factory finds and any additional query that narrows
the search.

public QueryResult findAll(String type, String query) {

 log.debug("findAll: " + type + ", " + query);

}

3 Call the appropriate methods from the plugged-in technology to obtain objects of each different type.

The SolarSystemFactory class uses an if-else statement to call the SolarSystemRepository.getStar(),
getAllPlanets(), and getAllMoons() methods.

public QueryResult findAll(String type, String query) {

 log.debug("findAll: " + type + ", " + query);

 List<?> list; // The list can contain any element from the plug-in

 if (type.equals("Star")) {

 list = Arrays.asList(SolarSystemRepository.getUniqueInstance().getStar());

 } else if (type.equals("Planet")) {

 list = SolarSystemRepository.getUniqueInstance().getAllPlanets();

 } else if (type.equals("Moon")) {

 list = SolarSystemRepository.getUniqueInstance().getAllMoons();

 } else if (type.equals("Galaxy")) {

 list = Collections.emptyList();

 } else {

 throw new IndexOutOfBoundsException("Type " + type +

 " unknown for SolarSystem plug-in ");

 }

 return new QueryResult(list);

}

The SolarSystemFactory implementation of the findAll() method does not define a custom query to
narrow the search, so it returns a list of all the objects of each given type in the QueryResult object.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 41

You defined methods to find objects by their type in the plugged-in technology.

What to do next

Define methods in the plug-in factory to find all objects that relate to other objects by a certain relation type.

Find Objects By Relation Type in the Plugged-In Technology
You can find objects by their relationship to other objects in the plugged-in technology by using the
IPluginFactory.findRelation() method. You can also determine whether an object has any dependent child
objects by using the IPluginFactory.hasChildrenInRelation() method.

The IPluginFactory.findRelation() returns all of the dependent child objects that relate to a parent object by
a certain relation type.

The IPluginFactory.hasChildrenInRelation() method returns HasChildrenResult objects to confirm whether
a parent object has any dependent child objects that relate to it by a given relation type. The possible values of
a HasChildrenResult object are yes, no, or unknown. For information about HasChildrenResult objects, see
“HasChildrenResult Enumeration,” on page 112.

You define the relations between the objects in the plugged-in technology in the vso.xml file for the plug-in.

Prerequisites

n Set up the factory implementation class.

n Create a public constructor that implements the IPluginFactory interface.

Procedure

1 Declare the IPluginFactory.findRelation() method to return a java.util.List instance that lists all the
child objects that relate to a parent object by a given relation.

public List findRelation(String parentType, String parentId, String relationName) {

}

2 Write in the logs the type and identifier of the parent object and the name of the relationship that the child
objects have to the parent.

public List findRelation(String parentType, String parentId, String relationName) {

 log.debug("findRelation: " + parentType + ", " + parentId + ", " + relationName);

}

3 Call the appropriate methods from the plugged-in technology to obtain lists of child objects that relate to
their parent objects by different types of relations.

The SolarSystemFactory class uses an if-else statement to call the
SolarSystemRepository.getAllPlanets() method to return a list of all of the planets that relate to a
particular star by the OrbitingPlanets relation. The if-else statement also calls Planet.getMoons() to
return a list of all of the moons that relate to a particular planet by the OrbitingMoons relation.

public List findRelation(String parentType, String parentId, String relationName) {

 log.debug("findRelation: " + parentType + ", " + parentId + ", " + relationName);

 if (parentId == null) {

 return Arrays.asList(SolarSystemRepository.getUniqueInstance().getStar());

 }

 if (parentType.equals("Star")) {

 if (relationName.equals("OrbitingPlanets")) {

 return SolarSystemRepository.getUniqueInstance().getAllPlanets();

 } else {

 throw new IndexOutOfBoundsException("Unknown relation name: "

 + relationName);

Developing Plug-Ins with VMware vCenter Orchestrator

42 VMware, Inc.

 }

 }

 if (parentType.equals("Planet")) {

 if (relationName.equals("OrbitingMoons")) {

 Planet parentPlanet =

 SolarSystemRepository.getUniqueInstance().getPlanetById(parentId);

 if (parentPlanet != null) {

 return parentPlanet.getMoons();

 }

 return Collections.emptyList();

 } else {

 throw new IndexOutOfBoundsException("Unknown relation name: "

 + relationName);

 }

 } else {

 return Collections.emptyList();

 }

}

You defined methods in the IPluginFactory implementation to find objects in the plugged-in technology that
relate to other objects by a certain relation type.

What to do next

Discover whether an object relates to any child objects by a given type of relation.

Discover Whether an Object has Children of a Given Relation Type
You implement the IPluginFactory.hasChildrenInRelation() method to discover whether an object relates
to any children by a given type of relation.

You can implement an if-else statement in the hasChildrenInRelation() method to check for child objects
that relate to a parent by a certain relation type. For example, you can implement a function that uses the
hasChildrenInRelation() method in the solar system example to check whether a Planet object has any moons.

The possible return values of the hasChildrenInRelation() method are Yes, No, and Unknown. If you do not
implement the hasChildrenInRelation() method, it returns Unknown.

Prerequisites

n Set up the factory implementation class.

n Create a public constructor that implements the IPluginFactory interface.

Procedure

u Declare the IPluginFactory.hasChildrenInRelation() method to discover whether an object has any
children of a certain relation type.

The SolarSystemFactory example does not fully implement the hasChildrenInRelation() method and
returns unknown in all cases.

public HasChildrenResult hasChildrenInRelation(String parentType,

 String parentId, String relationName) {

 return HasChildrenResult.Unknown;

}

You called the IPluginFactory.hasChildrenInRelation() method to discover whether an object has any
children of a certain relation type.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 43

What to do next

Create an event listener object to allow Orchestrator to monitor events in the plugged-in technology.

Create a Plug-In Event Listener
Plug-in event listeners allow Orchestrator to monitor events that occur in the plugged-in technology. To create
a plug-in event listener, you create a Java class that implements the IPluginNotificationHandler interface from
the Orchestrator plug-in API.

These procedures present the steps involved in creating a plug-in event listener. To illustrate the process, they
present code from the SolarSystemEventListener class from the solar system example application.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources of
the solar system example application and plug-in.

For a description of the role of plug-in event listeners and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 9. For information about all the methods and parameters of the
IPluginNotificationHandler interface, see “IPluginNotificationHandler Interface,” on page 103.

Procedure

1 Set Up the Event Listener Implementation on page 44
To create a plug-in event listener, you implement the java.util.Eventlistener interface and create an
instance of the IPluginNotification interface from the Orchestrator plug-in API.

2 Register the Event Listener with the Plugged-In Technology on page 45
To monitor events in a plugged-in technology, you must register the event listener from the plug-in with
the plugged-in technology and implement a notification handler.

3 Notify Orchestrator of Events in the Plugged-In Technology on page 46
Event listeners implement the IPluginNotificationHandler interface from the Orchestrator plug-in API
to notify Orchestrator of events in the plugged-in technology.

Set Up the Event Listener Implementation
To create a plug-in event listener, you implement the java.util.Eventlistener interface and create an instance
of the IPluginNotification interface from the Orchestrator plug-in API.

Prerequisites

n Download the bundle of Orchestrator examples.

n Unzip the examples bundle to an appropriate location.

Procedure

1 Create and save a Java file for the plug-in event listener implementation named
ApplicationNameEventListener.java.

In the solar system example, the event listener class is named SolarSystemEventListener.java.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the Orchestrator plug-in API classes with a Java import statement.

In the solar system example, the event listener requires the following class:

import ch.dunes.vso.sdk.api.IPluginNotificationHandler;

Developing Plug-Ins with VMware vCenter Orchestrator

44 VMware, Inc.

4 Import any other classes that the event listener implementation requires.

In the solar system example, the event listener requires the following classes from the solar system
application:

import com.vmware.solarsystem.ISolarSystemListener;

import com.vmware.solarsystem.Planet;

import com.vmware.solarsystem.SolarSystemRepository;

5 Declare a public class for the event listener that implements the java.util.Eventlistener interface.

In the solar system example, the event listener declares the following class:

public class SolarSystemEventListener implements ISolarSystemListener {

}

The ISolarSystemListener class from the solar system application is a subclass of
java.util.Eventlistener.

6 Create an instance of the IPluginNotificationHandler interface.

The solar system event listener creates an IPluginNotificationHandler instance named
notficationHandler.

public class SolarSystemEventListener implements ISolarSystemListener {

 IPluginNotificationHandler notficationHandler;

}

You set up the plug-in event listener class.

What to do next

Register the plug-in event listener with the plugged-in technology.

Register the Event Listener with the Plugged-In Technology
To monitor events in a plugged-in technology, you must register the event listener from the plug-in with the
plugged-in technology and implement a notification handler.

An event listener requires access to the main class of the application to which it listens for events. An event
listener also requires an instance of the IPluginNotificationHandler interface from the Orchestrator plug-in
API, to send notifications to Orchestrator if the events occur.

Prerequisites

n Set up the event listener implementation class.

n Declare a public class that implements the java.util.EventListener interface.

n Create an instance of the IPluginNotificationHandler interface.

Procedure

1 Create a public constructor to create event listener instances.

The solar system example creates a constructor that takes as parameters an instance of the
SolarSystemRepository class from the solar system application and an instance of the
IPluginNotificationHandler interface.

public SolarSystemEventListener(SolarSystemRepository solarSystemRepository,

 IPluginNotificationHandler notificationHandler) {

}

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 45

2 Register an instance of the event listener with the plugged-in technology.

You register the event listener by using the listener registration mechanism that the plugged-in technology
defines.

The SolarSystemEventListener() constructor registers the event listener with the solar system application
by calling the SolarSystemRepository.registerListener() method.

public SolarSystemEventListener(SolarSystemRepository solarSystemRepository,

 IPluginNotificationHandler notificationHandler) {

 solarSystemRepository.registerListener(this);

}

3 Associate an instance of the IPluginNotificiationHandler interface to the event listener.

The SolarSystemEventListener() constructor uses the this Java keyword to add an instance of
IPluginNotificiationHandler to the event listener.

public SolarSystemEventListener(SolarSystemRepository solarSystemRepository,

 IPluginNotificationHandler notificationHandler) {

 solarSystemRepository.registerListener(this);

 this.notificationHandler = notificationHandler;

}

You created an event listener that registers an event listener and a notification handler with the plugged-in
technology. The event listener listens for events in the plugged-in technology and sends notifications to
Orchestrator.

What to do next

Call the methods of the IPluginNotificationHandler interface to notify Orchestrator of events in the plugged-
in technology.

Notify Orchestrator of Events in the Plugged-In Technology
Event listeners implement the IPluginNotificationHandler interface from the Orchestrator plug-in API to
notify Orchestrator of events in the plugged-in technology.

The IPluginNotificationHandler interface defines methods that you implement in the event listener to notify
Orchestrator of changes in state of the objects that the event listener monitors in the plugged-in technology.

The SolarSystemEventListener class monitors objects in a SolarSystemRepository instance for changes in state
that the following methods cause:

n Planet.setCircumference(), that changes the circumference of a planet.

n Planet.setGravity(), that changes the gravity of a planet.

n Star.addPlanet(), that adds a planet to a star.

n Star.removePlanet(), that removes a planet from a star.

The events that the SolarSystemEventListener class monitors are all events that the solar system application
defines.

Prerequisites

n Set up the event listener implementation class.

n Declare a public class that implements the java.util.EventListener interface.

n Create an instance of the IPluginNotificationHandler interface.

n Register the event listener and the notification handler instances with the plugged-in technology.

Developing Plug-Ins with VMware vCenter Orchestrator

46 VMware, Inc.

Procedure

1 Create methods that implement the IPluginNotificationHandler.notifyElementUpdated() method to
notify Orchestrator of changes to an existing object.

The SolarSystemEventListener class creates the following methods to inform Orchestrator of changes to
the circumference and gravity of a particular Planet object:

public void circumferenceChanged(Planet planet) {

 notificationHandler.notifyElementUpdated("Planet", planet.getId());

}

public void gravityChanged(Planet planet) {

 notificationHandler.notifyElementUpdated("Planet", planet.getId());

}

2 Create methods that implement the IPluginNotificationHandler.notifyElementInvalidate() method to
notify Orchestrator of changes in relations between objects.

The SolarSystemEventListener class creates the following method to notify Orchestrator that a child
Planet object is added to a parent Star object.

public void planetAdded(Planet planet) {

 notificationHandler.notifyElementInvalidate("Star", "SUN");

}

3 Create methods that implement the IPluginNotificationHandler.notifyElementDeleted() method to
notify Orchestrator of the removal of an object.

The SolarSystemEventListener class creates the following method to notify Orchestrator that a child
Planet object is deleted from its parent Star.

public void planetRemoved(Planet planet) {

 notificationHandler.notifyElementDeleted("Planet", planet.getId());

}

You implemented the methods of the IPluginNotificationHandler interface to notify Orchestrator of events
that occur on the objects in the plugged-in technology.

What to do next

Create an event generator to push to the plugged-in technology events that the Orchestrator plug-in defines.

Create a Plug-In Event Generator
You can create one or more event generators in a plug-in to perform operations on the objects in the plugged-
in technology. The event generator generates events that the Orchestrator plug-in, rather than the plugged-in
technology, defines.

You can implement the IPluginEventPublisher interface to publish events in the plugged-in technology to the
Orchestrator policy engine. You create methods to set policy triggers and gauges on objects in the plugged-in
technology and event listeners to listen for events on those objects.

The solar system plug-in features an event generator that implements an event publisher and creates a method
to generate solar flares on a Star object in a SolarSystemRepository instance. These procedures present the
steps involved in creating a plug-in event generator. To illustrate the process, they present code from the
SolarSystemEventGenerator class. The package of workflows, actions, and resources that accompany the solar
system example contains a policy template that monitors a gauge that the SolarSystemEventGenerator class
publishes to the policy engine.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources of
the solar system example application and plug-in.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 47

For a description of the role of the plug-in events and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 9. For information about all of the methods and parameters of the event
publisher interface, see “IPluginEventPublisher Interface,” on page 102.

Procedure

1 Set Up the Event Generator on page 48
You can create IPluginEventPublisher instances and methods to generate events directly in the plug-in
adaptor implementation. However, the solar system class creates these objects in a separate class.

2 Create Event Publishers on page 49
You can create IPluginEventPublisher instances to publish event gauges and event triggers to the
Orchestrator policy engine. Policies run in the Orchestrator server and monitor objects through plug-ins.

3 Define and Publish Events to Orchestrator on page 50
The IPluginEventPublisher interface allows you to publish to the Orchestrator policy engine events that
you define in the plug-in that occur in the plugged-in technology.

Set Up the Event Generator
You can create IPluginEventPublisher instances and methods to generate events directly in the plug-in adaptor
implementation. However, the solar system class creates these objects in a separate class.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Verify that you have access to the Orchestrator plug-in API JAR file.

Procedure

1 Create and save a Java file for the plug-in event generator class named
ApplicationNameEventGenerator.java.

In the solar system example, the event generator class is named SolarSystemEventGenerator.java.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the following Orchestrator plug-in API classes with a Java import statement.

import ch.dunes.vso.sdk.api.IPluginEventPublisher;

import ch.dunes.vso.sdk.api.IPluginFactory;

4 Import any other classes that the event generator requires.

In the solar system example, the event generator requires the following classes:

import java.util.Collections;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import org.apache.log4j.Logger;

5 Declare a public class for the event generator implementation.

The solar system example factory declares the SolarSystemEventGenerator class.

public class SolarSystemEventGenerator {

}

Developing Plug-Ins with VMware vCenter Orchestrator

48 VMware, Inc.

6 Set up logging so that Orchestrator can record in the logs the events that the event generator generates.

The solar system example uses an instance of org.apache.log4j.Logger to log events.

public class SolarSystemEventGenerator {

 private static final Logger log = Logger.getLogger(SolarSystemEventGenerator.class);

}

7 Create an instance of the event generator class for other classes in the plug-in implementation to use.

The SolarSystemEventGenerator declares a static instance of itself named _solarSystemEventGenerator
that the plug-in adapter class instantiates when it runs.

public class SolarSystemEventGenerator {

 private static final Logger log = Logger.getLogger(SolarSystemEventGenerator.class);

 public final static SolarSystemEventGenerator _solarSystemEventGenerator =

 new SolarSystemEventGenerator();

}

You set up and instantiated a plug-in event generator class.

What to do next

Create instances of the IPluginEventPublisher interface to monitor objects in the plugged-in technology.

Create Event Publishers
You can create IPluginEventPublisher instances to publish event gauges and event triggers to the Orchestrator
policy engine. Policies run in the Orchestrator server and monitor objects through plug-ins.

Policies can implement either gauges or triggers to monitor objects in the plugged-in technology. Policy gauges
monitor the attributes of objects and push an event in the Orchestrator server if the values of the objects exceed
certain limits. Policy triggers monitor objects and push an event in the Orchestrator server if a defined event
occurs on the object. You register policy gauges and triggers with IPluginEventPublisher instances so that
Orchestrator policies can monitor them.

The SolarSystemEventGenerator class creates IPluginEventPublisher instances. The
SolarSystemEventGenerator class defines methods to add and remove the IPluginEventPublisher instances in
the Orchestrator policy engine.

Prerequisites

Set up the event generator class to create event generator instances.

Procedure

1 Create one or more instances of the IPluginEventPublisher interface with which to register the objects to
monitor.

The SolarSystemEventGenerator class creates a map to contain all of the IPluginEventPublisher instances.

private final Map<String, List<IPluginEventPublisher>> policyElements =

Collections.synchronizedMap(new HashMap<String, List<IPluginEventPublisher>>());

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 49

2 Define a method to register the objects to monitor with the IPluginEventPublisher instances.

The SolarSystemEventGenerator class defines a method that takes as parameters the type and identifier
of the object to monitor and an IPluginEventPublisher instance with which to monitor the object. The
addPolicyElement() method adds an IPluginEventPublisher instance for each object to the hashtable of
IPluginEventPublisher instances.

public void addPolicyElement(String sdkType, String id, IPluginEventPublisher publisher) {

 String key = sdkType + "' / '" + id;

 log.info("Registering element to watch : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

 if (publishers == null) {

 publishers = Collections.synchronizedList(new LinkedList<IPluginEventPublisher>());

 policyElements.put(key, publishers);

 }

 publishers.add(publisher);

}

3 (Optional) Define a method to remove objects from the list of objects to monitor.

The SolarSystemEventGenerator class defines a method that takes as parameters the type and identifier
of the object to monitor and an IPluginEventPublisher instance with which the objects are registered. The
removePolicyElement() method removes an IPluginEventPublisher instance for the identified object from
the hashtable of IPluginEventPublisher instances.

public void removePolicyElement(String sdkType, String id, IPluginEventPublisher publisher) {

 String key = sdkType + "' / '" + id;

 log.info("Unregistering element to watch : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

 publishers.remove(publisher);

 if (publishers.isEmpty()) {

 policyElements.remove(key);

 }

}

You created IPluginEventPublisher instances that publish to Orchestrator policies the events that occur on
objects in the plugged-in technology.

What to do next

Define an event to push from Orchestrator to the plugged-in technology.

Define and Publish Events to Orchestrator
The IPluginEventPublisher interface allows you to publish to the Orchestrator policy engine events that you
define in the plug-in that occur in the plugged-in technology.

You can use the methods of the IPluginEventPublisher interface to set gauges and triggers that Orchestrator
policies monitor.

The SolarSystemEventGenerator class defines a method that generates solar flares of a given magnitude on
Star objects in the solar system application. By implementing a method to create solar flares in the solar system
plug-in, the plug-in adds a function that does not exist in the solar system application. The
generateFlareEvent() method that the plug-in defines registers a policy gauge with the Orchestrator policy
engine. An Orchestrator policy can watch this gauge for solar flares that exceed a certain magnitude.

Developing Plug-Ins with VMware vCenter Orchestrator

50 VMware, Inc.

Prerequisites

n Set up the event generator class to create event generator instances.

n Create instances of the IPluginEventPublisher interface.

Procedure

1 Create functions that define event listeners and the events that the event listeners monitor.

The SolarSystemEventGenerator class declares an interface from which to create listener instances, and
adds a method to the interface to create flare events of a certain magnitude on a given Star object.

public interface StarFlareEventListener{

 void starFlareEvent(String starid, double magnitude);

}

2 Create listener instances to listen for the events that the plug-in defines.

The SolarSystemEventGenerator instantiates the StarFlareEventListener interface to create a listener
named starFlareEventListener.

private StarFlareEventListener starFlareEventListener;

3 Create functions to generate events in the plugged-in technology.

The SolarSystemEventGenerator defines the generateFlareEvent() method that takes an object type,
identifier, and a magnitude value as parameters. The method writes in the logs that the plug-in generated
a flare event on a given object.

public void generateFlareEvent(String sdkType, String id, double magnitude) {

 String key = sdkType + "' / '" + id;

 log.info("Generate Flare Event for : '" + key + "'");

}

4 Register the objects to monitor with IPluginEventPublisher instances.

The SolarSystemEventGenerator.generateFlareEvent() method adds IPluginEventPublisher instances
for each object to the policyElements hashtable of publishers that the SolarSystemEventGenerator class
creates.

public void generateFlareEvent(String sdkType, String id, double magnitude) {

 String key = sdkType + "' / '" + id;

 log.info("Generate Flare Event for : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

}

5 Call the IPluginEventPublisher.pushGauge() or IPluginEventPublisher.pushTrigger() methods to
publish gauges or triggers to the Orchestrator policy engine.

The SolarSystemEventGenerator.generateFlareEvent() method calls the pushGauge() method to publish
a gauge with the Orchestrator policy engine. The generateFlareEvent() method passes the object type,
identifier, and magnitude value to the pushGauge() method, sets the gauge name to Flare and the type of
value that the gauge monitors to magnitude.

public void generateFlareEvent(String sdkType, String id, double magnitude) {

 String key = sdkType + "' / '" + id;

 log.info("Generate Flare Event for : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

 if (publishers != null) {

 for (IPluginEventPublisher publisher : publishers) {

 publisher.pushGauge(sdkType, id, "Flare", "magnitude", magnitude);

 }

}

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 51

6 Call the functions that define the events to generate and monitor.

To generate flare events, the SolarSystemEventGenerator.generateFlareEvent() method calls the
StarFlareEventListener.starFlareEvent() method that the SolarSystemEventGenerator class defines.

public void generateFlareEvent(String sdkType, String id, double magnitude) {

 String key = sdkType + "' / '" + id;

 log.info("Generate Flare Event for : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

 if (publishers != null) {

 for (IPluginEventPublisher publisher : publishers) {

 publisher.pushGauge(sdkType, id, "Flare", "magnitude", magnitude);

 }

 if (sdkType.equals("Star")) {

 starFlareEventListener.starFlareEvent(id, magnitude);

 }

}

You registered a policy gauge or a trigger that an Orchestrator policy can watch for events in the plugged-in
technology. If the events occur, the policy starts an operation in the Orchestrator server.

What to do next

Create plug-in triggers to start operations in the Orchestrator server when certain events occur in the plugged-
in technology.

Create a Plug-In Workflow Trigger
You can create plug-in workflow triggers to monitor events in the plugged-in technology on behalf of a Wait
Event element in a workflow. To create a workflow trigger, you create a Java class that implements the
PluginTrigger class from the Orchestrator plug-in API.

When a workflow trigger detects a change in the properties of an object that it is monitoring, it sends a
notification to any Orchestrator workflows that are waiting for the event. When the workflow receives the
notification from the workflow trigger, it stops waiting and resumes its run.

The PluginTrigger class defines methods to obtain or set the type and name of the object to monitor, the nature
of the event, and a timeout period.

You create implementations of the PluginTrigger class exclusively for use by Wait Event elements in
workflows. You define policy triggers for Orchestrator policies in classes that define events and implement
the IPluginEventPublisher.pushTrigger() method.

The solar system plug-in features a workflow trigger that creates an instance of the PluginTrigger class to
monitor solar flare events on a Star object in a SolarSystemRepository instance. These procedures present the
steps involved in creating a workflow trigger. To illustrate the process, they present code from the
SolarSystemTriggerGenerator class. The package of workflows, actions, and resources that accompany the
solar system example provides a workflow that contains a Wait Event element that monitors the workflow
trigger for solar flare events.

For a description of the role of the plug-in triggers and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 9. For information about all the methods and parameters of the plug-in trigger
class, see “PluginTrigger Class,” on page 106.

Procedure

1 Set Up the Workflow Trigger on page 53
To create a workflow trigger, you create an implementation of the PluginTrigger class from the
Orchestrator plug-in API.

Developing Plug-Ins with VMware vCenter Orchestrator

52 VMware, Inc.

2 Create Instances of the PluginTrigger Class on page 54
You create a workflow trigger by instantiating the PluginTrigger class.

3 Set the Properties that a Workflow Trigger Monitors on page 54
Workflow triggers monitor changes in the properties of an object in the plugged-in technology. When
workflow triggers detect a change in the properties of an object, they notify any workflows in the
Orchestrator server that are waiting for this event.

Set Up the Workflow Trigger
To create a workflow trigger, you create an implementation of the PluginTrigger class from the Orchestrator
plug-in API.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Verify that you have access to the Orchestrator plug-in API JAR file.

Procedure

1 Create and save a Java file for the workflow trigger implementation.

In the solar system example, the workflow trigger class is named SolarSystemTriggerGenerator.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the Orchestrator plug-in API classes with a Java import statement.

The SolarSystemTriggerGenerator class requires the following classes:

import ch.dunes.vso.sdk.api.IPluginFactory;

import ch.dunes.vso.sdk.api.PluginTrigger;

4 Import the classes of the application to plug in with a Java import statement.

The SolarSystemTriggerGenerator class requires the following class:

import com.vmware.solarsystem.Star;

5 Import any other classes that the workflow trigger implementation requires.

The SolarSystemTriggerGenerator class requires the following class:

import java.util.Properties;

6 Declare a public class to contain the workflow trigger implementation.

The SolarSystemTriggerGenerator class declares the following class:

public class SolarSystemTriggerGenerator {

}

You set up the workflow trigger implementation.

What to do next

Implement the PluginTrigger class from the Orchestrator plug-in API to create workflow trigger instances.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 53

Create Instances of the PluginTrigger Class
You create a workflow trigger by instantiating the PluginTrigger class.

The PluginTrigger class defines a constructor that you can use to create workflow trigger instances. The
PluginTrigger constructor can define properties such as the name of the workflow trigger, a timeout period,
and the type and identifier of the object that the workflow trigger monitors.

Prerequisites

n Set up the workflow trigger implementation class.

n Declare a public class to contain the workflow trigger implementation.

Procedure

1 Create an instance of the PluginTrigger class by calling the PluginTrigger() constructor.

The SolarSystemTriggerGenerator class defines the newTrigger() method to create a workflow trigger
named trigger.

private PluginTrigger newTrigger() {

 PluginTrigger trigger = new PluginTrigger();

 return trigger;

}

2 Call the methods of the PluginTrigger class to set the basic properties of the workflow trigger.

The SolarSystemTriggerGenerator class calls the PluginTrigger.setModuleName() method to set the name
of the workflow trigger to the same name as the plug-in itself and calls PluginTrigger.setTimeout() to
deactivate the timeout period.

private PluginTrigger newTrigger() {

 PluginTrigger trigger = new PluginTrigger();

 trigger.setModuleName(SolarSystemAdapter.pluginName);

 trigger.setTimeout(-1);

 return trigger;

}

NOTE If you find objects by their type or identifier, you implement the setSdkType() and setSdkId()
methods to set triggers on objects.

You used the PluginTrigger() constructor to create workflow trigger instances to notify waiting workflows
when defined events occur.

What to do next

Set the properties that the workflow trigger monitors in the objects in the plugged-in technology.

Set the Properties that a Workflow Trigger Monitors
Workflow triggers monitor changes in the properties of an object in the plugged-in technology. When workflow
triggers detect a change in the properties of an object, they notify any workflows in the Orchestrator server
that are waiting for this event.

You set the properties that a workflow trigger monitors by passing a java.util.Properties list to a
PluginTrigger instance.

Prerequisites

n Set up the workflow trigger class.

Developing Plug-Ins with VMware vCenter Orchestrator

54 VMware, Inc.

n Create PluginTrigger instances.

Procedure

1 Declare variables for the object and object properties that the workflow trigger monitors.

The SolarSystemTriggerGenerator class declares variables for the Star object that it monitors and for the
magnitude of any solar flare events that occur on that star.

public static final String STAR_ID = "star_id";

public static final String MAGNITUDE = "magnitude";

2 Create an instance of the PluginTrigger class in which to set the properties to monitor.

The SolarSystemTriggerGenerator class calls the SolarSystemTriggerGenerator.newTrigger() method to
create a trigger instance.

public PluginTrigger createStarFlareTrigger(Star star, double magnitude) {

 PluginTrigger trigger = newTrigger();

 return trigger;

}

3 Create an instance of a java.util.Properties list to contain the properties to monitor.

The SolarSystemTriggerGenerator class create a properties list named props.

public PluginTrigger createStarFlareTrigger(Star star, double magnitude){

 PluginTrigger trigger = newTrigger();

 Properties props = new Properties();

 return trigger;

}

4 Call the Properties.setProperty() method to add the properties to monitor to the properties list.

The SolarSystemTriggerGenerator class adds the identifier of the star object and the value of the
magnitude of the solar flare event to the properties list props.

public PluginTrigger createStarFlareTrigger(Star star, double magnitude){

 PluginTrigger trigger = newTrigger();

 Properties props = new Properties();

 props.setProperty(STAR_ID, star.getId());

 props.setProperty(MAGNITUDE, Double.toString(magnitude));

 return trigger;

}

5 Call the PluginTrigger.setProperties() method to add the properties list to the workflow trigger
instance.

The SolarSystemTriggerGenerator class adds the properties list props to the workflow trigger, to provide
the identifier of the star object and the value of the flare event to monitor.

public PluginTrigger createStarFlareTrigger(Star star, double magnitude){

 PluginTrigger trigger = newTrigger();

 Properties props = new Properties();

 props.setProperty(STAR_ID, star.getId());

 props.setProperty(MAGNITUDE, Double.toString(magnitude));

 trigger.setProperties(props);

 return trigger;

}

You added a list of properties to a workflow trigger so that it can monitor the value of a given property in an
object. If the properties of the object change, the workflow trigger notifies any workflows that are waiting for
that event.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 55

What to do next

Create plug-in watchers to watch the triggers for events.

Create Plug-In Watchers
Plug-in watchers watch triggers on behalf of workflows that are waiting for the event that the trigger starts.
To create a plug-in watcher, you create a Java class that implements the PluginWatcher class from the
Orchestrator plug-in API. You publish the watcher on the Orchestrator notification server by implementing
the IPluginPublisher interface.

These procedures present the steps involved in creating a plug-in watcher. To illustrate the process, they
present code from the SolarSystemWatchersManager class from the solar system plug-in.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources of
the solar system example application and plug-in.

For a description of the role of plug-in event watchers and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 9. For information about all of the methods and parameters of the plug-in
watcher class and publisher interface, see “PluginWatcher Class,” on page 107 and “IPluginPublisher
Interface,” on page 104.

Procedure

1 Set Up the Watcher Implementation on page 56
You can create PluginWatcher instances and methods to generate events directly in the plug-in adaptor.
However, the solar system example creates the watcher instances in a separate class named
SolarSystemWatchersManager.

2 Create Instances of the PluginWatcher Class on page 58
You create a plug-in watcher to watch a workflow trigger by instantiating the PluginWatcher class. When
the event that the workflow trigger defines occurs, the plug-in watcher notifies any workflows that are
waiting for that event.

3 Publish Plug-In Watchers on page 58
You implement the IPluginPublisher interface to publish plug-in watchers to the Orchestrator
notification mechanism.

Set Up the Watcher Implementation
You can create PluginWatcher instances and methods to generate events directly in the plug-in adaptor.
However, the solar system example creates the watcher instances in a separate class named
SolarSystemWatchersManager.

Prerequisites

n Download the bundle of Orchestrator examples.

n Unzip the examples bundle to an appropriate location.

Procedure

1 Create and save a Java file for the plug-in watcher class.

In the solar system example, the watcher class is named SolarSystemWatchersManager.java.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

Developing Plug-Ins with VMware vCenter Orchestrator

56 VMware, Inc.

3 Import the Orchestrator plug-in API classes with a Java import statement.

In the solar system example, the event watcher requires the following classes:

import ch.dunes.vso.sdk.api.IPluginPublisher;

import ch.dunes.vso.sdk.api.PluginWatcher;

4 Import any classes that the plug-in implementation or plugged-in technology defines.

In the solar system example, the watcher requires the following class that the
SolarSystemEventGenerator class defines:

import com.vmware.orchestrator.api.sample.solarsystem.

 SolarSystemEventGenerator.StarFlareEventListener;

5 Import any other classes that the watcher implementation requires.

In the solar system example, the event watcher requires the following classes:

import java.util.Collections;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import java.util.Properties;

import org.apache.log4j.Logger;

6 Declare a public class for the event generator implementation.

The solar system example watcher declares the SolarSystemWatchersManager class, that implements the
StarFlareEventListener class.

public class SolarSystemWatchersManager implements StarFlareEventListener {

}

The StarFlareEventListener class listens for solar flare events of a certain magnitude.

7 Set up logging so that Orchestrator can record in the logs the events that the watcher observes.

The solar system example uses an instance of org.apache.log4j.Logger to log events.

public class SolarSystemWatchersManager implements StarFlareEventListener {

 private static final Logger log = Logger.getLogger(SolarSystemWatchersManager.class);

}

8 Declare a public constructor to create instances of the watcher implementation class.

The SolarSystemWatchersManager class creates a constructor that creates instances of
SolarSystemWatchersManager. The SolarSystemWatchersManager instances contain the
starFlareEventListener event listener that the SolarSystemEventGenerator class defines.

public SolarSystemWatchersManager() {

SolarSystemEventGenerator.solarSystemEventGenerator.addStarFlareUniqueEventListener(this);

}

You set up a plug-in event watcher class to create watcher instances to watch for events from triggers.

What to do next

Create instances of the PluginWatcher class.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 57

Create Instances of the PluginWatcher Class
You create a plug-in watcher to watch a workflow trigger by instantiating the PluginWatcher class. When the
event that the workflow trigger defines occurs, the plug-in watcher notifies any workflows that are waiting
for that event.

The PluginWatcher class defines a constructor that you can use to create plug-in watcher instances. The
PluginWatcher class defines methods to obtain or set the name of the workflow trigger to watch and a timeout
period.

Prerequisites

n Set up the plug-in watcher implementation class.

n Declare a public constructor to instantiate the plug-in watcher implementation.

Procedure

1 Create one or more instances of the PluginWatcher class with which to register the workflow triggers to
monitor.

The SolarSystemWatchersManager class creates a hashtable to contain all of the PluginWatcher instances.

private final Map<String, PluginWatcher> watchers = Collections.synchronizedMap(new

HashMap<String, PluginWatcher>());

2 Obtain watcher instances by calling the PluginWatcher.getId() method.

The SolarSystemWatchersManager class defines a method that adds a PluginWatcher instance to the
hashtable of PluginWatcher instances.

public void addWatcher(PluginWatcher watcher) {

 watchers.put(watcher.getId(), watcher);

}

3 (Optional) Remove watcher instances after an event occurs.

The SolarSystemWatchersManager class defines a method that removes a PluginWatcher instance from the
hashtable of PluginWatcher instances.

public void removeWatcher(String watcherId) {

 watchers.remove(watcherId);

}

You created instances of the PluginWatcher class to watch workflow triggers for events.

What to do next

Register the watcher instances with IPluginPublisher instances to publish the watchers to the Orchestrator
notification mechanism.

Publish Plug-In Watchers
You implement the IPluginPublisher interface to publish plug-in watchers to the Orchestrator notification
mechanism.

When a workflow trigger starts an event in the plugged-in technology, a plug-in watcher that watches that
trigger and that is registered with an IPluginPublisher instance notifies any waiting workflows that the event
has occurred.

Prerequisites

n Set up the plug-in watcher implementation class.

Developing Plug-Ins with VMware vCenter Orchestrator

58 VMware, Inc.

n Declare a public constructor to instantiate the plug-in watcher implementation.

n Create instances of the PluginWatcher class.

Procedure

1 Create an instance of the IPluginPublisher interface.

The SolarSystemWatchersManager class declares the following variable for the IPluginPublisher instance.

private IPluginPublisher pluginPublisher;

2 Define a method to add the IPluginPublisher instance to the plug-in adapter implementation.

The SolarSystemWatchersManager class declares the following method that the SolarSystemAdapter class
calls.

public void setPluginPublisher(IPluginPublisher pluginPublisher) {

 this.pluginPublisher = pluginPublisher;

}

3 Define the event for which the watcher watches and that the publisher publishes to the Orchestrator
notification mechanism.

The SolarSystemWatchersManager class defines the starFlareEvent() method that takes a Star object and
a magnitude value as parameters. The starFlareEvent() method also gets the hashtable of watchers and
creates a list of watchers to remove from the hashtable after the event occurs.

public void starFlareEvent(String starid, double magnitude) {

 synchronized (watchers) {

 List<String> watchersToRemove = new LinkedList<String>();

 }

}

4 Call the PluginWatcher.getTrigger() and PluginTrigger.getProperties() methods to obtain the
properties to watch in the trigger.

The SolarSystemWatchersManager.starFlareEvent() method extracts the STAR_ID and MAGNITUDE
properties from the trigger and adds them to a PluginWatcher instance in the hashtable.

public void starFlareEvent(String starid, double magnitude) {

 synchronized (watchers) {

 List<String> watchersToRemove = new LinkedList<String>();

 for (PluginWatcher watcher : watchers.values()) {

 Properties props = watcher.getTrigger().getProperties();

 String wStarId = props.getProperty(SolarSystemTriggerGenerator.STAR_ID);

 String wMagnitude = props.getProperty(SolarSystemTriggerGenerator.MAGNITUDE);

 }

 }

}

5 Define the event and publish it to the Orchestrator notification mechanism by calling the
IPluginPublisher.pushWatcherEvent() method.

The SolarSystemWatchersManager.starFlareEvent() method checks whether the magnitude value
exceeds a maximum magnitude value. If the maximum magnitude value is exceeded, the
starFlareEvent() method writes the flare event in the logs and publishes the event to the Orchestrator
notification mechanism.

public void starFlareEvent(String starid, double magnitude) {

 synchronized (watchers) {

 List<String> watchersToRemove = new LinkedList<String>();

 for (PluginWatcher watcher : watchers.values()) {

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 59

 Properties props = watcher.getTrigger().getProperties();

 String wStarId = props.getProperty(SolarSystemTriggerGenerator.STAR_ID);

 String wMagnitude = props.getProperty(SolarSystemTriggerGenerator.MAGNITUDE);

 if (wStarId != null && wStarId.equals(starid)) {

 double wMagnLimit = Double.parseDouble(wMagnitude);

 if (magnitude >= wMagnLimit) {

 log.info("pushWatcherEvent() for id '" + watcher.getId() + "'");

 pluginPublisher.pushWatcherEvent(watcher.getId(), null);

 }

 }

 }

 }

}

6 (Optional) Remove the watchers from the notification mechanism after the events occur.

The SolarSystemWatchersManager.starFlareEvent() method adds the watcher to the list of watchers to
remove and defines a method to remove that list of watchers from the hashtable.

public void starFlareEvent(String starid, double magnitude) {

 synchronized (watchers) {

 List<String> watchersToRemove = new LinkedList<String>();

 for (PluginWatcher watcher : watchers.values()) {

 Properties props = watcher.getTrigger().getProperties();

 String wStarId = props.getProperty(SolarSystemTriggerGenerator.STAR_ID);

 String wMagnitude = props.getProperty(SolarSystemTriggerGenerator.MAGNITUDE);

 if (wStarId != null && wStarId.equals(starid)) {

 double wMagnLimit = Double.parseDouble(wMagnitude);

 if (magnitude >= wMagnLimit) {

 log.info("pushWatcherEvent() for id '" + watcher.getId() + "'");

 pluginPublisher.pushWatcherEvent(watcher.getId(), null);

 watchersToRemove.add(watcher.getId());

 }

 }

 }

 for (String toRemove : watchersToRemove) {

 watchers.remove(toRemove);

 }

 }

}

You defined an event for a watcher to watch and published the event to the Orchestrator notification
mechanism. Orchestrator notifies any workflows that are waiting for that event that it has occurred.

What to do next

Define objects and methods to add to the Orchestrator JavaScript API.

Define Objects and Methods to Map to the Orchestrator JavaScript API
You can map the object types, classes, and methods of the plugged-in technology and the plug-in itself to
JavaScript types, classes, and methods that you add to the Orchestrator JavaScript API.

You can add objects and functions to the JavaScript API that do not exist in the plugged-in technology by
defining them in the plug-in implementation. Adding objects and functions to the JavaScript API allows you
to include the objects and functions in Orchestrator actions and workflows, to perform operations on objects
in the plugged-in technology.

Developing Plug-Ins with VMware vCenter Orchestrator

60 VMware, Inc.

You map the objects and functions that you define in the plug-in implementation in <scripting-object>
elements in the vso.xml file. For information about how to map objects and functions to the JavaScript API in
the vso.xml file, see “Map the Application in the vso.xml File,” on page 75.

The vso.xml file in the solar system example maps to JavaScript objects all of the objects and methods that the
solar system application defines. The vso.xml file also maps the following objects and methods from the solar
system plug-in implementation to the Orchestrator JavaScript API.

n SolarSystemEventGenerator scripting class

n SolarSystemEventGenerator.generateFlareEvent() scripting method

n SolarSystemTriggerGenerator scripting class

n SolarSystemTriggerGenerator.createStarFlareTrigger() scripting method

To create a class to map to the Orchestrator JavaScript API, you add an instance of that class to an instance of
the IPluginFactory implementation by defining a method named createScriptingSingleton(). When the
plug-in adaptor instantiates the factory, it also instantiates the class to add to the JavaScript API.

Prerequisites

You created at least one class of the plug-in implementation, for example the adaptor, the factory, or an event
generator implementation.

Procedure

1 Create an instance of a class to map to the Orchestrator JavaScript API in one of the classes of the plug-in
implementation.

The SolarSystemEventGenerator class defines the following constructor to create instances of itself:

public final static SolarSystemEventGenerator solarSystemEventGenerator =

 new SolarSystemEventGenerator();

2 Define a method named createScriptingSingleton() that accesses the IPluginFactory implementation
of the plug-in.

The SolarSystemEventGenerator class creates the following instance of that class:

public static SolarSystemEventGenerator createScriptingSingleton(IPluginFactory factory) {

}

3 Implement the createScriptingSingleton() method to return to the factory an instance of the class to
map to the JavaScript API.

The SolarSystemEventGenerator class returns the _solarSystemEventGenerator instance.

public static SolarSystemEventGenerator createScriptingSingleton(IPluginFactory factory) {

 return solarSystemEventGenerator;

}

You created an instance of a class that the vso.xml file can map to a scripting class in the Orchestrator JavaScript
API. The vso.xml file of the solar system example maps the _solarSystemEventGenerator instance to the
SolarSystemEventGenerator scripting class in the JavaScript API.

What to do next

Implement the plug-in adapter to instantiate all of the classes and objects that you defined in the plug-in.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 61

Create a Plug-In Adapter
To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface from the
Orchestrator plug-in API. The adapter instantiates the plug-in factory and event management
implementations.

These procedures present the steps involved in creating a plug-in adapter. To illustrate the process, they present
code from the SolarSystemAdapter class from the solar system example application. You can download the
vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources of the solar system example
application.

For a description of the role of the plug-in adapter and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 9. For information about all of the methods and parameters of the adapter
interface, see “IPluginAdaptor Interface,” on page 101.

Procedure

1 Set Up the Plug-In Adapter Implementation on page 62
To create a plug-in adapter, you create an implementation of the IPluginAdaptor interface from the
Orchestrator plug-in API.

2 Instantiate the Plug-In Factory on page 63
You instantiate the plug-in factory in the plug-in adapter. The adapter creates one factory instance for
every connection between Orchestrator and the plugged-in technology.

3 Manage Plug-In Events on page 64
The plug-in adapter manages the events that occur in the plugged-in technology by defining event
generators and event publishers.

4 Add Plug-In Watchers on page 65
Plug-in watchers monitor the events that workflow triggers define. When an event occurs, Orchestrator
notifies any workflows that are waiting for that event.

Set Up the Plug-In Adapter Implementation
To create a plug-in adapter, you create an implementation of the IPluginAdaptor interface from the
Orchestrator plug-in API.

Procedure

1 Create and save a Java file for the plug-in adapter implementation named
ApplicationNameAdapter.java.

In the solar system example, the adapter class is SolarSystemAdapter.java.

2 Declare a package to contain the plug-in implementation.

The solar system example declares the following package to contain the adapter, factory, and event handler
implementations:

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the following Orchestrator plug-in API interfaces, classes, and enumerations with a Java import
statement.

import ch.dunes.vso.sdk.api.IPluginAdaptor;

import ch.dunes.vso.sdk.api.IPluginEventPublisher;

import ch.dunes.vso.sdk.api.IPluginFactory;

import ch.dunes.vso.sdk.api.IPluginNotificationHandler;

Developing Plug-Ins with VMware vCenter Orchestrator

62 VMware, Inc.

import ch.dunes.vso.sdk.api.IPluginPublisher;

import ch.dunes.vso.sdk.api.PluginLicense;

import ch.dunes.vso.sdk.api.PluginLicenseException;

import ch.dunes.vso.sdk.api.PluginWatcher;

4 Import any other classes that the adapter implementation requires.

In the solar system example, the adapter implementation requires the following classes:

import javax.security.auth.login.LoginException;

import org.jboss.logging.Logger;

5 Declare a public constructor that implements the IPluginAdaptor interface from the Orchestrator plug-in
API.

The solar system adapter declares the SolarSystemAdapter constructor.

public class SolarSystemAdapter implements IPluginAdaptor {

}

6 Set up a logger to write to the logs the events that occur in the adapter.

The solar system adapter uses an instance of org.jboss.logging.Logger to log events.

private static final Logger log = Logger.getLogger(SolarSystemAdapter.class);

What to do next

Create an instance of the IPluginFactory implementation.

Instantiate the Plug-In Factory
You instantiate the plug-in factory in the plug-in adapter. The adapter creates one factory instance for every
connection between Orchestrator and the plugged-in technology.

Prerequisites

n Create an implementation of the IPluginFactory interface.

n Set up the adapter implementation class.

n Create a public constructor that implements the IPluginAdaptor interface.

Procedure

1 Declare the variables that the adapter class uses in its method calls.

The solar system adapter declares variables for the plug-in factory and plug-in name.

public class SolarSystemAdapter implements IPluginAdaptor {

 private SolarSystemFactory factory;

 static String pluginName;

}

2 Create an instance of the plug-in factory class that implements the IPluginFactory interface.

The solar system adapter calls the IPluginAdaptor.createPluginFactory() method to create an instance
of the SolarSystemFactory interface, if one does not exist already.

public IPluginFactory createPluginFactory(String sessionID, String username,

 String password, IPluginNotificationHandler notificationHandler)

 throws SecurityException, LoginException, PluginLicenseException {

 if (factory == null) {

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 63

 factory = new SolarSystemFactory();

 }

 return factory;

}

3 Set the plug-in name.

The IPluginAdaptor.setPluginName() method gets the name from the vso.xml file.

The solar system adapter uses the pluginName variable to set the name of the plug-in.

public void setPluginName(String pluginName) {

 SolarSystemAdapter.pluginName = pluginName;

}

4 (Optional) Install any licenses that Orchestrator requires to access the plugged-in technology.

You obtain licenses by calling the IPluginAdaptor.installLicenses() method to instantiate an array of
PluginLicense objects.

public void installLicenses(PluginLicense[] licenses) throws

 PluginLicenseException {

}

5 (Optional) Uninstall an existing plug-in factory.

A plug-in creates a factory instance for every client session that opens between Orchestrator and a plugged-
in technology. You can remove unnecessary plug-in factories to clean up the Orchestrator server by calling
the IPluginAdaptor.uninstallPluginFactory() method.

The solar system plug-in does not implement the IPluginAdaptor.uninstallPluginFactory() method.
You can uninstall factories by implementing a function in the uninstallPluginFactory() method
declaration.

public void uninstallPluginFactory(IPluginFactory plugin) {

}

You instantiated the IPluginFactory implementation, set the name for the plug-in, obtained any licenses that
the plug-in connection requires, and potentially defined a function to remove old factory instances from the
server.

What to do next

Instantiate event generators and publishers.

Manage Plug-In Events
The plug-in adapter manages the events that occur in the plugged-in technology by defining event generators
and event publishers.

Prerequisites

n Create a public constructor that implements the IPluginAdaptor interface.

n Instantiate the plug-in factory.

Developing Plug-Ins with VMware vCenter Orchestrator

64 VMware, Inc.

Procedure

1 Define the method to generate plug-in events.

You can define the events to manage directly in the adapter implementation. However, the solar system
plug-in implementation defines the events in a separate class, SolarSystemEventGenerator.

SolarSystemAdapter defines the following getEventGenerator() method to obtain an instance of the
SolarSystemEventGenerator class.

private SolarSystemEventGenerator getEventGenerator() {

 return SolarSystemEventGenerator.solarSystemEventGenerator;

}

2 (Optional) If Orchestrator monitors the plugged-in application for events, you can register an instance of
the IPluginEventPublisher interface with the Orchestrator policy engine by calling the
IPluginAdaptor.registerEventPublisher() method.

The solar system example adapter creates the following IPluginEventPublisher instance and registers it
with the Orchestrator policy engine by calling the SolarSystemEventGenerator.addPolicyElement()
method.

public void registerEventPublisher(

 String type, String id, IPluginEventPublisher publisher) {

 getEventGenerator().addPolicyElement(type, id, publisher);

}

3 (Optional) Unregister an IPluginEventPublisher from the Orchestrator policy engine.

The solar system example adapter unregisters an IPluginEventPublisher instance and removes it from
the Orchestrator policy engine by calling the SolarSystemEventGenerator.removePolicyElement()
method.

public void unregisterEventPublisher(

 String type, String id, IPluginEventPublisher publisher) {

 getEventGenerator().removePolicyElement(type, id, publisher);

}

You instantiated an event generator and optionally defined methods to register and unregister an event
publisher with the Orchestrator policy engine.

What to do next

Add and remove watchers that monitor workflow triggers. When the events that the workflow triggers define
occur, Orchestrator notifies any workflows that are waiting for that event.

Add Plug-In Watchers
Plug-in watchers monitor the events that workflow triggers define. When an event occurs, Orchestrator notifies
any workflows that are waiting for that event.

Prerequisites

n Create a public constructor that implements the IPluginAdaptor interface.

n Instantiate the plug-in factory.

n Create event generators and publishers.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 65

Procedure

1 Create an instance of the plug-in watcher implementation.

The SolarSystemAdapter class creates an instance of the SolarSystemWatchersManager class.

private static final SolarSystemWatchersManager watchersManager =

 new SolarSystemWatchersManager();

2 Add a watcher instance to the plug-in adaptor.

You add a watcher to the adapter by calling the IPluginAdaptor.addWatcher() method.

The solar system example defines a method to add the SolarSystemWatchersManager instance.

public void addWatcher(PluginWatcher watcher) {

 log.info("Adding watcher '" + watcher + "'");

 watchersManager.addWatcher(watcher);

}

3 Remove a watcher from the plug-in adaptor.

You remove a watcher by calling the IPluginAdaptor.removeWatcher() method.

The solar system example defines a method to remove a SolarSystemWatchersManager instance.

public void removeWatcher(String watcherId) {

 log.info("Removing watcher '" + watcherId + "'");

 watchersManager.removeWatcher(watcherId);

}

4 Instantiate the plug-in publisher that publishes events from the watchers to the Orchestrator notification
mechanism.

The solar system example defines a method that calls the
SolarSystemWatchersManager.setPluginPublisher() method to instantiate a plug-in publisher.

public void setPluginPublisher(IPluginPublisher pluginPublisher) {

 watchersManager.setPluginPublisher(pluginPublisher);

}

You added watchers to the plug-in adapter implementation to monitor the events that workflow triggers
generate.

What to do next

Add a tab for the plug-in to the Orchestrator configuration interface.

Add a Tab to the Configuration Interface
You can add a tab to the Orchestrator configuration interface to allow users to provide information to the plug-
in configuration that is specific to their environment or preferences.

To add a configuration tab for a plug-in to the configuration interface, you implement the
IConfigurationAdaptor interface. You can also use the SDKHelper and extend the BaseAction classes from the
Orchestrator plug-in API. You create a configuration adapter that accesses the classes of the plug-in and the
plugged-in technology for the Orchestrator configuration server. You define configuration actions to obtain
and save the configuration information that the user provides by using the configuration tab.

You must create an Apache Struts-based Web application to create the layout of the tab in the configuration
interface. The Struts Web application uses the methods that you define in the IConfigurationAdaptor
implementation to add configuration operations for the users to perform in the configuration tab for the plug-
in. The Struts Web application submits to the Orchestrator server the information that the user enters in the
configuration tab.

Developing Plug-Ins with VMware vCenter Orchestrator

66 VMware, Inc.

Creating a plug-in configuration tab requires several steps. Code from the
SolarSystemConfigurationAdapter and SolarSystemConfigureAction classes from the solar system plug-in is
included in the steps.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources of
the solar system example application and plug-in.

For information about all of the methods and parameters of the configuration adapter interface, see
“IConfigurationAdaptor Interface,” on page 100. For information about the additional methods that the
SDKHelper class provides, see “SDKHelper Class,” on page 109.

Procedure

1 Set Up the Configuration Adapter on page 67
To create a tab in the configuration interface for a plug-in, you create an implementation of the
IConfigurationAdaptor interface from the Orchestrator plug-in API. You also call the methods of the
SDKHelper class.

2 Load and Save Configuration Information in the Configuration Server on page 68
The IConfigurationAdaptor interface provides methods to load and save configuration information in
the Orchestrator configuration server. The configuration adapter uses these methods to locate and update
the configuration information for a plug-in by setting plug-in properties.

3 Create a Configuration Action to Obtain Configuration Information from the User on page 71
Orchestrator uses the Apache Struts framework to pass to the Orchestrator server the configuration
information that the user provides in the configuration interface.

4 Create a Struts-Based Web Application to Add to the Configuration Interface on page 73
The tab that you add to the Orchestrator configuration interface is an Apache Struts-based Web
application. You define the layout of the page by using HTML or JavaServer Pages (JSP) and add actions
to the page by implementing the Struts framework.

Set Up the Configuration Adapter
To create a tab in the configuration interface for a plug-in, you create an implementation of the
IConfigurationAdaptor interface from the Orchestrator plug-in API. You also call the methods of the
SDKHelper class.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Verify that you have access to the Orchestrator plug-in API JAR file.

n Implement the plug-in adapter and factory interfaces.

Procedure

1 Create and save a Java file for the plug-in configuration adapter implementation.

In the solar system example, the configuration adapter class is named
SolarSystemConfigurationAdaptor.java.

2 Declare the package that contains the Java classes of the plug-in configuration implementation.

The solar system example declares the following package.

com.vmware.orchestrator.api.sample.solarsystem.config;

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 67

3 Import the following classes of the plug-in configuration API with a Java import statement.

import ch.dunes.vso.sdk.conf.ConfigurationError;

import ch.dunes.vso.sdk.conf.IConfigurationAdaptor;

import ch.dunes.vso.sdk.helper.SDKHelper;

4 Import the following classes of the application to plug in with a Java import statement.

import com.vmware.solarsystem.Planet;

import com.vmware.solarsystem.SolarSystemRepository;

5 Import any other classes that the configuration adapter implementation requires.

In the solar system example, the configuration adapter implementation requires the following classes:

import java.io.File;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Properties;

import java.util.PropertyResourceBundle;

import java.util.ResourceBundle;

6 Declare a public class that implements the IConfigurationAdaptor interface.

public class SolarSystemConfigurationAdaptor implements IConfigurationAdaptor {

}

You set up the plug-in configuration adapter implementation.

What to do next

Define methods to load and save plug-in configuration information.

Load and Save Configuration Information in the Configuration Server
The IConfigurationAdaptor interface provides methods to load and save configuration information in the
Orchestrator configuration server. The configuration adapter uses these methods to locate and update the
configuration information for a plug-in by setting plug-in properties.

You also create methods in the configuration adapter to define the values that the user can configure.
Orchestrator reloads this information each time this user connects to the Orchestrator server. You can validate
the information that the user provides.

In the solar system example, the SolarSystemConfigurationAdaptor class defines methods to allow users to
select their home planet and to define Pluto as either a planet or as a dwarf planet. The
SolarSystemConfigurationAdaptor class implements the methods of the IConfigurationAdaptor interface to
load and save configuration information and to validate the information that the users provide. The methods
that SolarSystemConfigurationAdaptor defines are implemented by the SolarSystemConfigureAction class.

Prerequisites

n Implement the plug-in adapter and factory interfaces.

n Set up the configuration adapter implementation class.

Developing Plug-Ins with VMware vCenter Orchestrator

68 VMware, Inc.

Procedure

1 Declare variables for the plug-in name and for the configurable values.

The SolarSystemConfigurationAdaptor class declares the following variables:

private static final String pluginName = "SolarSystem";

private String homePlanet = "";

private String plutoClassifiedAsAPlanet = "yes";

2 Create a class loader to load the configuration adapter classes into the configuration server.

You can use the standard Java class ResourceBundle to locate packages of classes.

private static final ResourceBundle bundle =

PropertyResourceBundle.getBundle("com.vmware.orchestrator.api.sample.solarsystem.config.packa

ge");

3 Define methods to obtain and set the configurable values.

The SolarSystemConfigurationAdaptor class uses the bundle.getString() method to get the properties of
Pluto from the plug-in configuration server and adds them to a map. The
SolarSystemConfigurationAdaptor class also defines methods to set whether Pluto is a planet and to set
the user's home planet.

public Map<String, String> getPlutoClassifyList(){

 Map<String, String> classification = new HashMap<String, String>();

 classification.put("no", bundle.getString("select.pluto.classify.dwarfPlanet"));

 classification.put("yes", bundle.getString("select.pluto.classify.planet"));

 return classification;

}

public List<Planet> getAllPlanets(){

 return SolarSystemRepository.getUniqueInstance().getAllPlanets();

}

public String getHomePlanet() {

 return homePlanet;

}

public void setHomePlanet(String homePlanet) {

 this.homePlanet = homePlanet;

}

public void setPlutoClassifiedAsAPlanet(String plutoClassifiedAsAPlanet) {

 this.plutoClassifiedAsAPlanet = plutoClassifiedAsAPlanet;

}

public String getPlutoClassifiedAsAPlanet() {

 return plutoClassifiedAsAPlanet;

}

4 Implement the IConfigurationAdaptor.saveConfiguration() method to save configuration information
to the configuration server by setting plug-in properties.

The SolarSystemConfigurationAdaptor.loadConfiguration() method creates a Properties list to contain
the configurable properties. The values that SolarSystemConfigurationAdaptor.saveConfiguration()
method adds to the list are the values that the methods defined in Step 3 set. The
SolarSystemConfigurationAdaptor.saveConfiguration() method calls the
SDKHelper.savePropertiesForPluginName() to save the Properties list to the configuration server.

public void saveConfiguration(OutputStream stream) throws IOException {

 synchronized (SDKHelper.class) {

 Properties prop = new Properties();

 prop.setProperty("solar.system.home.planet", homePlanet);

 prop.setProperty("solar.system.isPlutoClassifiedAsAPlanet",

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 69

plutoClassifiedAsAPlanet);

 if (stream == null) {

 SDKHelper.savePropertiesForPluginName(prop, pluginName);

 }

 }

}

5 Implement the IConfigurationAdaptor.loadConfiguration() method to load configuration information
from the configuration server into the Orchestrator server.

The SolarSystemConfigurationAdaptor.loadConfiguration() method creates a Properties list to contain
the configurable properties. The SolarSystemConfigurationAdaptor.loadConfiguration() method calls
the SDKHelper.getConfigurationPathForPluginName() and SDKHelper.loadPropertiesForPluginName()
methods to get the properties from the plug-in and adds them to the Properties list.

public void loadConfiguration(InputStream stream) throws IOException {

 synchronized (SDKHelper.class) {

 String path = SDKHelper.getConfigurationPathForPluginName(pluginName);

 if (new File(path).exists()) {

 Properties prop = SDKHelper.loadPropertiesForPluginName(pluginName);

 homePlanet = prop.getProperty("solar.system.home.planet", homePlanet);

 plutoClassifiedAsAPlanet =

prop.getProperty("solar.system.isPlutoClassifiedAsAPlanet", plutoClassifiedAsAPlanet);

 }

 }

}

6 Implement the IConfigurationAdaptor.setPluginName() method to set the name of the plug-in in the
configuration server.

The SolarSystemConfigurationAdaptor class does not add any additional code to the
IConfigurationAdaptor.setPluginName() method.

public void setPluginName(String name) {

}

7 Implement the IConfigurationAdaptor.validateConfiguration() method to validate the configuration
information.

The IConfigurationAdaptor.validateConfiguration() method returns a ConfigurationError instance for
each validation error. The SolarSystemConfigurationAdaptor class returns null in the event of an invalid
configuration property. You can implement more sophisticated code to perform more stringent validation
of the values that the user provides in the configuration interface.

public ConfigurationError[] validateConfiguration() {

 return null;

}

You implemented the methods of the IConfigurationAdaptor and SDKHelper classes to load and save
configuration information in the configuration server and defined methods to obtain and set the configurable
values.

What to do next

Obtain configuration information that the user sets in the configuration interface by implementing the Apache
Struts framework.

Developing Plug-Ins with VMware vCenter Orchestrator

70 VMware, Inc.

Create a Configuration Action to Obtain Configuration Information from the User
Orchestrator uses the Apache Struts framework to pass to the Orchestrator server the configuration information
that the user provides in the configuration interface.

You can implement the action that passes configuration information from the Orchestrator configuration
interface to the configuration server directly in the configuration adapter implementation. However, the solar
system example defines this action in a separate class named SolarSystemConfigureAction. The
SolarSystemConfigureAction class uses the methods that the SolarSystemConfigurationAdaptor class defines
to load and save configuration information. The SolarSystemConfigureAction class implements the Apache
Struts framework to obtain the configuration information from the configuration interface and pass it to the
Orchestrator configuration server. The tab that you add to the configuration interface is a Struts Web
application.

Prerequisites

n Implement the plug-in adapter and factory interfaces.

n Set up the configuration adapter implementation class.

n Implement the methods of the IConfigurationAdaptor interface to load, save, and validate configuration
information.

Procedure

1 Create and save a Java file for the plug-in configuration action implementation.

In the solar system example, the configuration action class is named SolarSystemConfigureAction.java.

2 Declare the package that contains the Java classes of the plug-in configuration implementation.

The solar system example declares the following package.

com.vmware.orchestrator.api.sample.solarsystem.config;

3 Import the classes of the Orchestrator API with a Java import statement.

The SolarSystemConfigureAction class requires the following classes:

import ch.dunes.vso.configuration.web.commons.BaseAction;

import ch.dunes.vso.sdk.conf.ConfigurationError;

4 Import the third-party Java classes that the configuration action requires.

The SolarSystemConfigureAction class requires the following classes:

import org.apache.log4j.Logger;

import com.opensymphony.xwork2.ModelDriven;

5 Declare a public class that implements the BaseAction and ModelDriven classes.

The Orchestrator BaseAction class defines how Orchestrator interacts with the Struts framework. The
OpenSymphony XWork2 ModelDriven class pushes objects to the Struts framework.

The SolarSystemConfigureAction class implements these classes and creates a generic instance of the
SolarSystemConfigurationAdaptor class.

public class SolarSystemConfigureAction extends BaseAction

 implements ModelDriven<SolarSystemConfigurationAdaptor> {

}

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 71

6 Define the variables that the BaseAction implementation requires.

The SolarSystemConfigureAction class declares variables for the unique identifier of each instance of the
serializable BaseAction class, a logger, an array of ConfigurationError instances, and the configuration
adapter instance.

private static final long serialVersionUID = 1L;

private static Logger log = Logger.getLogger(SolarSystemConfigureAction.class);

private ConfigurationError[] configErrors;

private SolarSystemConfigurationAdaptor solarSystemConfigurationAdaptor;

7 Implement the BaseAction.prepare() method to instantiate the configuration adapter and load the
configuration information.

The SolarSystemConfigureAction class creates an instance of the SolarSystemConfigurationAdaptor class
and calls the SolarSystemConfigurationAdaptor.loadConfiguration() method.

public void prepare() throws Exception {

 solarSystemConfigurationAdaptor = new SolarSystemConfigurationAdaptor();

 solarSystemConfigurationAdaptor.loadConfiguration(null);

}

8 Implement the BaseAction.execute() method to log and validate the configuration information.

The SolarSystemConfigureAction class implements the BaseAction.execute() method to record in the
logs the result of calling the SolarSystemConfigurationAdaptor.validateConfiguration() method.

public String execute() throws Exception {

 log.debug("SolarSystemConfigureAction execute method");

 configErrors = solarSystemConfigurationAdaptor.validateConfiguration();

 return SUCCESS;

}

9 Implement a save() method to save the configuration information.

The SolarSystemConfigureAction class implements the save() method to record in the logs the result of
calling the SolarSystemConfigurationAdaptor.saveConfiguration() method.

public String save() throws Exception {

 log.debug("SolarSystemConfigureAction save method");

 solarSystemConfigurationAdaptor.saveConfiguration(null);

 configErrors = solarSystemConfigurationAdaptor.validateConfiguration();

 return SUCCESS;

}

10 Add error handling to the implementation of the configuration action.

The SolarSystemConfigureAction class returns an array of errors if the configuration is invalid.

public ConfigurationError[] getConfigErrors() {

 return configErrors;

}

public void setConfigErrors(ConfigurationError[] configErrors) {

 this.configErrors = configErrors;

}

public int getConfigErrorsSize() {

 return configErrors.length;

}

Developing Plug-Ins with VMware vCenter Orchestrator

72 VMware, Inc.

11 Add the configuration adapter to the Struts Web application in the configuration interface by
implementing the ModelDriven.getModel() class from the OpenSymphony XWork2 framework.

The SolarSystemConfigureAction class passes an instance of the SolarSystemConfigurationAdaptor to the
Struts framework.

public SolarSystemConfigurationAdaptor getModel() {

 return solarSystemConfigurationAdaptor;

}

You created the configuration action that instantiates the configuration adapter and implements the
Orchestrator BaseAction and OpenSymphony ModelDriven classes. The BaseAction and ModelDriven classes
pass configuration information from the Orchestrator configuration interface to the Orchestrator server
through the Struts framework.

What to do next

Create a Struts-based Web application to add a tab to the Orchestrator configuration interface.

Create a Struts-Based Web Application to Add to the Configuration Interface
The tab that you add to the Orchestrator configuration interface is an Apache Struts-based Web application.
You define the layout of the page by using HTML or JavaServer Pages (JSP) and add actions to the page by
implementing the Struts framework.

To add a configuration tab to the Orchestrator configuration interface, you must include a Web application
archive (WAR) file in the DAR file of the plug-in.

The DAR file of the solar system plug-in contains a built WAR file for the solar system configuration tab. You
can also examine the files of the solar system configuration Web application in the bundle of source files of the
solar system plug-in.

n o11nplugin-solarsystem-config\src\main\webapp\index.jsp

n o11nplugin-solarsystem-config\src\main\webapp\WEB-INF\web.xml

n o11nplugin-solarsystem-config\src\main\webapp\WEB-INF\pages\configure.jsp

n o11nplugin-solarsystem-config\src\main\resources\struts.xml

You must be familiar with Web application development technologies, including the Struts framework and
JSP. See the Apache Struts documentation for information about Struts. For details of all the directories and
files that the WAR file contains, see “Contents of the Solar System Configuration WAR File,” on page 75.

Prerequisites

n Implement the plug-in adapter and factory interfaces.

n Create the configuration adapter and configuration action implementations.

Procedure

1 Create an index page for the configuration tab that implements the JavaServer Pages Standard Tag Library
(JSTL).

The index page must refer to the JSTL definition.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

2 Create a Web application definition XML file that provides information about the plug-in to the
Orchestrator configuration server.

The Web application definition file references the XML schemas, locates the index page, accesses resource
files, and implements security.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 73

3 Create a JSP page that defines the layout and contents of the configuration tab.

The configuration tab can include any types of buttons, forms, lists, or menus that JSP provides.

The solar system configuration tab includes a button that the user can use to set the
plutoClassifiedAsAPlanet property to designate Pluto as a planet or a dwarf planet, a list from which
they can select their home planet from the allPlanets properties list, and a save button that calls a Struts
action named ConfigureSave.

<div id="c_content">

 <s:form action="ConfigureSave" method="POST" validate="true">

 <s:radio key="select.pluto.classify.text" name="plutoClassifiedAsAPlanet"

 list="plutoClassifyList"/>

 <s:select key="select.home.planet" list="allPlanets" listValue="name" listKey="id"

 name="homePlanet"/>

 <s:submit type="input" key="save.button"/>

 </s:form>

</div>

4 Create a Struts configuration file that implements the Struts framework to pass to the configuration server
the configuration information that the user enters.

The Struts configuration file in the solar system example implements the OpenSymphoyOpenSymphony
XWork2 ActionSupport class to pass the results of the ConfigureSave action to the Struts framework. The
ConfigureSave action calls the SolarSystemConfigureAction.save() method.

<action name="Default" class="com.opensymphony.xwork2.ActionSupport">

 <result name="success" type="chain">Configure</result>

</action>

<action name="Configure"

 class="com.vmware.orchestrator.api.sample.solarsystem.config.SolarSystemConfigureAction">

 <result name="success">/WEB-INF/pages/configure.jsp</result>

</action>

<action name="ConfigureSave"

 class="com.vmware.orchestrator.api.sample.solarsystem.config.SolarSystemConfigureAction"

 method="save">

 <result name="success">/WEB-INF/pages/configure.jsp</result>

</action>

5 Copy all of the required JAR files in a directory named lib in the Web application directory.

You must include the JAR files that contain the implementations of the configuration adapter and actions,
and JAR files for any other technologies that configuration implementation uses.

6 Create a Web application archive to contain the Web application files.

A WAR file is a JAR file that you rename to .war.

In the solar system example, the configuration Web application files are stored in WAR file named
o11nplugin-solarsystem-config.war.

You created a Struts-based Web application that contains all of the Web application files and the Java
implementations of the configuration adapter and action.

What to do next

Map the application and the plug-in implementation to Orchestrator objects in the vso.xml file.

Developing Plug-Ins with VMware vCenter Orchestrator

74 VMware, Inc.

Contents of the Solar System Configuration WAR File
You add a configuration tab to the Orchestrator configuration interface by creating a Web application archive
(WAR) file that contains the implementations of the configuration adapter and configuration actions, the layout
of the tab, and the Struts configuration files.

The DAR file of the solar system plug-in contains a built WAR file for the solar system configuration tab. You
can also examine the files of the solar system configuration Web application in the bundle of source files of the
solar system plug-in.

The solar system DAR file contains a WAR file named o11nplugin-solarsystem-config.war.

If you modify the source files of the solar system configuration WAR file, you must rebuild the DAR file of the
solar system plug-in by using the Ant build tool. Rebuilding the plug-in DAR file rebuilds the WAR file of the
solar system configuration tab. See “Build the Solar System Application and Plug-In,” on page 83.

The following table lists the directories and files that the built WAR file for the solar system configuration tab
contains.

Table 4-4. Contents of the Solar System Configuration WAR File

Directory Filename Description

o11nplugin-solarsystem-config\ index.jsp JSP file that defines the layout of the
configuration tab for the plug-in.

o11nplugin-solarsystem-
config\WEB-INF\

web.xml Sets up the configuration tab by
implementing the appropriate XML
schemas, locating the index page,
accessing resource files, and
implementing security.

o11nplugin-solarsystem-
config\WEB-INF\classes\

struts.xml Struts framework configuration file
that references the Java classes and
methods of the configuration actions.

o11nplugin-solarsystem-
config\WEB-
INF\classes\com\vmware\orchestr
ator\api\sample\solarsystem\con
fig\

SolarSystemConfigureAction.class Java class that defines the
configuration actions that the
configuration tab performs.

o11nplugin-solarsystem-
config\WEB-INF\lib\

o11nplugin-solarsystem-
core-1.0.0.jar

JAR file that contains the binaries of
the solar system plug-in
implementation.

o11nplugin-solarsystem-
config\WEB-INF\lib\

o11nplugin-solarsystem-
model-1.0.0.jar

JAR file that contains the binaries of
the solar system application.

o11nplugin-solarsystem-
config\WEB-INF\pages\

configure.jsp JSP file that adds buttons and a drop-
down list to the configuration tab.
The buttons and list implement the
configuration actions that the
SolarSystemConfigureAction
class defines and that struts.xml
maps to the Struts framework.

Map the Application in the vso.xml File
The vso.xml file defines how Orchestrator accesses and interacts with the plugged-in technology. The
vso.xml file maps objects and operations in the plugged-in technology and in the plug-in implementation to
Orchestrator objects and operations.

You can use the objects and operations that you map to create Orchestrator workflows, policies, and actions
to interact with the plugged-in technology by using Orchestrator.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 75

You find the vso.xml file for the solar system example in the following location in the solar system source files
in the Orchestrator examples bundle:

o11nplugin-solarsystem\src\main\dar\VSO-INF\

For full descriptions of all of the elements of a vso.xml file and all of their attributes, see Chapter 7, “Elements
of the vso.xml Plug-In Definition File,” on page 115.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Implement the plug-in adapter and factory interfaces.

n Implement the configuration adapter interface and create the configuration Web application.

Procedure

1 Set Up the Global Plug-In Information on page 76
To create a plug-in, you must point Orchestrator to the relevant XML schema definition and the source
files for the application and plug-in. You must also define the behavior of the plug-in when Orchestrator
starts and provide a root object for the hierarchy of objects that the plug-in exposes.

2 Map Objects in the Plugged-In Technology to Scripting Types and Inventory Objects on page 77
To allow Orchestrator to access objects in a plugged-in application, you must define how and where the
plug-in finds those objects.

3 Define Enumerations on page 80
You can define enumerations in the vso.xml file to set global values that apply to all objects of a certain
category.

4 Map Classes and Methods to Classes and Methods in the JavaScript API on page 80
Orchestrator monitors objects in the plugged-in application and performs operations on them by running
workflows, policies, and actions. You map in the vso.xml file the classes and methods from the plugged-
in technology and from the plug-in implementation to JavaScript classes and methods in the Orchestrator
JavaScript API.

Set Up the Global Plug-In Information
To create a plug-in, you must point Orchestrator to the relevant XML schema definition and the source files
for the application and plug-in. You must also define the behavior of the plug-in when Orchestrator starts and
provide a root object for the hierarchy of objects that the plug-in exposes.

Procedure

1 Create a file named vso.xml.

2 Set up the <module> element to provide basic information about the plug-in, including a pointer to the
Orchestrator plug-in XML schema definition.

The <module> element in the vso.xml file for the solar system example sets the plug-in name to
SolarSystem, sets the version number, and provides the path in the DAR archive to the icon that represents
this plug-in in the Orchestrator Inventory view and selection dialog boxes.

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.vmware.com/support/orchestrator/plugin-4-1.xsd"

 name="SolarSystem" version="1.0.0" build-number="4" image="images/solarSystem-16x16.png">

Developing Plug-Ins with VMware vCenter Orchestrator

76 VMware, Inc.

3 Provide a description of the plug-in in the <description> element.

The following example shows a <description> element for the solar system.

<description>Example plug-in to a solar system application.</description>

4 Add a tab for the plug-in to the configuration interface by referencing the configuration adapter in the
<configuration> element.

The <configuration> element in the vso.xml file for the solar system example identifies an icon for the
solar system plug-in tab in the file structure of the DAR file, references the configuration adapter
implementation and the configuration Web application, and activates validation of the information that
the user provides.

<configuration

 icon="images/solarSystem_32x32.png"

 adaptor-class=

 "com.vmware.orchestrator.api.sample.solarsystem.config.SolarSystemConfigurationAdaptor"

 configuration-war="o11nplugin-solarsystem-config.war"

 validation="enabled" />

5 Set the <installation> and <action> elements to define the behavior of the plug-in when the Orchestrator
server starts.

The solar system example sets the version mode to restart the plug-in whenever a new version is detected,
and provides the path to a package of Orchestrator workflows, policies, and a Web view in the file structure
of the DAR file. Orchestrator installs this package when the plug-in starts.

<installation mode="version">

 <action type="install-package" resource="packages/com.vmware.solarsystem.package" />

 </installation>

6 Set the root of the hierarchy of object types in the <inventory> element.

The solar system plug-in defines the root of the hierarchy that represents the plug-in in the Orchestrator
scripting API as an object of the type Galaxy. All of the other solar system objects relate to the Galaxy object.

<inventory type="Galaxy"/>

You set up the elements that identify the plug-in to Orchestrator, added a tab to the configuration interface,
defined the start-up behavior, and defined the root scripting object type for the objects in the plug-in.

What to do next

Define the types of objects that Orchestrator finds through the plug-in by mapping the finder objects that the
plug-in factory implementation defines to <finder> elements in the vso.xml file.

Map Objects in the Plugged-In Technology to Scripting Types and Inventory
Objects

To allow Orchestrator to access objects in a plugged-in application, you must define how and where the plug-
in finds those objects.

The objects you map in the vso.xml file appear as scripting types in the Orchestrator JavaScript API. Instances
of these objects appear in the Orchestrator inventory.

Prerequisites

You must have created the vso.xml file, defined how Orchestrator identifies the plug-in, and referenced the
configuration adapter.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 77

Procedure

1 Set the data sources for the plug-in <finder> elements in the <finder-datasources> element.

The plug-in adapter implementation is the point of access to all the classes of the plug-in.

The solar system plug-in vso.xml file sets the name of the data source to solar-datasource and points the
<finder> elements to the SolarSystemAdapter class that instantiates the SolarSystemFactory and the other
classes of the plug-in.

<finder-datasources>

 <finder-datasource name="solar-datasource"

 adaptor-class=

 "com.vmware.orchestrator.api.sample.solarsystem.SolarSystemAdapter"

 anonymous-login-mode="internal"/>

</finder-datasources>

2 Define how the plug-in finds objects in the plugged-in technology in <finder> elements.

The following extract from the solar system vso.xml file shows the <finder> element for objects of the type
Star.

<finders>

 <finder type="Star" datasource="solar-datasource"

 java-class="com.vmware.solarsystem.Star"

 script-object="Star" image="images/sun_16x16.png">

 [...]

 </finder>

 [...]

</finders>

The <finder> element for Star objects obtains their data from the data source that the <finder-
datasource> element defines. The Star finder type represents instances of the
com.vmware.solarsystem.Star class in the Orchestrator inventory. The finder element for Star objects
defines a Star scripting type that appears in the Orchestrator JavaScript API.

3 Obtain the identifier of the object in the <id> element.

The solar system example obtains the identifier of the object by calling the getId() method that the solar
system application's CelestialBody class defines.

<id accessor="getId()" />

4 Define the object's relations in the <relations> element.

The solar system example defines a relation named OrbitingPlanets to relate objects of the type Planet
to the Star object that this <finder> element finds.

<relations>

 <relation type="Planet" name="OrbitingPlanets"/>

</relations>

5 Set the hierarchy of objects in the Orchestrator inventory tab according to their relation to the parent.

The solar system example places all objects related to Star objects type by the OrbitingPlanets relation
immediately beneath the star in the inventory hierarchy.

<inventory-children>

 <relation-link name="OrbitingPlanets"></relation-link>

</inventory-children>

Developing Plug-Ins with VMware vCenter Orchestrator

78 VMware, Inc.

6 Set the object's properties in the <properties> element.

The solar system example defines name, circumference, and surfaceTemp properties for all Star objects.
The bean-property property allows Orchestrator to create get and set methods in the scripting API to
obtain and set these properties.

<properties>

 <property display-name="Name" name="name"

 bean-property="name"/>

 <property display-name="Circumference" name="circumference"

 bean-property="circumference"/>

 <property display-name="Surface Temperature" name="surfaceTemp"

 bean-property="surfaceTemp"/>

</properties>

7 Set the events that can occur on the object in the <events> element.

Events can be either gauges or triggers.

In the solar system example, the SolarSystemEventGenerator class defines a generateFlareEvent() method
to generate solar flares on Star objects. The <gauge> element monitors the values of the flare events that
occur on Star objects.

<events>

 <gauge min-value="0" name="Flare" unit="number">

 <description>Magnitude of the flare</description>

 </gauge>

</events>

You defined a <finder> element to find objects of a certain type in the plugged-in application. The objects that
the finder finds appear as scripting types in the Orchestrator JavaScript API and instances of these types appear
in the Orchestrator inventory.

What to do next

Define enumerations to set values that apply to all objects of a certain type.

Solar System Finder Mappings
The vso.xml file for the solar system example maps objects from the solar system application to objects that
appear as scripting types in the Orchestrator JavaScript API. Instances of these objects appear in the
Orchestrator inventory.

The following table lists the mappings that the vso.xml file defines for each type of object that the solar system
application defines.

Table 4-5. Solar System Finder Mappings

Scripting
Type Source Class Inventory Children Properties Events

Galaxy None Stars None None

Star Star, defined by application OrbitingPlanets n name

n circumference

n surfaceTemp

Flare

Planet Planet, defined by
application

OrbitingMoons n name

n circumference

n gravity

None

Moon Moon, defined by application None n name

n volume

None

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 79

Define Enumerations
You can define enumerations in the vso.xml file to set global values that apply to all objects of a certain category.

The categories that you set in the vso.xml file appear as enumerations in the Orchestrator JavaScript API.

Prerequisites

Set up the plug-in and define <finder> elements in the vso.xml file.

Procedure

1 Define an enumeration for a certain object type in the <enumerations> element.

The solar system example defines enumerations to set a PlanetCategory enumeration on Planet objects.

<enumerations>

 <enumeration type="PlanetCategory">

 <description>Define the category of a Planet</description>

 [...]

</enumeration>

2 Define entries for the enumerations that apply values to objects in the given object category.

The solar system example defines values that represent different types of planet.

<entries>

 <entry id="gaz"

 name="Huge Gaz">Huge planet with only gaz atmosphere.

 No Physical core.</entry>

 <entry id="earth"

 name="Earth">You could live on this planet.</entry>

 <entry id="desert"

 name="Desert">Planet without water.</entry>

 <entry id="ice"

 name="Ice">Planet with water but completely frozen.</entry>

 <entry id="other"

 name="Other">Does not fit into any category.</entry>

</entries>

The vso.xml file of the solar system example also defines a StarCategory enumeration that allows you to
define a Star object as a blue dwarf, a nova, or a yellow sun.

You defined enumerations that can apply to all objects in a certain category.

What to do next

Map the classes and methods of the plugged-in technology and the plug-in implementation to JavaScript
classes and methods in the Orchestrator JavaScript API.

Map Classes and Methods to Classes and Methods in the JavaScript API
Orchestrator monitors objects in the plugged-in application and performs operations on them by running
workflows, policies, and actions. You map in the vso.xml file the classes and methods from the plugged-in
technology and from the plug-in implementation to JavaScript classes and methods in the Orchestrator
JavaScript API.

You identify in <scripting-objects><object> elements the classes and methods to map to classes and methods
in the JavaScript API.

Developing Plug-Ins with VMware vCenter Orchestrator

80 VMware, Inc.

Prerequisites

Set up the plug-in, and define <finder> elements and enumerations.

Procedure

1 Map a Java class from the plugged-in technology or from the plug-in implementation to a JavaScript class.

The SolarSystemEventGenerator class defines the events that Orchestrator can invoke in the solar system
application. The solar system vso.xml file maps the event generator class to a JavaScript class named
_SolarSystemEventGenerator. By setting the strict attribute to true, Orchestrator can only call the
methods from the SolarSystemEventGenerator class that are mapped in the vso.xml file. To allow scripting
to instantiate a class you use the create attribute.

<scripting-objects>

 <object script-name="_SolarSystemEventGenerator"

 java-class="com.vmware.orchestrator.api.sample.solarsystem.SolarSystemEventGenerator"

 strict="true">

 <description>The entry point to generate events</description>

 [...]

 </object>

 [...]

</scripting-objects>

2 (Optional) If necessary, denote the JavaScript object as a singleton object.

In the solar system example, SolarSystemEventGenerator is a singleton object. The plug-in adaptor can
only create a single instance of the SolarSystemEventGenerator class. You can only call the methods of the
SolarSystemEventGenerator JavaScript object and cannot instantiate the class in Orchestrator scripts.

<singleton script-name="SolarSystemEventGenerator"

 datasource="solar-datasource"/>

3 Map the methods in the Java class to methods in the Orchestrator JavaScript API in the
<object><methods> element.

The SolarSystemEventGenerator class defines a generateFlareEvent() method to generate solar flare
events. The solar system vso.xml maps this method to a JavaScript method of the same name, and sets its
parameters in the JavaScript method.

<methods>

 <method script-name="generateFlareEvent" java-name="generateFlareEvent">

 <description>Start a Solar Flare</description>

 <parameters>

 <parameter name="star" type="Star">The star which generates the event</parameter>

 <parameter name="magnitude" type="number">The magnitude of the flare</parameter>

 </parameters>

 </method>

</methods>

4 Map the attributes of a Java class to JavaScript attributes in <object><attributes> elements.

The solar system vso.xml file maps the Java attributes of the Star object to attributes of the same name in
the Star JavaScript class in the Orchestrator JavaScript API.

<object script-name="Star" java-class="com.vmware.solarsystem.Star"

 create="false" strict="true">

 [...]

 <attributes>

 <attribute script-name="id" java-name="id" return-type="string">

 The unique Id of the star</attribute>

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 81

 <attribute script-name="name" java-name="name" return-type="string">

 The name of the star</attribute>

 <attribute script-name="circumference" java-name="circumference" return-type="number">

 Circumference of the star</attribute>

 <attribute script-name="temperature" java-name="surfaceTemp" return-type="number">

 The temperature on the star's surface</attribute>

 </attributes>

 [...]

</object>

You mapped classes and their methods and attributes from the classes in the plugged-in technology and plug-
in implementation to a JavaScript class and methods in the Orchestrator JavaScript API.

What to do next

Create or rebuild the DAR file for the plug-in.

Solar System JavaScript API Mappings
The vso.xml file for the solar system example maps objects, classes, methods, and attributes from the solar
system application to scripting types, classes, methods, and attributes in the Orchestrator JavaScript API.

The following table lists the classes, methods, and attributes from the solar system application and plug-in
implemention that the vso.xml file maps to the Orchestrator JavaScript API.

Table 4-6. Solar System JavaScript API Mappings

Scripting Class Source Class Attributes Methods

SolarSystemEventGenerator SolarSystemEventGenerator ,
defined by plug-in

None generateFlareEvent(st
ar, magnitude)

SolarSystemTriggerGenerat
or

SolarSystemTriggerGenerator ,
defined by plug-in

None createStarFlareTrigger
(star, minMagnitude)

Star Star, defined by application n id

n name

n circumferen
ce

n temperature

n addPlanet(planet)

n removePlanet(planet
)

Planet Planet, defined by application n id

n name

n circumferen
ce

n gravity

n starId

n addMoon(moon)

n removeMoon(moon)

Moon Moon, defined by application n id

n name

n volume

n planetId

None

Create the Plug-In DAR Archive
The final stage in the creation of a plug-in is to create the DAR archive that you import to Orchestrator.

IMPORTANT This is only necessary if you are building a skeleton project. The sample projects already include
these directories and files.

Developing Plug-Ins with VMware vCenter Orchestrator

82 VMware, Inc.

The DAR archive is a standard ZIP file that you rename to .dar. The DAR archive contains all of the elements
of the plug-in implementation and must adhere to a standard file and folder structure.

Prerequisites

n Implement the plug-in adapter and factory interfaces.

n Implement the configuration adapter interface and create the configuration Web application.

n Map the application to Orchestrator objects in the vso.xml file.

Procedure

1 Create a working directory in which to create the DAR archive.

For example, create a directory named plugin_name.

2 Create a directory named VSO-INF at the root of the working directory.

3 Copy the vso.xml file to VSO-INF.

4 Create a directory named lib at the root of the working directory.

5 Add the JAR files containing the classes of the application to plug in and the classes of the plug-in adapter
and factory implementations to lib.

6 (Optional) Create a directory named webapps at the root of the working directory.

The webapps contains the WAR file of the configuration tab Web application.

7 Create a directory named resources at the root of the working directory.

8 (Optional) Create a directory named images in the resources directory.

The resources\images directory can contain icons to represent the different objects of the plugged-in
application in the Orchestrator Inventory view and selection dialog boxes.

9 (Optional) Create a directory named packages in the resources directory.

The resources\packages directory can contain packages of workflows, actions, policies, Web views, and
so on, that interact with the plugged-in application.

10 Create a ZIP archive that contains all of the preceding directories and files.

11 Rename the ZIP archive to plugin_name.dar.

You created the DAR archive that contains a plug-in, and imported it to Orchestrator.

What to do next

You can access the objects of the plugged-in application in the Orchestrator inventory to perform operations
on them. You can also use the objects and methods that you mapped to the Orchestrator scripting API to create
workflows, actions, policies, Web views, and so on, to interact with the objects through the plug-in.

Build the Solar System Application and Plug-In
If you adapt the solar system application or the solar system plug-in, you can build the DAR file by using the
Apache Ant building tool.

The Orchestrator examples bundle contains the scripts and build.xml file that allow you to build the solar
system DAR file and the JAR files that it contains. If you add new files to the solar system plug-in, you must
update the build.xml file.

Prerequisites

Verify that you have Apache Ant 1.7.1 or later installed and configured on your system.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 83

Procedure

1 Navigate to the folder that contains the solar system application and plug-in.

install-directory\vco-samples-version_number-build_number\Plug-Ins\solarsystem

2 Open the maven-build.properties file in a text editor and edit the o11n.root.path property to point to
the root folder of the Orchestrator installation.

3 Open a terminal window and navigate to the install-directory\vco-samples-version_number-
build_number\Plug-Ins\solarsystem folder.

4 Type the ant command in the terminal window.

You built the solar system DAR file to incorporate any modifications that you made to the application or to
the plug-in.

What to do next

Install the solar system DAR file in the Orchestrator server.

Contents of the Solar System DAR File
The DAR file is a ZIP file that you rename to DAR. You can unzip the solar system DAR file to view the contents
and file structure of the solar system plug-in.

The solar system example o11nplugin-solarsystem.dar file contains the following directories and files.

n \lib, that contains the following JAR archives:

n o11nplugin-solarsystem-core-1.0.0.jar, that contains the classes of the plug-in adapter and factory
implementations for the solar system application.

n o11nplugin-solarsystem-model-1.0.0.jar, that contains the classes of the solar system application.

n \resources, that contains the following directories:

n \images, that contains icons that represent the different objects of the solar system application on the
Orchestrator Inventory tab.

n \packages, that contains an Orchestrator package named com.vmware.solarsystem.package. The
package contains workflows, policies, actions, and the Web view that allow Orchestrator to interact
with the solar system application.

n \VSO-INF\vso.xml, the XML file that maps the solar system application to Orchestrator objects.

n \webapps, that contains the o11nplugin-solarsystem-config.war file for the Web application of the solar
system configuration tab.

Install a Plug-In in the Orchestrator Server
After you create the plug-in DAR file, you must install it in the Orchestrator server. You install plug-ins in the
Orchestrator configuration interface.

Prerequisites

Verify that you have a completed DAR file for a plug-in.

Procedure

1 Open the Orchestrator configuration interface in a Web browser and log in.

http://orchestrator_server_DNS_name_or_IP_address:8282

2 Click Plug-ins.

Developing Plug-Ins with VMware vCenter Orchestrator

84 VMware, Inc.

3 Type the credentials for a user who is a member of the Orchestrator Administration group.

When the Orchestrator server starts, the system uses these credentials to set up the plug-ins. The system
checks the enabled plug-ins and performs any necessary internal installations such as package import,
policy run, script launch, and so on.

4 Click the magnifying glass icon and select the DAR file to install.

5 Click Open.

6 Click Upload and install.

The installed plug-in file is stored in the install_directory\app-server\server\vmo\plugins folder.

7 Click Apply changes.

Depending on the plug-in, the configuration server might restart.

8 (Optional) If the plug-in adds a configuration tab to the configuration interface, click the tab for the plug-
in.

For example, if you install the solar system plug-in, click Solar System.

9 (Optional) Configure the plug-in in its configuration tab.

For example, if you install the solar system plug-in, select your home planet and select whether Pluto is
a planet or a dwarf planet.

10 Click Apply changes.

11 Restart the Orchestrator server.

You installed and configured a plug-in.

What to do next

Use Orchestrator to interact with the plugged-in technology.

Interact with the Solar System Application by Using Orchestrator
After you install a plug-in in the Orchestrator server, you can use the objects that it adds to the Orchestrator
JavaScript API to create workflows, actions, policies, Web views, and so on. You use these items to interact
with the plugged-in technology using Orchestrator.

The solar system plug-in includes the com.vmware.samples.solarsystem package that contains workflows,
actions, a policy, and a Web view that implement the API objects that the solar system plug-in adds to the
Orchestrator JavaScript API.

Procedure

1 View Plug-In Scripting Objects in the JavaScript API on page 86
The objects of a plugged-in technology that you map to Orchestrator scripting objects appear in the
Orchestrator JavaScript API.

2 Run Workflows on Plug-In Objects in the Inventory on page 86
You can use the scripting objects that a plug-in adds to the Orchestrator JavaScript API to write workflows
and actions to interact with the plugged-in technology.

3 Monitor Plug-In Events by Using Policies on page 87
You can use policies to monitor events in a plugged-in technology and perform defined operations when
the events occur.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 85

4 Monitor Plug-In Events by Using Workflows on page 88
Workflows can include a Wait Event element that suspends the workflow and waits for an event to occur
in a plugged-in technology. Plug-ins can implement triggers and watchers to notify waiting workflows
of the events that occur.

5 Access Plug-In Objects and Operations by Using a Web View on page 89
With Web views, you can run workflows on objects from the Orchestrator inventory from a Web browser
instead of from the Orchestrator client.

View Plug-In Scripting Objects in the JavaScript API
The objects of a plugged-in technology that you map to Orchestrator scripting objects appear in the
Orchestrator JavaScript API.

The solar system vso.xml file maps objects from the solar system application and plug-in to classes, methods,
attributes, and enumerations in the Orchestrator JavaScript API.

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 In the Orchestrator client, select Tools > API Explorer.

2 Expand the SolarSystem node in the hierarchical list of scripting objects.

You see the scripting types for the different types of celestial bodies, scripting classes for the Star,
Planet, Moon, SolarSystemEventGenerator, and SolarSystemTriggersManager objects, and enumerations to
define categories of stars and planets.

3 Expand a scripting class in the hierarchical list to see the scripting methods and attributes that it defines.

The scripting methods and attributes are those that the vso.xml file maps for each object.

You can use the scripting objects from the plug-in to create workflows, actions, policies, and so on.

What to do next

Run a workflow on a solar system object in the Inventory view.

Run Workflows on Plug-In Objects in the Inventory
You can use the scripting objects that a plug-in adds to the Orchestrator JavaScript API to write workflows
and actions to interact with the plugged-in technology.

The solar system plug-in includes a package of workflows that you can use to perform operations on the objects
that the plug-in adds to the Orchestrator inventory.

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

Developing Plug-Ins with VMware vCenter Orchestrator

86 VMware, Inc.

3 Expand the Samples > SolarSystem nodes in the hierarchical list of workflows to see the list of workflows
that the solar system plug-in adds to the library.

4 Right-click the Add Planet workflow and select Edit.

5 On the Schema tab, click the Edit icon () of the scripted element.

6 Click the Scripting tab for the scripted element.

You see that Add Planet workflow calls the Star.addPlanet() method from the solar system application.

7 Click Save and close to close the workflow editor.

8 Click the Inventory view.

9 Expand the SolarSystem node in the hierarchical list of plug-ins and select the Helios star object.

You see objects that represent the planets of Earth's solar system. The planets are the instances of the
Planet object that the SolarSystemRepository class from the solar system application creates.

10 Expand a planet node to see its moons.

The vso.xml file defines the hierarchy of planets to stars and moons to planets by setting the
OrbitingPlanets and OrbitingMoons relations.

11 Click the sun, a planet, or a moon to display its properties on the right.

12 Right-click the sun, a planet, or a moon to and select Run workflow to run a workflow on that object.

You can select a workflow to run from a contextual list of workflows that take that type of object as an
input parameter.

You can run workflows on the solar system objects in the inventory. You can add a planet to the sun's orbit or
generate or wait for a solar flare. You can modify the circumference of planets or split or destroy them.

What to do next

Monitor events in the solar system application by setting a policy.

Monitor Plug-In Events by Using Policies
You can use policies to monitor events in a plugged-in technology and perform defined operations when the
events occur.

The solar system plug-in includes a policy that monitors a star object for solar flares. When flares occur, the
policy records the magnitude of the flares in the logs.

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Administer.

2 Click the Policy Templates view.

3 Expand the Samples > SolarSystem nodes in the hierarchical list of policies.

4 Right-click the Star policy and select Apply Policy.

5 Add a policy description and select a Star object on which to apply the policy in the Apply Policy dialog
box and click Submit.

The Star policy opens in the Policies tab.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 87

6 Click the Star policy and open the Scripting tab.

In the scripting tab you see that the policy is monitoring a threshold named Flare.

7 Right-click the Star policy and select Start policy.

8 Click the Inventory tab.

9 Right-click the Helios star and select Run workflow.

10 Run the Generate Flare Event workflow, setting the magnitude of the flare to 100.

The Generate Flare Event workflow includes a script that calls the
SolarSystemEventGenerator.generateFlareEvent() method. The gauge that the
SolarSystemEventGenerator class implements pushes an event object named Flare to the Orchestrator
policy engine.

11 Click the Policies tab.

12 Click the Star policy.

13 Click the Logs tab.

The policy has recorded the magnitude of the solar flare event in the logs.

The Star policy implements the solar system scripting API to monitor star objects for solar flare events and
records their magnitude. The policy keeps on running until you stop it. If you run the Generate Flare Event
again, the policy continues to record the magnitudes of the flares in the logs.

What to do next

Monitor events on objects in the plugged-in technology by running workflows.

Monitor Plug-In Events by Using Workflows
Workflows can include a Wait Event element that suspends the workflow and waits for an event to occur in a
plugged-in technology. Plug-ins can implement triggers and watchers to notify waiting workflows of the
events that occur.

The solar system example includes a workflow that implements a Wait Event element to wait for solar flares.
When a flare occurs, the waiting workflow resumes its run, records the magnitude of the flare in the logs, then
ends.

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the Samples > SolarSystem nodes in the hierarchical list of workflows to see the list of workflows
that the solar system plug-in adds to the library.

4 Right-click the Wait On Flare Event workflow, select Start workflow, and click Submit.

The Wait On Flare Event workflow calls the SolarSystemTriggerGenerator.createStarFlareTrigger()
method to create an event trigger.

Developing Plug-Ins with VMware vCenter Orchestrator

88 VMware, Inc.

5 Click the workflow token for this run of the Wait On Flare Event workflow.

In the workflow schema, you can see that the workflow has suspended its run at the Waiting Event
element. In the Logs tab you can see that the workflow is waiting for a flare of at least magnitude 10.

6 Click the Inventory view.

7 Expand the SolarSystem node in the hierarchical list of plug-ins.

8 Right-click Helios and select Run workflow > Generate Flare Event.

Set the magnitude of the flare to a value greater than 10 when you run the workflow.

9 Click Workflows.

10 Click the workflow token for Wait On Flare Event workflow.

The workflow is no longer waiting and has ended its run. In the Logs tab for this token you can see that
the workflow has recorded a flare of at least magnitude 10.

The Wait On Flare Event workflow implements the solar system scripting API to create a plug-in trigger that
waits for solar flares of a given magnitude. When a flare event occurs, the workflow ends, but you can create
a loop in the workflow to record the event and wait for the next event.

What to do next

Access the solar system objects and workflows by using the solar system Web view.

Access Plug-In Objects and Operations by Using a Web View
With Web views, you can run workflows on objects from the Orchestrator inventory from a Web browser
instead of from the Orchestrator client.

The solar system example includes a Web view that you can use to access the objects and workflows of the
solar system plug-in from a Web browser.

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Administer.

2 Click the Web Views view.

3 Right-click the SolarSystem Web view and select Publish.

4 Open a browser and go to http://orchestrator_server:8280.

In the URL, orchestrator_server is the DNS name or IP address of the Orchestrator server, and 8280 is the
default port number where Orchestrator publishes Web views.

5 On the Orchestrator home page, click Web View List.

6 Click Solar System.

7 Log in using your Orchestrator user name and password.

8 Click the buttons in the Web view to run workflows on the objects in the solar system application.

You can run workflows to add a planet to the Sun, modify, split, or remove planets from a Web browser. You
can examine the structure and files of the solar system Web view in the source files of the solar system plug-
in or exporting the Web view to a directory in Web Views in the Orchestrator client.

Chapter 4 Create an Orchestrator Plug-In

VMware, Inc. 89

What to do next

You can adapt the classes of the solar system application and the plug-in implementation to experiment with
plug-in development. You can use the solar system scripting API to develop more workflows that perform
operations in the solar system application.

Developing Plug-Ins with VMware vCenter Orchestrator

90 VMware, Inc.

API Enhancements for Plug-In
Development 5

Version 5.1 of Orchestrator introduces a number of new API features that you can use to simplify the plug-in
development process. The list of new API features includes the use of annotations, Java-based configuration,
Spring features, workflow and action generation, and SSL support.

This chapter includes the following topics:

n “Orchestrator Annotations API,” on page 91

n “Orchestrator Spring-Based Plug-In API,” on page 94

n “Orchestrator Workflow Generation API,” on page 95

n “Orchestrator SSL Configuration API,” on page 96

Orchestrator Annotations API
Annotations provide a way to define plug-in elements contained in the vso.xml file, without modifying the
file directly. You can annotate the Java source files of the plug-in to define the finders and scripting objects to
be included inside the vso.xml file.

You can use annotations and Java-based configuration to define all plug-in elements. See “Java-Based
Configuration API for the Plug-In Definition File,” on page 92.

Enable Annotation-Based Configuration
You can enable annotation-based configuration by adding the proper library dependencies to the build path
of the plug-in.

The Orchestrator annotations are included inside the o11n-plugin-sdk-tools.jar file, but this library requires
other libraries to run.

Procedure

1 Add the following libraries to the Ant build.classpath path variable.

<path id="build.classpath">

 ...

 <pathelement location="${maven.repo.local}/o11n-sdkapi.jar"/>

 <pathelement location="${maven.repo.local}/o11n-model.jar"/>

 <pathelement location="${maven.repo.local}/o11n-util.jar"/>

 <pathelement location="${maven.repo.local}/o11n-plugin-sdk-tools.jar"/>

 <pathelement location="${maven.repo.local}/o11n-plugin-sdk-plugen.jar"/>

 <pathelement location="${maven.repo.local}/commons-cli-1.2.jar"/>

 <pathelement location="${maven.repo.local}/commons-collections-3.2.1.jar"/>

 <pathelement location="${maven.repo.local}/commons-lang-2.6.jar" />

VMware, Inc. 91

 <pathelement location="${maven.repo.local}/commons-logging-1.0.4.jar" />

 <pathelement location="${maven.repo.local}/spring-asm-3.1.0.RELEASE.jar"/>

 <pathelement location="${maven.repo.local}/spring-beans-3.1.0.RELEASE.jar"/>

 <pathelement location="${maven.repo.local}/spring-context-3.1.0.RELEASE.jar"/>

 <pathelement location="${maven.repo.local}/spring-core-3.1.0.RELEASE.jar"/>

 <pathelement location="${maven.repo.local}/spring-oxm-3.1.0.RELEASE.jar"/>

</path>

The vso.xml file generation process occurs at build time of the plug-in package, so the auxiliary libraries
do not need to be packaged inside the plug-in.

2 Enable the vso.xml file generation.

You can use Ant, to enable the generation of the vso.xml file by adding a new target that invokes the
VsoGenerator class.

The following is an example of an Ant target.

<target name="package" depends="compile,test" description="Package the application">

 <antcall target="generate-vso" />

 ...

</target>

<target name="generate-vso">

 <java fork="true" failonerror="yes"

classname="com.vmware.o11n.plugin.sdk.plugen.vso.VsoGenerator"

classpathref="build.classpath">

 <arg line="-name ${plugin.build.name}" />

 <arg line="-vsoDirectory ${maven.build.darDir}/VSO-INF" />

 <arg line="-moduleBuilder com.vmware.o11n.plugin.PowerShellModuleBuilder" />

 </java>

</target>

Annotating Objects
You can mark a domain class as an Orchestrator scripting object by using the @VsoObject annotation.

By default, the simple class name prefixed with your plug-in name will be used as a scripting object name. You
can override this behavior by explicitly specifying the name attribute within the annotation.

You cannot export object properties as scripting attributes by using the @VsoObject annotation. To export a
given property as a scripting attribute, you must annotate it with the @VsoProperty annotation. By default, the
field name is used as a scripting attribute name. You can use @VsoProperty on a field or on a getter method
level.

To generate the finder definition for a given scripting object, you must annotate your class with the
@VsoFinder annotation.

Java-Based Configuration API for the Plug-In Definition File
Java-based configuration provides a way to define plug-in elements contained in the vso.xml file, without
modifying the file directly. You can use a specific Java class to set the properties from the vso.xml file that are
not directly related to finders and scripting objects.

You can use Java-based configuration and annotations to define all plug-in objects. See “Orchestrator
Annotations API,” on page 91.

Developing Plug-Ins with VMware vCenter Orchestrator

92 VMware, Inc.

Using Java-Based Configuration
You can use Java-based configuration for elements that are not supported by annotation-based configuration.

To connect fragments of the vso.xml file that are not connected to the annotated scripting objects, you must
create your own ModuleBuilder class, which extends from the
com.vmware.o11n.plugin.sdk.module.ModuleBuilder class, and to implement its configure method.

Example: Using the ModuleBuilder Class
The following code sample uses the ModuleBuilder class to generate elements in the vso.xml file.

...

public class CiscoModuleBuilder extends ModuleBuilder {

 private static final String UCSM_DATASOURCE = "ucsm-datasource";

 @Override

 public void configure() {

 module("UCSM")

 .withDescription("Cisco UCSM Plug-in.")

 .withImage("images/cisco_16x16.png")

 .basePackages("com.vmware.o11n.vmo.plugin.ucsm.model");

 configuration(CiscoUCSMConfigurationAdaptor.class, "images/cisco_16x16.png")

 .configurationWar("o11nplugin-ucsm-config.war").validatable();

 installation(InstallationMode.BUILD)

 .action(ActionType.INSTALL_PACKAGE,

 "packages/${artifactId}-package-${project.version}.package");

 inventory("System");

 finderDatasource(CiscoUCSMPluginAdaptor.class,

 UCSM_DATASOURCE).anonymousLogin(LoginMode.INTERNAL);

 }

}

You can use the annotation-based configuration method for enabling vso.xml file generation. See “Enable
Annotation-Based Configuration,” on page 91.

Chapter 5 API Enhancements for Plug-In Development

VMware, Inc. 93

Orchestrator Spring-Based Plug-In API
The Orchestrator Spring-based plug-in API offers boilerplate code that you can use to simplify plug-in
development and add new features. You can implement additional features, such as scripting object lifecycle
management, dependency injection, and basic resource management, by using the Spring-based plug-in API.

Spring-Based API Basic Configuration
You must extend some of the classes offered by the Spring-based API to start developing a plug-in based on
the Spring API.

The Plug-In Adapter Implementation
public final class DemoPluginAdaptor extends AbstractSpringPluginAdaptor {

 private static final String DEFAULT_CONFIG = "com/vmware/o11n/plugin/demo/pluginConfig.xml";

 @Override

 protected ApplicationContext createApplicationContext(ApplicationContext defaultParent) {

 ClassPathXmlApplicationContext applicationContext = new ClassPathXmlApplicationContext(new

String[] { DEFAULT_CONFIG }, defaultParent);

 return applicationContext;

 }

}

The Plug-In Application Context Definition
You must define the following code inside the pluginConfig.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>

 <context:component-scan base-package="com.vmware.o11n.plugin.demo"

scoperesolver="com.vmware.o11n.plugin.sdk.spring.VsoAnnotationsScopeResolver">

 <context:include-filter type="annotation"

expression="ch.dunes.vso.sdk.annotation.VsoFinder"/>

 <context:include-filter type="annotation"

expression="ch.dunes.vso.sdk.annotation.VsoObject"/>

 </context:component-scan>

 <bean class="com.vmware.o11n.plugin.demo.DemoPluginFactory" id="pluginFactory" autowire-

candidate="false" scope="prototype" />

</beans>

The Plug-In Factory Implementation
public final class DemoPluginFactory extends AbstractSpringPluginFactory {

 @Override

 public Object find(InventoryRef ref) {

 }

 @Override

 public QueryResult findAll(String type, String query) {

 }

 @Override

 public List<?> findChildrenInRootRelation(String type, String relationName) {

 }

Developing Plug-Ins with VMware vCenter Orchestrator

94 VMware, Inc.

 @Override

 public List<?> findChildrenInRelation(InventoryRef parent, String relationName) {

 }

}

The plug-in factory is responsible to find objects. After implementing the plug-in factory, you do not need to
implement the following methods.

n public void registerEventPublisher(String type, String id, IPluginEventPublisher

pluginEventPublisher)

n public void unregisterEventPublisher(String type, String id, IPluginEventPublisher

pluginEventPublisher)

n public Object find(String type, String id)

n public List<?> findRelation(String type, String id, String relationName)

Orchestrator Workflow Generation API
You can extend the Orchestrator functionality by creating workflows and actions based on external definitions.
The plug-in SDK contains helper classes that allow basic workflow and action generation at runtime.

Generating Actions
You can generate actions by using the ScriptModuleBuilder class. The main attributes of an action are input
parameters, return type, and script to be executed.

You must follow the steps for generating actions.

// Cretate instance of ScriptmoduleBuilder and set required action name

ScriptModuleBuilder builder = new ScriptModuleBuilder().setName(actionName);

// Set type of returned type (Optional)

builder .setResultType(“string”);

// Add input parameters, if any

builder.addParameter(“SessionId”, "string");

// Set script to be executed

builder.setScript(“var a = 1”);

// Persist generated action in vCO

builder.insert(categoryName, factory);

Generating Workflows
You can generate workflows by using the WorkflowBuilderExt class. The main attributes of a workflow are
input and output parameters, attributes, and workflow item tasks. To have a complete workflow, you need to
define links between workflow items, and optionally enhance the workflow presentation.

You must follow the steps for generating workflows.

// Cretate an instance of WorkflowBuilderExt

WorkflowBuilderExt wb = new WorkflowBuilderExt();

// Set generated workflow name

wb.setName(workflowName);

// Create workflow output parameter

Chapter 5 API Enhancements for Plug-In Development

VMware, Inc. 95

wb.addInParameter("someParam", “string”);

// Create required workflow items and specify their location

wb.createEndItem(“endItem”, 50, 100);

ScriptingBoxItem item = wb.createScriptingBoxItem(“item1”, “var a =

someParam”).setLocation(50,50);

// In/Out parameters can be added, if needed

item.addInParameter(“someParam”, “someParam”, "string");

wb.bindItemInParameter(“item1”, “someParam”,“someParam”);

// Connect items to create real workflow

wb.connectItem(“item1”, “endItem”);

// Set workflow start item

wb.setRootItemName(“item1”);

// Persist workflow into vCO

wb.insertWorkflow(factory, targetFolder);

Orchestrator SSL Configuration API
SSL support provides a way to use the Orchestrator keystore to create secure connections based on SSL from
plug-ins’ source code. You can use SSL to manage your own plug-in keystore and to implement your own
classes to establish SSL connections between your plug-in and your configured hosts or services.

SSL Configuration Methods
You can configure SSL connections to use a specific connection method.

Plain Java URLConnection
If you want to use the Java standard URLConnection class, you have two options.

You can configure properties through the HttpsURLConnection class. The SDK provides the proper
implementations for the standard Java interfaces SSLSocketFactory and HostnameVerifier. After configuring
the properties, you can create underlying secure connections from any URL.

import java.net.URLConnection;

import javax.net.ssl.HttpsURLConnection;

import com.vmware.o11n.plugin.sdk.ssl.factory.PluginSSLSocketFactory;

import com.vmware.o11n.plugin.sdk.ssl.verifier.PluginHostnameVerifier;

...

// Initialization

HttpsURLConnection.setDefaultSSLSocketFactory(PluginSSLSocketFactory.getDefault());

// Optionally

HttpsURLConnection.setDefaultHostnameVerifier(new PluginHostnameVerifier());

...

URLConnection conn = new URL("https://...").openConnection();

...

Developing Plug-Ins with VMware vCenter Orchestrator

96 VMware, Inc.

You can create underlying secure connections directly from the PluginSSLSocketFactory class with the
PluginHostnameVerifier class configured by default.

import java.net.URLConnection;

import com.vmware.o11n.plugin.sdk.ssl.factory.PluginSSLSocketFactory;

...

URLConnection conn = PluginSSLSocketFactory.getConnection("https://...");

...

Plain Java SSLSocketFactory
If you want to use the Java standard SSLSocketFactory class directly, the SDK provides the proper
implementation to create underlying secure sockets.

import java.net.Socket;

import javax.net.ssl.SSLSocketFactory;

import com.vmware.o11n.plugin.sdk.ssl.factory.PluginSSLSocketFactory;

...

SSLSocketFactory factory = PluginSSLSocketFactory.getDefault();

Socket s = factory.createSocket(...);

...

Apache’s HttpClient 3
If you want to use Apache HttpClient version 3, you must register the secure protocol that you want to use
with your own implementation of their ProtocolSocketFactory interface. In the following examples, the SDK
provides the Orchestrator implementation of that interface for you and two different ways to register the
HTTPS protocol.

You can register the protocol manually.

import com.vmware.o11n.plugin.sdk.ssl.factory.HttpClient3PluginSSLSocketFactory;

import org.apache.commons.httpclient.protocol.Protocol;

import org.apache.commons.httpclient.protocol.ProtocolSocketFactory;

...

Protocol https = new Protocol("https", (ProtocolSocketFactory)

HttpClient3PluginSSLSocketFactory.getDefault(), 443);

Protocol.registerProtocol("https", https);

You can use HttpClient3PluginSSLSocketFactory to register the HTTPS protocol.

NOTE You should use the manual method to register other protocols or specific ports.

import com.vmware.o11n.plugin.sdk.ssl.factory.HttpClient3PluginSSLSocketFactory;

...

HttpClient3PluginSSLSocketFactory.registerHttpsProtocol();

Chapter 5 API Enhancements for Plug-In Development

VMware, Inc. 97

Apache’s HttpClient 4
If you want to use Apache HttpClient version 4, you must configure the ClientConnectionManager that you
want to use, with the secure scheme that you want, and your own implementation of their SSLSocketFactory
interface. In the following example, the SDK provides the Orchestrator implementation of that interface for
you.

import com.vmware.o11n.plugin.sdk.ssl.factory.HttpClient4PluginSSLSocketFactory;

import org.apache.http.conn.scheme.Scheme;

import org.apache.http.conn.scheme.SchemeRegistry;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.impl.conn.SchemeRegistryFactory;

import org.apache.http.impl.conn.tsccm.ThreadSafeClientConnManager;

...

SchemeRegistry registry = SchemeRegistryFactory.createDefault();

Scheme https = new Scheme("https", 443, HttpClient4PluginSSLSocketFactory.getDefault());

registry.register(https);

ThreadSafeClientConnManager manager = new ThreadSafeClientConnManager(registry);

DefaultHttpClient client = new DefaultHttpClient(manager);

The HostValidator Helper Class
The HostValidator class can be used by plug-ins to retrieve, from an HTTPS URL, certificates used to establish
a connection. The SDK provides the HostValidator helper class independently of the SSL configuration.

By using the HostValidator helper class, a plug-in can return information about certificates, that can be
accepted through a user interaction. If the certificate information is accepted, the HostValidator class installs
the certificate within the Orchestrator keystore.

You can use the features of the HostValidator helper class through the following methods.

n The constructor HostValidator(url), for which the URL is the HTTPS URL.

n The method getCertificateInfo(), which returns a map with properties available for an HTTPS
connection and its cerfiticates.

n The method installCertificates(), which installs certificates within the Orchestrator keystore.

Developing Plug-Ins with VMware vCenter Orchestrator

98 VMware, Inc.

Orchestrator Plug-In API Reference 6
The Orchestrator plug-in API defines Java interfaces and classes to implement and extend when you develop
the IPluginAdaptor and IPluginFactory implementations to create a plug-in.

All classes are contained in the ch.dunes.vso.sdk.api package, unless stated otherwise.

This chapter includes the following topics:

n “IAop Interface,” on page 100

n “IConfigurationAdaptor Interface,” on page 100

n “IDynamicFinder Interface,” on page 101

n “IPluginAdaptor Interface,” on page 101

n “IPluginEventPublisher Interface,” on page 102

n “IPluginFactory Interface,” on page 102

n “IPluginNotificationHandler Interface,” on page 103

n “IPluginPublisher Interface,” on page 104

n “WebConfigurationAdaptor Interface,” on page 104

n “BaseAction Class,” on page 104

n “ConfigurationError Class,” on page 105

n “PluginLicense Class,” on page 105

n “PluginTrigger Class,” on page 106

n “PluginWatcher Class,” on page 107

n “QueryResult Class,” on page 107

n “SDKFinderProperty Class,” on page 108

n “SDKHelper Class,” on page 109

n “PluginExecutionException Class,” on page 110

n “PluginLicenseException Class,” on page 110

n “PluginOperationException Class,” on page 110

n “ConfigurationError.Severity Enumeration,” on page 111

n “ErrorLevel Enumeration,” on page 111

n “HasChildrenResult Enumeration,” on page 112

VMware, Inc. 99

n “ScriptingAttribute Annotation Type,” on page 113

n “ScriptingFunction Annotation Type,” on page 113

n “ScriptingParameter Annotation Type,” on page 113

IAop Interface
The IAop interface provides methods to obtain and set properties on objects in the plugged-in technology.

public interface IAop

The IAop interface defines the following methods:

Method Returns Description

get(java.lang.String
propertyName, java.lang.Object
object, java.lang.Object
sdkObject)

java.lang.Object Obtains a property from a given object
in the plug-in.

set(java.lang.String
propertyName, java.lang.String
propertyValue, java.lang.Object
object)

Void Sets a property on a given object in the
plug-in.

IConfigurationAdaptor Interface
The IConfigurationAdaptor interface allows you to add a tab in the Orchestrator configuration interface. You
can use the tab to configure a plug-in.

You can extend the IConfigurationAdaptor interface to pass to the plug-in configuration information that is
specific to your environment. The SDKHelper class defines further methods to pass configuration information
from the configuration interface to the Orchestrator server.

The IConfigurationAdaptor interface is contained in the ch.dunes.vso.sdk.conf package.

The IConfigurationAdaptor interface defines the following methods.

Method Returns Description

loadConfiguration(java.io.Input
Stream stream)

Void Loads or reloads the configuration. If
the stream property is null, the plug-in
loads its default configuration.
Returns java.io.IOException if it
encounters an error.

saveConfiguration(java.io.Outpu
tStream stream)

Void Saves the configuration details. If the
stream property is null, the plug-in
saves the configuration details in the
default location when you click Apply
Changes in the configuration interface.
Returns java.io.IOException if it
encounters an error.

setPluginName(java.lang.String
name)

Void Sets the plug-in name as it appears in the
plug-in tab in the configuration
interface.

validateConfiguration() ConfigurationError[] Validates the configuration if
validation="enabled" is set.

Developing Plug-Ins with VMware vCenter Orchestrator

100 VMware, Inc.

IDynamicFinder Interface
The IDynamicFinder interface returns the ID and properties of a finder programmatically, instead defining the
ID and properties in the vso.xml file.

The IDynamicFinder Interface defines the following methods.

Method Returns Description

getIdAccessor(java.lang.String
type)

java.lang.String Provides an OGNL expression to obtain
an object ID programmatically.

getProperties(java.lang.String
type)

java.util.List<SDKFinderProper
ty>

Provides a list of object properties
programmatically.

IPluginAdaptor Interface
You implement the IPluginAdaptor interface to manage plug-in factories, events and watchers. The
IPluginAdaptor interface defines an adapter between a plug-in and the Orchestrator server.

IPluginAdaptor instances are resonsible for session management. The IPluginAdaptor Interface defines the
following methods.

Method Returns Description

addWatcher(PluginWatcher
watcher)

Void Adds a watcher to monitor for a specific
event

createPluginFactory(java.lang.S
tring sessionID,
java.lang.String username,
java.lang.String password,
IPluginNotificationHandler
notificationHandler)

IPluginFactory Creates an IPluginFactory instance.
The Orchestrator server uses the factory
to obtain objects from the plugged-in
technology by their ID, by their relation
to other objects, and so on.
The session ID allows you to identify a
running session. For example, a user
could log into two different
Orchestrator clients and run two
sessions simultaneously.
Similarly, starting a workflow creates a
session that is independent from the
client in which the workflow started. A
workflow continues to run even if you
close the Orchestrator client.

installLicenses(PluginLicense[]
licenses)

Void Installs the license information for
standard plug-ins that VMware
provides

registerEventPublisher(java.lan
g.String type, java.lang.String
id, IPluginEventPublisher
publisher)

Void Sets triggers and gauges on an element
in the inventory

removeWatcher(java.lang.String
watcherId)

Void Removes a watcher

setPluginName(java.lang.String
pluginName)

Void Gets the plug-in name from the
vso.xml file

setPluginPublisher(IPluginPubli
sher pluginPublisher)

Void Sets the publisher of the plug-in

Chapter 6 Orchestrator Plug-In API Reference

VMware, Inc. 101

Method Returns Description

uninstallPluginFactory(IPluginF
actory plugin)

Void Uninstalls a plug-in factory.

unregisterEventPublisher(java.l
ang.String type,
java.lang.String id,
IPluginEventPublisher
publisher)

Void Removes triggers and gauges from an
element in the inventory

IPluginEventPublisher Interface
The IPluginEventPublisher interface publishes gauges and triggers on an event notification bus for
Orchestrator policies to monitor.

You can create IPluginEventPublisher instances directly in the plug-in adaptor implementation or you can
create them in separate event generator classes.

You can implement the IPluginEventPublisher interface to publish events in the plugged-in technology to the
Orchestrator policy engine. You create methods to set policy triggers and gauges on objects in the plugged-in
technology and event listeners to listen for events on those objects.

Policies can implement either gauges or triggers to monitor objects in the plugged-in technology. Policy gauges
monitor the attributes of objects and push an event in the Orchestrator server if the values of the objects exceed
certain limits. Policy triggers monitor objects and push an event in the Orchestrator server if a defined event
occurs on the object. You register policy gauges and triggers with IPluginEventPublisher instances so that
Orchestrator policies can monitor them.

The IPluginEventPublisher Interface defines the following methods.

Type Returns Description

pushGauge(java.lang.String
type, java.lang.String id,
java.lang.String gaugeName,
java.lang.String deviceName,
java.lang.Double gaugeValue)

Void Publish a gauge for policies to monitor.
Takes the following parameters:
n type: Type of the object to monitor.
n id: Identifier of the object to

monitor.
n gaugeName: Name for this gauge.
n deviceName: Name for the type of

attribute that the gauge monitors.
n gaugeValue: Value for which the

gauge monitors the object.

pushTrigger(java.lang.String
type, java.lang.String id,
java.lang.String triggerName,
java.util.Properties
additionalProperties)

Void Publish a trigger for policies to monitor.
Takes the following parameters:
n type: Type of the object to monitor.
n id: Identifier of the object to

monitor.
n triggerName: Name for this

trigger.
n additionalProperties: Any

additional properties for the trigger
to monitor.

IPluginFactory Interface
The IPluginAdaptor returns IPluginFactory instances. IPluginFactory instances run commands in the
plugged-in application, and finds objects upon which to perform Orchestrator operations.

The IPluginFactory interface defines the following field:

Developing Plug-Ins with VMware vCenter Orchestrator

102 VMware, Inc.

static final java.lang.String RELATION_CHILDREN

The IPluginFactory interface defines the following methods.

Method Returns Description

executePluginCommand(java.lang.
String cmd)

Void Use the plug-in to run a command.
VMware recommends that you do not
use this method.

find(java.lang.String type,
java.lang.String id)

java.lang.Object Use the plug-in to find an object.
Identify the object by its ID and type.

findAll(java.lang.String type,
java.lang.String query)

QueryResult Use the plug-in to find objects of a
certain type and that match a query
string. You define the syntax of the
query in the IPluginFactory
implementation of the plug-in. If you do
not define query syntax, findAll()
returns all objects of the specified type.

findRelation(java.lang.String
parentType, java.lang.String
parentId, java.lang.String
relationName)

java.util.List Determines whether an object has
children.

hasChildrenInRelation(java.lang
.String parentType,
java.lang.String parentId,
java.lang.String relationName)

HasChildrenResult Finds all children related to a given
parent by a certain relation.

invalidate(java.lang.String
type, java.lang.String id)

Void Invalidate objects by type and ID.

void invalidateAll() Void Invalidate all objects in the cache.

IPluginNotificationHandler Interface
The IPluginNotificationHandler defines methods to notify Orchestrator of different types of event that occur
on the objects Orchestrator accesses through the plug-in.

The IPluginNotificationHandler Interface defines the following methods.

Method Returns Description

getSessionID() java.lang.String Returns the current session ID

notifyElementDeleted(java.lang.
String type, java.lang.String
id)

Void Notifies the system that an object with
the given type and ID has been deleted

notifyElementInvalidate(java.la
ng.String type,
java.lang.String id)

Void Notifies the system that an object's
relations have changed. You can use the
notifyElementInvalidate()
method to notify Orchestrator of all
changes in relations between objects,
not only for relation changes that
invalidate an object. For example,
adding a child object to a parent
represents a change in the relation
between the two objects.

Chapter 6 Orchestrator Plug-In API Reference

VMware, Inc. 103

Method Returns Description

notifyElementUpdated(java.lang.
String type, java.lang.String
id)

Void Notifies the system that an object's
attributes have been modified

notifyMessage(ch.dunes.vso.sdk.
api.ErrorLevel severity,
java.lang.String type,
java.lang.String id,
java.lang.String message)

Void Publishes an error message related to
the current module

IPluginPublisher Interface
The IPluginPublisher interface publishes a watcher event on an event notification bus for long-running
workflow Wait Event elements to monitor.

When a workflow trigger starts an event in the plugged-in technology, a plug-in watcher that watches that
trigger and that is registered with an IPluginPublisher instance notifies any waiting workflows that the event
has occurred.

The IPluginPublisher Interface defines the following method.

Type Value Description

pushWatcherEvent(java.lang.Stri
ng id, java.util.Properties
properties)

Void Publish a watcher event on event
notification bus

WebConfigurationAdaptor Interface
The WebConfigurationAdaptor interface implements IConfigurationAdaptor and defines methods to locate and
install a Web application in the configuration tab for a plug-in.

NOTE The WebConfigurationAdaptor interface is deprecated since Orchestrator 4.1. To add a Web application
to the configuration, implement IConfigurationAdaptor and use the configuration-war attribute in the
vso.xml file to identify the Web application.

The WebConfigurationAdaptor interface defines the following methods.

Method Returns Description

getWebAppContext() String Locates the WAR file of the Web
application for the configuration tab.
Provide the name and path to the WAR
file from the /webapps directory in the
DAR file as a string.

setWebConfiguration(boolean
webConfiguration)

Boolean Determine whether the contents of the
configuration tab are defined by a Web
application.

BaseAction Class
The BaseAction class is a helper class that you can use to create Orchestrator actions.

In the context of creating a plug-in configuration tab, the BaseAction class provides methods that you can
implement to set up and run the configuration action that pushes configuration information to the Orchestrator
server from the configuration interface.

Developing Plug-Ins with VMware vCenter Orchestrator

104 VMware, Inc.

The BaseAction class is contained in the ch.dunes.vso.configuration.web.commons package.

The BaseAction class defines the following methods:

Method Returns Description

prepare() Void Implement this method to instantiate
the configuration adapter and load
configuration information.

execute() Void Implement this method to push the
configuration information to the
configuration server.

ConfigurationError Class
The ConfigurationError class defines the error objects that the
IConfigurationAdaptor.validateConfiguration() method returns the plug-in configuration contains errors.

public class ConfigurationError

extends java.lang.Object

implements java.io.Serializable

The ConfigurationError class uses the ConfigurationError.Severity enumeration and defines the following
fields:

n public ConfigurationError.Severity severity

n public java.lang.String title

n public java.lang.String description

Constructor
ConfigurationError(ConfigurationError.Severity severity, java.lang.String title, java.lang.String

description)

PluginLicense Class
The PluginLicense class obtains and sets any licensing information that a plug-in requires.

public class PluginLicense

extends java.lang.Object

implements java.io.Serializable

The PluginLicense class defines the following methods.

Method Returns Description

getDescription() java.lang.String Obtains the license description.

getLicenseString() java.lang.String Obtains the license key.

getOwner() java.lang.String Obtains the license owner.

setDescription(java.lang.String
description)

Void Sets the license description.

setLicenseString(java.lang.Stri
ng licenseString)

Void Sets the license key.

setOwner(java.lang.String
owner)

Void Obtains the license owner.

Chapter 6 Orchestrator Plug-In API Reference

VMware, Inc. 105

Constructor
PluginLicense()

PluginTrigger Class
The PluginTrigger class creates a trigger module that obtains information about objects and events to monitor
in the plugged-in technology, on behalf of a Wait Event element in a workflow.

The PluginTrigger class defines methods to obtain or set the type and name of the object to monitor, the nature
of the event, and a timeout period.

You create implementations of the PluginTrigger class exclusively for use by Wait Event elements in
workflows. You define policy triggers for Orchestrator policies in classes that define events and implement
the IPluginEventPublisher.pushTrigger() method.

public class PluginTrigger

extends java.lang.Object

implements java.io.Serializable

The PluginTrigger class defines the following methods:

Method Returns Description

getModuleName() java.lang.String Obtains the name of the trigger module.

getProperties() java.util.Properties Obtains a list of properties for the
trigger.

getSdkId() java.lang.String Obtains the ID of the object to monitor
in the plugged-in technology.

getSdkType() java.lang.String Obtains the type of the object to monitor
in the plugged-in technology.

getTimeout() Long Obtains the trigger timeout period.

setModuleName(java.lang.String
moduleName)

Void Sets the name of the trigger module.

setProperties(java.util.Propert
ies properties)

Void Sets a list of properties for the trigger.

setSdkId(java.lang.String
sdkId)

Void Sets the ID of the object to monitor in the
plugged-in technology.

setSdkType(java.lang.String
sdkType)

Void Sets the type of the object to monitor in
the plugged-in technology.

setTimeout(long timeout) Void Sets a timeout period in seconds. A
negative value deactivates the timeout.

Constructors
n PluginTrigger()

n PluginTrigger(java.lang.String moduleName, long timeout, java.lang.String sdkType,

java.lang.String sdkId)

Developing Plug-Ins with VMware vCenter Orchestrator

106 VMware, Inc.

PluginWatcher Class
The PluginWatcher class watches a trigger module for a defined event in the plugged-in technology on behalf
of a long-running workflow Wait Event element.

The PluginWatcher class defines a constructor that you can use to create plug-in watcher instances. The
PluginWatcher class defines methods to obtain or set the name of the workflow trigger to watch and a timeout
period.

public class PluginWatcher

extends java.lang.Object

implements java.io.Serializable

The PluginWatcher class defines the following methods:

Method Returns Description

getId() java.lang.String Obtains the ID of the trigger

getModuleName() java.lang.String Obtains the trigger module name

getTimeoutDate() Long Obtains the trigger timeout date

getTrigger() Void Obtains a trigger

setId(java.lang.String id) Void Sets the ID of the trigger

setTimeoutDate() Void Sets the trigger timeout date

Constructor
PluginWatcher(PluginTrigger trigger)

QueryResult Class
The QueryResult class contains the results of a find query made on the objects Orchestrator accesses through
the plug-in.

public class QueryResult

extends java.lang.Object

implements java.io.Serializable

The totalCount value can be greater than the number of elements the QueryResult returns, if the total number
of results found exceeds the number of results the query returns. The number of results the query returns is
defined in the query syntax in the vso.xml file.

The QueryResult class defines the following methods:

Method Returns Description

addElement(java.lang.Object
element)

Void Adds an element to the QueryResult

addElements(java.util.List
elements)

Void Adds a list of elements to the
QueryResult

getElements() java.util.List Obtains elements from the plugged in
application

getTotalCount() Long Obtains a count of all the elements
available in the plugged in technology

isPartialResult() Boolean Determines whether the result obtained
is complete

Chapter 6 Orchestrator Plug-In API Reference

VMware, Inc. 107

Method Returns Description

removeElement(java.lang.Object
element)

Void Removes an element from the plugged
in technology

setElements(java.util.List
elements)

Void Sets elements in the plugged in
technology

setTotalCount(long totalCount) Void Sets the total number of elements
available in the plugged in technology

Constructors
n QueryResult()

n QueryResult(java.util.List ret)

n QueryResult(java.util.List elements, long totalCount)

SDKFinderProperty Class
The SDKFinderProperty class defines methods to obtain and set properties in the objects found in the plugged
in technology by the Orchestrator finder objects. The IDynanmicFinder.getProperties method returns
SDKFinderProperty objects.

public class SDKFinderProperty

extends java.lang.Object

The SDKFinderProperty class defines the following methods:

Method Returns Description

getAttributeName() java.lang.String Obtains an object attribute name

getBeanProperty() java.lang.String Obtains properties from a Java bean

getDescription() java.lang.String Obtains an object description

getDisplayName() java.lang.String Obtains an object display name

getPossibleResultType() java.lang.String Obtains the possible types of result the
finder returns

getPropertyAccessor() java.lang.String Obtains an object property accessor

getPropertyAccessorTree() java.lang.Object Obtains an object property accessor tree

isHidden() Boolean Shows or hides the object

isShowInColumn() Boolean Shows or hides the object in the
database column

isShowInDescription() Boolean Shows or hides the object description

setAttributeName(java.lang.Stri
ng attributeName)

Void Sets an object attribute name

setBeanProperty(java.lang.Strin
g beanProperty)

Void Sets properties in a Java bean

setDescription(java.lang.String
description)

Void Sets an object description

setDisplayName(java.lang.String
displayName)

Void Sets an object display name

setHidden(boolean hidden) Void Show or hide the object

setPossibleResultType(java.lang
.String possibleResultType)

Void Sets the possible types of result the
finder returns

Developing Plug-Ins with VMware vCenter Orchestrator

108 VMware, Inc.

Method Returns Description

setPropertyAccessor(java.lang.S
tring propertyAccessor)

Void Sets an object property accessor

setPropertyAccessorTree(java.la
ng.Object propertyAccessorTree)

Void Sets an object property accessortree

setShowInColumn(boolean
showInTable)

Void Show or hide the object in the database
column

setShowInDescription(boolean
showInDescription)

Void Show or hide the object description

Constructor
SDKFinderProperty(java.lang.String attributeName, java.lang.String displayName, java.lang.String

beanProperty, java.lang.String propertyAccessor)

SDKHelper Class
You can add a tab to the Orchestrator configuration interface to allow users to configure a plug-in. The
SDKHelper class provides methods to obtain configuration information for a plug-in from the Orchestrator
configuration interface.

The SDKHelper class is contained in the ch.dunes.vso.sdk.helper package.

public class SDKHelper

extends java.lang.Object

The SDKHelper class defines the following methods.

Method Returns Description

getConfigurationPathForPluginNa
me(java.lang.String moduleName)

java.lang.String Obtains the path to the source files of the
plug-in implementation.

isPluginEnabled(java.lang.Strin
g pluginName)

Boolean Checks whether the plug-in is enabled
or disabled.

setPluginEnabled(java.lang.Stri
ng pluginName, boolean flag)

Void Enables the plug-in.

loadPropertiesForPluginName(jav
a.lang.String moduleName)

java.util.Properties Loads a list of properties that users set
in the configuration interface.

savePropertiesForPluginName(jav
a.util.Properties properties,
java.lang.String moduleName)

Void Saves in the plug-in properties that the
user sets in the configuration interface.

getPluginInstallCredentials() java.lang.String[] Obtains the credentials of the user who
sets properties in the configuration
interface.

Constructor
SDKHelper()

Chapter 6 Orchestrator Plug-In API Reference

VMware, Inc. 109

PluginExecutionException Class
The PluginExecutionException class returns an error message if the plug-in encounters an exception when it
runs an operation.

public class PluginExecutionException

extends java.lang.Exception

implements java.io.Serializable

The PluginExecutionException class inherits the following methods from class java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace,
printStackTrace, printStackTrace, setStackTrace, toStringfillInStackTrace, getCause,
getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace

Constructor
PluginExecutionException(java.lang.String message)

PluginLicenseException Class
The PluginLicenseException class returns an error message if the plug-in encounters an exception when it
installs a license for a plug-in.

public class PluginLicenseException

extends java.lang.Exception

implements java.io.Serializable

The PluginExecutionException class inherits the following methods from class java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace,
printStackTrace, printStackTrace, setStackTrace, toStringfillInStackTrace, getCause,
getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace

Constructor
PluginLicenseException(java.lang.String message)

PluginOperationException Class
The PluginOperationException class handles errors encountered during a plug-in operation.

public class PluginOperationException

extends java.lang.RuntimeException

implements java.io.Serializable

The PluginOperationException class inherits the following methods from class java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace,
printStackTrace, printStackTrace, setStackTrace, toString

Constructor
PluginOperationException(java.lang.String message)

Developing Plug-Ins with VMware vCenter Orchestrator

110 VMware, Inc.

ConfigurationError.Severity Enumeration
The ConfigurationError class uses the ConfigurationError.Severity enumeration to set the level of severity
of configuration errors.

public static enum ConfigurationError.Severity

extends java.lang.Enum<ConfigurationError.Severity>

implements java.io.Serializable

The ConfigurationError.Severity enumeration defines the following constant values for error levels:

n public static final ConfigurationError.Severity Info

n public static final ConfigurationError.Severity Warning

n public static final ConfigurationError.Severity Error

The ConfigurationError.Severity enumeration defines the following methods.

Method Returns Description

values() public static
ConfigurationError.Severity[]

Returns an array containing the
constants of this enumeration type, in
the order that the plug-in declares them.
You can use this method to iterate
through the constants as follows:
for (
 ConfigurationError.Severity
c :
 ConfigurationError.Severity.
 values())
 System.out.println(c);

valueOf(java.lang.String name) java.lang.String name Returns the constant value of an
enumeration with the specified name.
The string must match an identifier that
you use to declare an enumeration
constant in this type. Extraneous
whitespace characters are not
permitted.
The name parameter is the name of the
enumeration constant to return.

public int getValue() int Returns the value of the error.

The ConfigurationError.Severity enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

ErrorLevel Enumeration
The ErrorLevel enumeration defines constant values for different levels of error that a plug-in encounters.

public enum HasChildrenResult

extends java.lang.Enum<HasChildrenResult>

implements java.io.Serializable

The ErrorLevel enumeration defines the following constant values for error levels:

n public static final ErrorLevel Fatal

n public static final ErrorLevel Error

n public static final ErrorLevel Warning

Chapter 6 Orchestrator Plug-In API Reference

VMware, Inc. 111

n public static final ErrorLevel Info

n public static final ErrorLevel Debug

The ErrorLevel enumeration defines the following methods:

Method Returns Description

values() static ErrorLevel[] Returns an array containing the
constants of this enumeration type, in
the order that plug-in declares them.
You can use this method to iterate
through the constants as follows:
for (ErrorLevel c :
ErrorLevel.values())
 System.out.println(c);

valueOf(java.lang.String name) java.lang.String Returns the constant value of an
enumeration with the specified name.
The string must match an identifier that
you use to declare an enumeration
constant in this type. Extraneous
whitespace characters are not
permitted.
The name parameter is the name of the
enumeration constant to return.

getSeverity() ErrorLevel Returns the ErrorLevel value of the
error.

The ErrorLevel enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

HasChildrenResult Enumeration
The HasChildrenResult Enumeration declares whether a given parent has children. The
IPluginFactory.hasChildrenInRelation method returns HasChildrenResult objects.

public enum HasChildrenResult

extends java.lang.Enum<HasChildrenResult>

implements java.io.Serializable

The HasChildrenResult enumeration defines the following constants:

n public static final HasChildrenResult Yes

n public static final HasChildrenResult No

n public static final HasChildrenResult Unknown

The HasChildrenResult enumeration defines the following methods:

Developing Plug-Ins with VMware vCenter Orchestrator

112 VMware, Inc.

Method Returns Description

getValue() int Returns one of the following values:

1 Parent has children

-1 Parent has no children

0 Unknown, or invalid
parameter

valueOf(java.lang.String name) static HasChildrenResult Returns an enumeration constant of this
type with the specified name. The String
must match exactly an identifier used to
declare an enumeration constant of this
type. Do not use whitespace characters
in the enumeration name.

values() static HasChildrenResult[] Returns an array containing the
constants of this enumeration type, in
the order they are declared. This
method can iterate over constants as
follows:

for (HasChildrenResult c :
HasChildrenResult.values())
System.out.println(c);

The HasChildrenResult enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

ScriptingAttribute Annotation Type
The ScriptingAttribute annotation type annotates an attribute from an object in the plugged in technology
for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,FIELD})

public @interface ScriptingAttribute

The ScriptingAttribute annotation type has the following value:

public abstract java.lang.String value

ScriptingFunction Annotation Type
The ScriptingFunction annotation type annotates a method for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,CONSTRUCTOR})

public @interface ScriptingFunction

The ScriptingFunction annotation type has the following value:

public abstract java.lang.String value

ScriptingParameter Annotation Type
The ScriptingParameter annotation type annotates a parameter for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value=PARAMETER)

public @interface ScriptingParameter

Chapter 6 Orchestrator Plug-In API Reference

VMware, Inc. 113

The ScriptingParameter annotation type has the following value:

public abstract java.lang.String value

Developing Plug-Ins with VMware vCenter Orchestrator

114 VMware, Inc.

Elements of the vso.xml Plug-In
Definition File 7

The vso.xml file contains a set of standard elements. Some of the elements are mandatory while others are
optional. Each element has attributes that define values for the objects and operations you map to Orchestrator
objects and operations.

In addition, elements can have zero or more child elements. A child element further defines the parent element.
The same child element can appear in multiple parent elements. For example, the description element has no
child elements, but appears as a child element for many parent elements: module, example, trigger, gauge,
finder, constructor, method, object, and enumeration.

Each element definition that follows lists its attributes, parents and children.

This chapter includes the following topics:

n “module Element,” on page 116

n “configuration Element,” on page 117

n “description Element,” on page 118

n “deprecated Element,” on page 118

n “url Element,” on page 118

n “installation Element,” on page 119

n “action Element,” on page 119

n “webview-components-library Element,” on page 119

n “finder-datasources Element,” on page 120

n “finder-datasource Element,” on page 120

n “inventory Element,” on page 121

n “finders Element,” on page 121

n “finder Element,” on page 122

n “properties Element,” on page 123

n “property Element,” on page 123

n “relations Element,” on page 124

n “relation Element,” on page 124

n “id Element,” on page 124

n “inventory-children Element,” on page 125

n “relation-link Element,” on page 125

VMware, Inc. 115

n “events Element,” on page 125

n “trigger Element,” on page 125

n “trigger-properties Element,” on page 126

n “trigger-property Element,” on page 126

n “gauge Element,” on page 126

n “scripting-objects Element,” on page 127

n “object Element,” on page 127

n “constructors Element,” on page 128

n “constructor Element,” on page 128

n “Constructor parameters Element,” on page 128

n “Constructor parameter Element,” on page 128

n “attributes Element,” on page 129

n “attribute Element,” on page 129

n “methods Element,” on page 130

n “method Element,” on page 130

n “example Element,” on page 131

n “code Element,” on page 131

n “Method parameters Element,” on page 131

n “Method parameter Element,” on page 131

n “singleton Element,” on page 132

n “enumerations Element,” on page 132

n “enumeration Element,” on page 132

n “entries Element,” on page 133

n “entry Element,” on page 133

module Element
A module describes a set of plug-in objects to make available to Orchestrator.

The module contains information about how data from the plugged-in technology maps to Java classes,
versioning, how to deploy the module, and how the plug-in appears in the Orchestrator inventory.

The <module> element is optional. The <module> element has the following attributes:

Attributes Value Description

name String Defines the type of all the <finder>
elements in the plug-in. Mandatory
attribute.

version Number The plug-in version number, for use
when reloading packages in a new
version of the plug-in. Mandatory
attribute.

Developing Plug-Ins with VMware vCenter Orchestrator

116 VMware, Inc.

Attributes Value Description

build-number Number The plug-in build number, for use when
reloading packages in a new version of
the plug-in. Mandatory attribute.

image Image file The icon to display in the Orchestrator
Inventory. Mandatory attribute.

display-name String The name that appears in the
Orchestrator Inventory. Optional
attribute.

interface-mapping-allowed true or false VMware strongly discourages interface
mapping. Optional attribute.

Table 7-1. Element Hierarchy

Parent Element Child Elements

None n <description>

n <installation>

n <configuration>

n <webview-components-library>

n <finder-datasources>

n <inventory>

n <finders>

n <scripting-objects>

n <enumerations>

configuration Element
The <configuration> element allows you to add a tab in the Orchestrator configuration interface. You can use
the tab to configure a plug-in.

The <configuration> element is optional. The <configuration> element has the following attributes:

Attributes Value Description

icon Image file Icon that represents the plug-in in the
Orchestrator configuration interface.
Mandatory attribute.

adaptor-class Java class Implementation of the
IConfigurationAdaptor Java
interface that defines the actions to
perform in the configuration interface.
Mandatory attribute.

configuration-war WAR archive Web application archive (war file) that
contains the components of the Web
application that implements the adapter
class. The pages of the Web application
appear in the configuration interface.
Optional attribute.

validation enabled or disabled Validates the configuration against a
function that you define in the adapter
class. Optional attribute.

Chapter 7 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 117

Table 7-2. Element Hierarchy

Parent Element Child Element

<module> None

description Element
The <description> elements provide descriptions of the elements of the plug-in that appear in the API Explorer
documentation.

You add the text that appears in the API Explorer documentation between the <description> and
</description> tags.

The <description> element is optional. The <description> element has no attributes.

Table 7-3. Element Hierarchy

Parent Elements Child Elements

n <module>

n <example>

n <trigger>

n <gauge>

n <finder>

n <constructor>

n <method>

n <object>

n <enumeration>

None

deprecated Element
The <deprecated> element marks objects and methods that are deprecated in the API Explorer documentation.

You add the text that appears in the API Explorer documentation between the <deprecated> and
</deprecated> tags.

The <deprecated> element is optional. The <deprecated> element has no attributes.

Table 7-4. Element Hierarchy

Parent Elements Child Elements

n <method>

n <object>

None

url Element
The <url> element provides a URL that points to external documentation about an object or enumeration.

You provide the URL between the <url> and </url> tags.

The <url> element is optional. The <url> element has no attributes.

Table 7-5. Element Hierarchy

Parent Elements Child Elements

n <enumeration>

n <object>

None

Developing Plug-Ins with VMware vCenter Orchestrator

118 VMware, Inc.

installation Element
The <installation> element allows you to install a package or run a script when the server starts.

The <installation> element is optional. The <installation> element has the following attributes:

Attributes Value Description

mode always, never, or version Setting the mode value results in the
following behavior when the
Orchestrator server starts:
n The action always runs
n The action never runs
n The action runs when the server

detects a newer version of the plug-
in

Mandatory attribute.

Table 7-6. Element Hierarchy

Parent Element Child Element

<module> <action>

action Element
The <action> element specifies the action that runs when the Orchestrator server starts.

The <action> element attributes provide the path to the Orchestrator package or script that defines the plug-
in's behavior when it starts.

The <action> element is optional. A plug-in can have an unlimited number of <action> elements. The
<action> element has the following attributes.

Attributes Value Description

resource String The path to the Java package or script
from the root of the dar file. Mandatory
attribute.

type install-package or execute-
script

Either installs the specified Orchestrator
package in the Orchestrator server, or
runs the specified script. Mandatory
attribute.

Table 7-7. Element Hierarchy

Parent Element Child Elements

<installation> None

webview-components-library Element
The <webview-components-library> element points to a JAR file containing custom Web view tapestry
components that extend Web view capabilities.

The <webview-components-library> element is optional. The <webview-components-library> element has the
following attributes.

Chapter 7 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 119

Attributes Value Description

jar String A JAR file containing Web view
components. Mandatory attribute.

specification-path String The path in the JAR file to the Tapestry
component definition file, in the lib
folder of the *.dar file. The path must
begin with a forward slash (/).
Mandatory attribute.

Table 7-8. Element Hierarchy

Parent Element Child Elements

<module> None

finder-datasources Element
The <finder-datasources> element is the container for the <finder-datasource> elements.

The <finder-datasources> element is optional. The <finder-datasources> element has no attributes.

Table 7-9. Element Hierarchy

Parent Element Child Elements

<module> <finder-datasource>

finder-datasource Element
The <finder-datasource> element points to the Java class file of the IPluginAdaptor implementation that you
create for the plug-in.

You set how Orchestrator accesses the objects of the plugged-in technology in the <finder-datasource>
element. The <finder-datasource> element identifies the Java class of the plug-in adapter that you create. The
plug-in adapter class instantiates the plug-in factory that you create. The plug-in factory defines the methods
that find objects in the plugged-in technology. You can set timeouts in the <finder-datasource> element for
the finder method calls that the factory performs. Different timeouts apply to the different finder methods from
the IPluginFactory interface.

The <finder-datasource> element is optional. A plug-in can have an unlimited number of <finder-
datasources> elements. The <finder-datasource> element has the following attributes.

Attributes Value Description

name String Identifies the data source in the
<finder> element datasource
attributes. Equivalent to an XML id.
Mandatory attribute.

adaptor-class Java class Points to the IPluginAdaptor
implementation you define to create the
plug-in adapter, for example,
com.vmware.plugins.sample.Adapt
or. Mandatory attribute.

concurrent-call true (default) or false Allows multiple users to access the
adapter at the same time. You must set
concurrent-call to false if the plug-
in does not support concurrent calls.
Optional attribute.

Developing Plug-Ins with VMware vCenter Orchestrator

120 VMware, Inc.

Attributes Value Description

invoker-mode direct (default) or timeout Sets a timeout on the finder function. If
set to direct, calls to finder functions
never time out. If set to timeout, the
Orchestrator server applies the timeout
period that corresponds to the finder
method. Optional attribute.

anonymous-login-mode never (default) or always Passes or does not pass the user's
username and password to the plug-in.
Optional attribute.

timeout-fetch-relation Number; default 30 seconds Applies to calls from findRelation().
Optional attribute.

timeout-find-all Number; default 60 seconds Applies to calls from findAll().
Optional attribute.

timeout-find Number; default 60 seconds Applies to calls from find(). Optional
attribute.

timeout-has-children-in-
relation

Number; default 2 seconds Applies to calls from
findChildrenInRelation().
Optional attribute.

timeout-execute-plugin-command Number; default 30 seconds Applies to calls from
executePluginCommand(). Optional
attribute.

Table 7-10. Element Hierarchy

Parent Element Child Elements

<finder-datasources> None

inventory Element
The <inventory> element defines the root of the hierarchical list for the plug-in that appears in the Orchestrator
client Inventory view and object selection dialog boxes.

The <inventory> element does not represent an object in the plugged-in application, but rather represents the
plug-in itself as an object in the Orchestrator scripting API.

The <inventory> element is optional. The <inventory> element has the following attribute.

Attributes Value Description

type An Orchestrator object type The type of the <finder> element that
represents the root of the hierarchy of
objects. Mandatory attribute.

Table 7-11. Element Hierarchy

Parent Element Child Elements

<module> None

finders Element
The <finders> element is the container for all the <finder> elements.

The <finders> element is optional. The <finders> element has no attributes.

Chapter 7 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 121

Table 7-12. Element Hierarchy

Parent Element Child Element

<module> <finder>

finder Element
The <finder> element represents in the Orchestrator client a type of object found through the plug-in.

The <finder> element identifies the Java class that defines the object the object finder represents. The
<finder> element defines how the object appears in the Orchestrator client interface. It also identifies the
scripting object that the Orchestrator scripting API defines to represent this object.

Finders act as an interface between object formats used by different types of plugged-in technologies.

The <finder> element is optional. A plug-in can have an unlimited number of <finder> elements. The
<finder> element defines the following attributes:

Attributes Value Description

type An Orchestrator object type Type of object represented by the finder.
Mandatory attribute.

datasource <finder-datasource name>
attribute

Identifies the Java class that defines the
object by using the datasource refid.
Mandatory attribute.

dynamic-finder Java method Defines a custom finder method you
implement in an IDynamicFinder
instance, to return the ID and properties
of a finder programmatically, instead
defining it in the vso.xml file. Optional
attribute.

hidden true or false (default) If true, hides the finder in the
Orchestrator client. Optional attribute.

image Path to a graphic file A 16x16 icon to represent the finder in
hierarchical lists in the Orchestrator
client. Optional attribute.

java-class Name of a Java class The Java class that defines the object the
finder finds and maps to a scripting
object. Optional attribute.

script-object <scripting-object type> attribute The <scripting-object> type, if any,
to which to map this finder. Optional
attribute.

Table 7-13. Element Hierarchy

Parent Element Child Elements

<finders> n <id>

n <description>

n <properties>

n <default-sorting>

n <inventory-children>

n <relations>

n <inventory-tabs>

n <events>

Developing Plug-Ins with VMware vCenter Orchestrator

122 VMware, Inc.

properties Element
The <properties> element is the container for <finder><property> elements.

The <properties> element is optional. The <properties> element has no attributes.

Table 7-14. Element Hierarchy

Parent Element Child Element

<finder> <property>

property Element
The <property> element maps the found object's properties to Java properties or method calls.

You can call on the methods of the SDKFinderProperty class when you implement the plug-in factory to obtain
properties for the plug-in factory implementation to process.

You can show or hide object properties in the views in the Orchestrator client. You can also use enumerations
to define object properties.

The <property> element is optional. A plug-in can have an unlimited number of <property> elements. The
<property> element has the following attributes.

Attributes Value Description

name Finder name The name the FinderResult uses to
store the element. Mandatory attribute.

display-name Finder name The displayed property name. Optional
attribute.

bean-property Property name You use the bean-property attribute to
identify a property to obtain using get
and set operations. If you identify a
property named MyProperty, the plug-
in defines getMyProperty and
setMyProperty operations.
You set one or the other of bean-
property or property-accessor, but
not both. Optional attribute.

property-accessor The method that obtains a property
value from an object

The property-accessor attribute
allows you to define an OGNL
expression to validate an object's
properties.
You set one or the other of bean-
property or property-accessor, but
not both. Optional attribute.

show-in-column true (default) or false If true, this property shows in the
Orchestrator client results table.
Optional attribute.

show-in-description true (default) or false If true, this property shows in the object
description. Optional attribute.

hidden true or false (default) If true, this property is hidden in all
cases. Optional attribute.

linked-enumeration Enumeration name Links a finder property to an
enumeration. Optional attribute.

Chapter 7 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 123

Table 7-15. Element Hierarchy

Parent Element Child Elements

<properties> Child Elements

relations Element
The <relations> element is the container for <finder><relation> elements.

The <relations> element is optional. The <relations> element has no attributes.

Table 7-16. Element Hierarchy

Parent Element Child Element

<finder> <relation>

relation Element
The <relation> element defines how objects relate to other objects.

You define the relation name in the <relation> element.

The <relation> element is optional. A plug-in can have an unlimited number of <relation> elements. The
<relation> element has the following attributes.

Attributes Value Description

name Relation name A name for this relation. Mandatory
attribute.

type Orchestrator object type The type of the object that relates to
another object by this relation.
Mandatory attribute.

cardinality to-one or to-many Defines the relation between the objects
as one-to-one or one-to-many. Optional
attribute.

Table 7-17. Element Hierarchy

Parent Element Child Elements

<relations> None

id Element
The <id> element defines a method to obtain the unique ID of the object that the finder identifies.

The <id> element is optional. The <id> element has the following attributes.

Attributes Value Description

accessor Method name The accessor attribute allows you to
define an OGNL expression to validate
an object's properties. Mandatory
attribute.

Developing Plug-Ins with VMware vCenter Orchestrator

124 VMware, Inc.

Table 7-18. Element Hierarchy

Parent Element Child Elements

<finder> None

inventory-children Element
The <inventory-children> element defines the hierarchy of the lists that show the objects in the Orchestrator
client Inventory view and object selection boxes.

The <inventory-children> element is optional. The <inventory-children> element has no attributes.

Table 7-19. Element Hierarchy

Parent Element Child Element

<finder> <relation-link>

relation-link Element
The <relation-link> element defines the hierarchies between parent and child objects in the Inventory tab.

The <relation-link> element is optional. A plug-in can have an unlimited number of <relation-link>
elements. The <relation-link> element has the following attribute.

Type Value Description

name Relation name A refid to a relation name. Mandatory
attribute.

Table 7-20. Element Hierarchy

Parent Element Child Elements

<inventory-children> None

events Element
The <events> element is the container for the <trigger> and <gauge> elements.

The <events> element can contain an unlimited number of triggers or gauges.

The <events> element is optional. The <events> element has no attributes.

Table 7-21. Element Hierarchy

Parent Element Child Elements

<finder> n <trigger>

n <gauge>

trigger Element
The <trigger> element declares the triggers you can use for this finder. You must implement the
registerEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set triggers.

The <trigger> element is optional. The <trigger> element has the following attribute.

Chapter 7 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 125

Type Value Description

name Trigger name A name for this trigger. Mandatory
attribute.

Table 7-22. Element Hierarchy

Parent Element Child Elements

<events> n <description>

n <trigger-properties>

trigger-properties Element
The <trigger-properties> element is the container for the <trigger-property> elements.

The <trigger-properties> element is optional. The <trigger-properties> element has no attributes.

Table 7-23. Element Hierarchy

Parent Element Child Element

<trigger> <trigger-property>

trigger-property Element
The <trigger-property> element defines the properties that identify a trigger object.

The <trigger-property> element is optional. A plug-in can have an unlimited number of <trigger-
property> elements. The <trigger-property> element has the following attributes.

Type Value Description

name Trigger name A name for the trigger. Optional
attribute.

display-name Trigger name The name that displays in the
Orchestrator client. Optional attribute.

type Trigger type The object type that defines the trigger.
Mandatory attribute.

Table 7-24. Element Hierarchy

Parent Element Child Elements

<trigger-properties> None

gauge Element
The <gauge> element defines the gauges you can use for this finder. You must implement
theregisterEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set gauges.

The <gauge> element is optional. A plug-in can have an unlimited number of <gauge> elements. The <gauge>
element has the following attributes.

Developing Plug-Ins with VMware vCenter Orchestrator

126 VMware, Inc.

Type Value Description

name Gauge name A name for the gauge. Mandatory
attribute.

min-value Number Minimum threshold. Optional
attribute.

max-value Number Maximum threshold. Optional
attribute.

unit Object type Object type that defines the gauge.
Mandatory attribute.

format String The format of the monitored value.
Optional attribute.

Table 7-25. Element Hierarchy

Parent Element Child Element

<events> <description>

scripting-objects Element
The <scripting-objects> element is the container for the <object> elements.

The <scripting-objects> element is optional. The <scripting-objects> element has no attributes.

Table 7-26. Element Hierarchy

Parent Element Child Element

<module> <object>

object Element
The <object> element maps the plugged-in technology's constructors, attributes, and methods to JavaScript
object types that the Orchestrator scripting API exposes.

See “Naming Plug-In Objects,” on page 27 for object naming conventions.

The <object> element is optional. A plug-in can have an unlimited number of <object> elements. The
<object> element has the following attributes.

Type Value Description

script-name JavaScript name Scripting name of the class. Must be
globally unique. Mandatory attribute.

java-class Java class The Java class wrapped by this
JavaScript class. Mandatory attribute.

create true (default) or false If true, you can create a new instance of
this class. Optional attribute.

strict true or false (default) If true, you can only call methods you
annotate or declare in the vso.xml file.
Optional attribute.

is-deprecated true or false (default) If true, the object maps a deprecated
Java class. Optional attribute.

since-version String Version since the Java class is
deprecated. Optional attribute.

Chapter 7 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 127

Table 7-27. Element Hierarchy

Parent Element Child Elements

<scripting-objects> n <description>

n <deprecated>

n <url>

n <constructors>

n <attributes>

n <methods>

n <singleton>

constructors Element
The <constructors> element is the container for the <object><constructor> elements.

The <constructors> element is optional. The <constructors> element has no attributes.

Table 7-28. Element Hierarchy

Parent Element Child Element

<object> <constructor>

constructor Element
The <constructor> element defines a constructor method. The <constructor> method produces documentation
in the API Explorer.

The <constructor> element is optional. A plug-in can have an unlimited number of <constructor> elements.
The <constructor> element has no attributes.

Table 7-29. Element Hierarchy

Parent Element Child Elements

<constructors> n <description>

n <parameters>

Constructor parameters Element
The <parameters> element is the container for the <constructor><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 7-30. Element Hierarchy

Parent Element Child Element

<constructor> <parameter>

Constructor parameter Element
The <parameter> element defines the constructor's parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter> elements. The
<parameter> element has the following attributes.

Developing Plug-Ins with VMware vCenter Orchestrator

128 VMware, Inc.

Type Value Description

name String Parameter name to use in API
documentation. Mandatory attribute.

type Orchestrator parameter type Parameter type to use in API
documentation. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 7-31. Element Hierarchy

Parent Element Child Elements

<parameters> None

attributes Element
The <attributes> element is the container for the <object><attribute> elements.

The <attributes> element is optional. The <attributes> element has no attributes.

Table 7-32. Element Hierarchy

Parent Element Child Element

<object> <attribute>

attribute Element
The <attribute> element maps the attributes of a Java class from the plugged-in technology to JavaScript
attributes that the Orchestrator JavaScript engine exposes.

The <attribute> element is optional. A plug-in can have an unlimited number of <attribute> elements. The
<attribute> element has the following attributes.

Type Value Description

java-name Java attribute Name of the Java attribute. Mandatory
attribute.

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

return-type String The type of object this attribute returns.
Appears in the API Explorer
documentation. Optional attribute.

read-only true or false If true, you cannot modify this
attribute. Optional attribute.

is-optional true or false If true, this field can be null. Optional
attribute.

show-in-api true or false If false, this attribute does not appear
in API documentation. Optional
attribute.

is-deprecated true or false If true, the object maps a deprecated
attribute. Optional attribute.

since-version Number The version at which the attribute was
deprecated. Optional attribute.

Chapter 7 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 129

Table 7-33. Element Hierarchy

Parent Element Child Elements

<attributes> None

methods Element
The <methods> element is the container for the <object><method> elements.

The <methods> element is optional. The <methods> element has no attributes.

Table 7-34. Element Hierarchy

Parent Element Child Element

<object> <method>

method Element
The <method> element maps a Java method from the plugged-in technology to a JavaScript method that the
Orchestrator JavaScript engine exposes.

The <method> element is optional. A plug-in can have an unlimited number of <method> elements. The
<method> element has the following attributes.

Type Value Description

java-name Java method Name of the Java method signature with
argument types in parenthesis, for
example, getVms(DataStore).
Mandatory attribute.

script-name JavaScript method Name of the corresponding JavaScript
method. Mandatory attribute.

return-type Java object type The type this method obtains. Optional
attribute.

static true or false If true, this method is static. Optional
attribute.

show-in-api true or false If false, this method does not appear
in API documentation. Optional
attribute.

is-deprecated true or false If true, the object maps a deprecated
method. Optional attribute.

since-version Number The version at which the method was
deprecated. Optional attribute.

Table 7-35. Element Hierarchy

Parent Element Child Elements

<methods> n <deprecated>

n <description>

n <example>

n <parameters>

Developing Plug-Ins with VMware vCenter Orchestrator

130 VMware, Inc.

example Element
The <example> element allows you to add code examples to Javascript methods that appear in the API Explorer
documentation.

The <example> element is optional. The <example> element has no attributes.

Table 7-36. Element Hierarchy

Parent Element Child Elements

<method> n <code>

n <description>

code Element
The <code> element provides example code that appears in the API Explorer documentation.

You provide the code example between the <code> and </code> tags. The <code> element is optional. The
<code> element has no attributes.

Table 7-37. Element Hierarchy

Parent Element Child Elements

<example> None

Method parameters Element
The <parameters> element is the container for the <method><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 7-38.

Parent Element Child Element

<method> <parameter>

Method parameter Element
The <parameter> element defines the method's input parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter> elements. The
<parameter> element has the following attributes.

Type Value Description

name String Parameter name. Mandatory attribute.

type Orchestrator parameter type Parameter type. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 7-39. Element Hierarchy

Parent Element Child Element

<parameters> None

Chapter 7 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 131

singleton Element
The <singleton> element creates a JavaScript scripting object as a singleton instance.

A singleton object behaves in the same way as a static Java class. Singleton objects define generic objects for
the plug-in to use, rather than defining specific instances of objects that Orchestrator accesses in the plugged-
in technology. For example, you can use a singleton object to establish the connection to the plugged-in
technology.

The <singleton> element is optional. The <singleton> element has the following attributes.

Type Value Description

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

datasource Java object The source Java object for this JavaScript
object. Mandatory attribute.

Table 7-40. Element Hierarchy

Parent Element Child Element

<object> None

enumerations Element
The <enumerations> element is the container for the <enumeration> elements.

The <enumerations> element is optional. The <enumerations> element has no attributes.

Table 7-41. Element Hierarchy

Parent Element Child Element

<module> <enumeration>

enumeration Element
The <enumeration> element defines common values that apply to all objects of a certain type.

If all objects of a certain type require a certain attribute, and if the range of values for that attribute is limited,
you can define the different values as enumeration entries. For example, if a type of object requires a color
attribute, and if the only available colors are red, blue, and green, you can define three enumeration entries to
define these three color values. You define entries as child elements of the enumeration element.

The <enumeration> element is optional. A plug-in can have an unlimited number of <enumeration> elements.
The <enumeration> element has the following attribute.

Type Value Description

type Orchestrator object type Enumeration type. Mandatory
attribute.

Developing Plug-Ins with VMware vCenter Orchestrator

132 VMware, Inc.

Table 7-42. Element Hierarchy

Parent Element Child Elements

<enumerations> n <url>

n <description>

n <entries>

entries Element
The <entries> element is the container for the <enumeration><entry> elements.

The <entries> element is optional. The <entries> element has no attributes.

Table 7-43. Element Hierarchy

Parent Element Child Element

<enumeration> <entry>

entry Element
The <entry> element provides a value for an enumeration attribute.

The <entry> element is optional. A plug-in can have an unlimited number of <entry> elements. The <entry>
element has the following attributes.

Type Value Description

id Text The identifier that objects use to set the
enumeration entry as an attribute.
Mandatory attribute.

name Text The entry name. Mandatory attribute.

Table 7-44. Element Hierarchy

Parent Element Child Elements

<entries> None

Chapter 7 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 133

Developing Plug-Ins with VMware vCenter Orchestrator

134 VMware, Inc.

Index

A
API

action generation 95
annotate objects 92
annotation-based configuration 91
annotations 91
enhancements 91
generating actions 95
generating workflows 95
Java-based configuration 92
Java-based configuration usage 93
Spring-based basic configuration 94
Spring-based plug-in API 94
SSL 96
SSL configuration 96
SSL HostValidator helper class 98
workflow generation 95

H
HasChildrenResult Enumeration 112

I
IConfigurationAdaptor interface 100
IDynamicFinder interface 101
IPluginAdaptor interface 12, 62, 101
IPluginEventPublisher interface 50, 102
IPluginFactory 37
IPluginFactory interface 12, 63, 102
IPluginNotificationHandler 103
IPluginPublisher interface 56, 104

J
JavaScript API

adding functions 60
adding objects 60

N
new features 91

P
plug-in adapter, creating 12
plug-in API

HasChildrenResult Enumeration 112
IDynamicFinder interface 101
IPluginAdaptor interface 101
IPluginEventPublisher interface 102

IPluginFactory interface 102
IPluginNotificationHandler 103
IPluginPublisher interface 104
PluginExecutionException 110
PluginLicenseException 110
PluginOperationException 110
PluginTrigger 106
PluginWatcher 107
QueryResult 107
ScriptingAttribute annotation 113
ScriptingFunction annotation 113
ScriptingParameter annotation 113
SDKFinderProperty class 108

plug-in factory, creating 12
plug-ins

access from Web view 89
adapter 12, 32, 62, 65
add configuration tab 67, 68, 71, 73, 75
adding to JavaScript API 60
architecture 9
BaseAction class 71, 104
components 10
configuration 117
configuration action 66
configuration adapter 66–68, 71
configuration tab 109
ConfigurationError class 105, 111
ConfigurationError.Severity enumeration 111
contents 25
contents of DAR 84
create DAR 82
create event generator 47, 48
create event publishers 49
create scripting singleton 60
create watchers 56, 58
create workflow triggers 53, 54
creating 31
creating workflow triggers 52, 54
DAR archive 28
DAR file 82
define finders 77
enumerations 80
ErrorLevel enumeration 111
event handlers 14

VMware, Inc. 135

event listeners 39, 44
event notifications 46
example application 33
expose external API 10
factory 12, 32, 37–43
find objects by identifier 40
find objects by relation 42
find objects by type 41
find() method 40
findAll() method 41
finder objects 13, 14
findRelation() method 42
gauges 49, 50
hasChildrenInRelation() method 42, 43
IAop interface 100
IConfigurationAdaptor interface 66–68, 71
implementing notification handlers 45
installation 84
instantiate factory 63
interact with plugged-in technology 85
IPluginEventPublisher interface 47, 49, 50
IPluginFactory interface 60
IPluginNotificationHandler interface 44–46
IPluginPublisher interface 56, 58
JAR files 28
listeners 14
manage events 64
mapping classes 80
mapping methods 80
monitor events 87, 88
monitor object properties 54
naming objects 27
notification handling 39
obtain configuration from user 71
parts of a plug-in 9
PluginLicense class 105
PluginTrigger class 54
PluginWatcher class 56, 58
polices 87
policies 14
policy gauges 14
policy triggers 14
publish events 64
publish watchers 58
push events 50
registering event listeners 45
role of vso.xml file 11
run workflows on objects 86
SDKHelper class 66–68, 71, 109
set up adapter 62
set up factory 38

solar system DAR file 84
solar system finder mappings 79
solar system JavaScript mappings 82
solar system WAR file 75
SolarSystemEventListener class 44
structure 25
Struts framework 71, 73
triggers 49, 88
using the solar system plug-in 85
view scripting objects 86
vso.xml 80
vso.xml file 28, 75
waiting workflows 88
WAR file 28
watchers 14, 56
WebConfigurationAdaptor interface 104
workflow triggers 14, 52, 53

plug-ins, add configuration tab 66
plug-ins, build solar system DAR 83
plug-ins, CelestialBody.java 34
plug-ins, errors 111
plug-ins, ISolarSystemListener.java 35
Plug-ins, Moon.java 35
plug-ins, Planet.java 34
plug-ins, scripting objects 14
plug-ins, SolarSystemEventHandler.java 35
plug-ins, SolarSystemRepository.java 36
plug-ins, Star.java 34
plug-ins, watchers 65
PluginExecutionException 110
PluginLicenseException 110
PluginOperationException 110
PluginTrigger 54, 106
PluginTrigger class 52
PluginWatcher 107
PluginWatcher class 56
plugs-in, PluginTrigger class 52
policies 49, 50
project files, copying and pasting 23

Q
QueryResult 107

S
ScriptingAttribute annotation 113
ScriptingFunction annotation 113
ScriptingParameter annotation 113
SDKFinderProperty class 108
solar system application, components 33
solar system plug-in

components 36
set up 76

Developing Plug-Ins with VMware vCenter Orchestrator

136 VMware, Inc.

V
vCenter Orchestrator Plug-in SDK 17
vCO Plug-in SDK

copying and pasting project files 23
creating a plug-in project from samples 23
creating a plug-in skeleton from a Java

library 20
creating a plug-in skeleton from an inventory

definition 20
creating a plug-in skeleton with configuration

and installation elements 21
creating a plug-in skeleton with configuration

element 21
creating a plug-in skeleton with installation

element 21
creating a skeleton project 22
getting started 17
installing 19
introduction 17
setting proxies in Eclipse 18
supported platforms 18
system requirements 18

vso.xml
action element 119, 131
architecture 26
attribute element 129
attributes element 129
code element 131
configuration element 117
constructor element 128
constructor parameter element 128
constructors element 128
description element 118
entries element 133
entry element 133
enumeration element 132
enumerations element 132
events element 125
finder element 122
finder-datasource element 120
finder-datasources element 120
finders element 121
gauge element 126
id element 124
installation element 119
inventory element 121
inventory-children element 125
method element 130
method parameter element 131
method parameters element 131
methods element 130
object element 127

parameters element 128
properties element 123
property element 123
relation element 124
relation-link element 125
relations element 124
scripting-objects element 127
singleton element 132
trigger element 125
trigger-properties element 126
trigger-property element 126
url element 118
webview-components-library element 119

vso.xml file
definition 25
elements 115
module element 116

Index

VMware, Inc. 137

Developing Plug-Ins with VMware vCenter Orchestrator

138 VMware, Inc.

	Developing Plug-Ins with VMware vCenter Orchestrator
	Contents
	Developing Plug-Ins with VMware vCenter Orchestrator
	Overview of Plug-Ins
	Exposing an External API to Orchestrator
	Components of a Plug-In
	Role of the vso.xml File
	Roles of the Plug-In Adapter
	Roles of the Plug-In Factory
	Role of Finder Objects
	Role of Scripting Objects
	Role of Event Handlers

	Getting Started with the vCenter Orchestrator Plug-In SDK
	Introduction to the vCO Plug-In SDK
	vCO Plug-In SDK Hardware and Software Prerequisites
	vCO Plug-In SDK Supported Platforms
	Set the HTTP and HTTPS Proxies in Eclipse
	Install the vCO Plug-In SDK
	Create a Plug-In Skeleton from an Existing Java Library
	Create a Plug-In Skeleton from an Inventory Definition
	Create a Plug-In Skeleton with Configuration and Installation Elements
	Create a Skeleton Project
	Create an Orchestrator Plug-in Project from Samples
	Copy and Paste Project Files

	Contents and Structure of a Plug-In
	Defining the Application Mapping in the vso.xml File
	Format of the vso.xml Plug-In Definition File
	Naming Plug-In Objects
	Plug-In Object Naming Conventions

	File Structure of the Plug-In

	Create an Orchestrator Plug-In
	Accessing the Orchestrator Plug-In API
	Obtain an Application to Plug in to Orchestrator
	Components of the Solar System Application
	CelestialBody.java Class
	Star.java Class
	Planet.java Class
	Moon.java Class
	ISolarSystemListener.java Class
	SolarSystemEventHandler.java Class
	SolarSystemRepository.java Class

	Components of the Solar System Plug-In
	Create a Plug-In Factory
	Set Up the Plug-In Factory Implementation
	Set Up Event Listeners and Notification Handlers
	Find Objects By Identifier in the Plugged-In Technology
	Find Objects in the Plugged-In Technology By a Query
	Find Objects By Relation Type in the Plugged-In Technology
	Discover Whether an Object has Children of a Given Relation Type

	Create a Plug-In Event Listener
	Set Up the Event Listener Implementation
	Register the Event Listener with the Plugged-In Technology
	Notify Orchestrator of Events in the Plugged-In Technology

	Create a Plug-In Event Generator
	Set Up the Event Generator
	Create Event Publishers
	Define and Publish Events to Orchestrator

	Create a Plug-In Workflow Trigger
	Set Up the Workflow Trigger
	Create Instances of the PluginTrigger Class
	Set the Properties that a Workflow Trigger Monitors

	Create Plug-In Watchers
	Set Up the Watcher Implementation
	Create Instances of the PluginWatcher Class
	Publish Plug-In Watchers

	Define Objects and Methods to Map to the Orchestrator JavaScript API
	Create a Plug-In Adapter
	Set Up the Plug-In Adapter Implementation
	Instantiate the Plug-In Factory
	Manage Plug-In Events
	Add Plug-In Watchers

	Add a Tab to the Configuration Interface
	Set Up the Configuration Adapter
	Load and Save Configuration Information in the Configuration Server
	Create a Configuration Action to Obtain Configuration Information from the User
	Create a Struts-Based Web Application to Add to the Configuration Interface
	Contents of the Solar System Configuration WAR File

	Map the Application in the vso.xml File
	Set Up the Global Plug-In Information
	Map Objects in the Plugged-In Technology to Scripting Types and Inventory Objects
	Solar System Finder Mappings

	Define Enumerations
	Map Classes and Methods to Classes and Methods in the JavaScript API
	Solar System JavaScript API Mappings

	Create the Plug-In DAR Archive
	Build the Solar System Application and Plug-In
	Contents of the Solar System DAR File

	Install a Plug-In in the Orchestrator Server
	Interact with the Solar System Application by Using Orchestrator
	View Plug-In Scripting Objects in the JavaScript API
	Run Workflows on Plug-In Objects in the Inventory
	Monitor Plug-In Events by Using Policies
	Monitor Plug-In Events by Using Workflows
	Access Plug-In Objects and Operations by Using a Web View

	API Enhancements for Plug-In Development
	Orchestrator Annotations API
	Enable Annotation-Based Configuration
	Annotating Objects
	Java-Based Configuration API for the Plug-In Definition File
	Using Java-Based Configuration

	Orchestrator Spring-Based Plug-In API
	Spring-Based API Basic Configuration

	Orchestrator Workflow Generation API
	Generating Actions
	Generating Workflows

	Orchestrator SSL Configuration API
	SSL Configuration Methods
	The HostValidator Helper Class

	Orchestrator Plug-In API Reference
	IAop Interface
	IConfigurationAdaptor Interface
	IDynamicFinder Interface
	IPluginAdaptor Interface
	IPluginEventPublisher Interface
	IPluginFactory Interface
	IPluginNotificationHandler Interface
	IPluginPublisher Interface
	WebConfigurationAdaptor Interface
	BaseAction Class
	ConfigurationError Class
	PluginLicense Class
	PluginTrigger Class
	PluginWatcher Class
	QueryResult Class
	SDKFinderProperty Class
	SDKHelper Class
	PluginExecutionException Class
	PluginLicenseException Class
	PluginOperationException Class
	ConfigurationError.Severity Enumeration
	ErrorLevel Enumeration
	HasChildrenResult Enumeration
	ScriptingAttribute Annotation Type
	ScriptingFunction Annotation Type
	ScriptingParameter Annotation Type

	Elements of the vso.xml Plug-In Definition File
	module Element
	configuration Element
	description Element
	deprecated Element
	url Element
	installation Element
	action Element
	webview-components-library Element
	finder-datasources Element
	finder-datasource Element
	inventory Element
	finders Element
	finder Element
	properties Element
	property Element
	relations Element
	relation Element
	id Element
	inventory-children Element
	relation-link Element
	events Element
	trigger Element
	trigger-properties Element
	trigger-property Element
	gauge Element
	scripting-objects Element
	object Element
	constructors Element
	constructor Element
	Constructor parameters Element
	Constructor parameter Element
	attributes Element
	attribute Element
	methods Element
	method Element
	example Element
	code Element
	Method parameters Element
	Method parameter Element
	singleton Element
	enumerations Element
	enumeration Element
	entries Element
	entry Element

	Index

