

Automation Leveraging NSX
REST API
Automate the network via programming languages, vRO, and other
tools leveraging NSX REST API

N S B U
U P D A T E D 6 / 2 1 / 2 0 1 6

V E R S I O N 1 . 0

P A G E 1

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Intended Audience ... 2	
Overview... 2	

Why You Should Care ... 3	
Introduction to Rest API ... 3	

API Specification Formats .. 4	
NSX - REST API .. 5	
Using REST API with cURL ... 5	
Using REST API with Postman .. 7	
Example: Create a Universal Distributed Logical Router (UDLR) in NSX 6.2.2 9	

Programming Languages with NSX Rest API .. 12	
Why Use Programming Languages with NSX REST API? .. 12	
Basic Concept and Architecture ... 12	
 Simple Scripts .. 13	
 Functions and Modular Programs .. 14	
 Libraries ... 15	
Python .. 16	
 Example: Automating Security Group and Policy Creation .. 18	
Perl ... 24	
 Example: Monitoring VMware NSX SpoofGuard with REST API and Perl .. 25	
Go .. 32	
 Example: Creating NSX Services in Go ... 33	

Automation Tools with NSX REST API .. 39	
vRealize Orchestrator .. 39	
 Example: Create an IP Set in NSX Using vRealize Orchestrator .. 42	
 Example: Enable or Disable HA on an NSX Edge Using vRO .. 51	
Ansible ... 56	
 Example: Using Ansible Playbook to Manage Logical Switch State .. 57	

Cloud Management Platforms with NSX REST API ... 64	
vRealize Automation .. 66	

References ... 72	

P A G E 2

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Intended Audience

The intended audiences for this paper are devops/automation/system engineers and
network engineers looking to automate logical networking and security within their
virtualized environment. The goal of this paper is to demonstrate how automation can
be accomplished in several ways by leveraging the NSX REST API. This paper
explains the fundamental concepts around REST API, programming languages, and
automation tools; nevertheless, the reader should already have some general basic
understanding of these tools and concepts. The main goal of this document is to
enable the reader to easily leverage NSX REST API automation within their
environments.

Overview

VMware has helped transform the data center landscape by introducing virtualization
technologies for compute, storage, and networking. By replicating traditional hardware
constructs in software, VMware allows for not only efficiency in hardware utilization,
improved resiliency, lower costs, but also automation at a completely new level that has
never been possible before. Gone are the days of hardware specific APIs, screen/CLI
scraping and vendor-specific tool sets that would have to be stitched together to create a
complete solution.

VMware NSX provides a RESTful API service via NSX Manager that can be consumed
in several ways.

The NSX REST API can be consumed directly via a tool/library such as cURL or a REST
Client like Postman, via multiple popular programming languages, and via orchestration
cloud management tools. Popular programming languages such as Python, PowerShell,
Perl, Go, and Java have REST client libraries which can easily be utilized to consume the
NSX REST API. This means that elaborate workflows and complete systems/portals can
be created to provide custom automation, management, and monitoring capabilities.

Tools such as VMware vRealize Orchestrator (vRO) or configuration frameworks like
Ansible can also be used to create advanced workflows for NSX. vRO also provides a
HTTP REST API client allowing for NSX REST API to be called directly from the tool; a
NSX vRO Plugin is also available.

Further, cloud management systems such as vRealize Automation (vRA) and Openstack
incorporate and leverage pre-packaged automation solutions. A vRO plugin for vRA is
also available allowing for purpose-built custom automation of NSX objects.

P A G E 3

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Why You Should Care

By consuming the NSX REST API natively or through an automation tool or cloud
management platform, customers can achieve efficiency through automated processes
and workflows. There are several important reasons why automation is center-stage in
modern data centers:

- Increases productivity by decreasing manual steps for configuration, provisioning,
failover/recovery, etc.

- Avoids manual configuration mistakes by automating tasks to follow preset,
defined processes

- Allows for an increase in the number of managed systems without a significant
opex increase

- Allows the infrastructure to support continuous operations and automated scaling;
automatic creation of testing environments can be part of continuous integration
workflows

- Repeatable and consistent application environments can be created which
minimizes customizations and provides consistency for ease of maintenance and
troubleshooting

In a nutshell, by leveraging the NSX automation capabilities, customers can not only
increase productivity, but can also avoid increased costs, reduce errors due to manual
error-prone processes, simplify processes, and enable ease of troubleshooting and
recovery.

Introduction to Rest API

Representational State Transfer (REST) is a software architecture that enables users to
query and modify applications states using simple HTTP primitives.

REST defines the use of POST, GET, PUT and DELETE to implement CRUD (create,
read, update and delete) operations. The below table describes various HTTP verbs and
their corresponding operations; the context used is NSX as the system being utilized.

HTTP “Verbs” Use CRUD
POST Create an NSX object (e.g. logical

switch)
Create

GET Retrieve data about a single NSX object
or multiple objects

Read

PUT Modify the properties of an already
existing NSX object

Update

DELETE Remove an NSX object Delete

Table 1: HTTP Verbs and CRUD Functions

P A G E 4

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

A system with a northbound REST-based API enables any software that can consume
standard-based protocols and formats such as HTTP, JSON, and XML to create clients
that are able to interact with its objects and data structures. Simple tools such as wget,
cURL, or even a web browser could be used to interact with an application that supports
REST APIs. Programming and scripting languages that support HTTP operations can
also be used to interact with REST API based applications.

API Specification Formats

While REST APIs are extremely useful to allow different software components to
communicate, they can become complex to understand and to document. In the past,
when developers had to write their implementation of an API (for either a client or a server)
they had to analyze the documentation and manually build all the required interfaces. API
documentation is also often presented in documents that do not follow any specific
guideline for formatting and definition.

To solve these issues, several specification formats emerged in order to provide a
consistent format to document and consume APIs.

API specification formats provide a number of benefits for developers, including:

• Non-ambiguous ways to define and document APIs
• Dramatic reduction of errors during implementation, testing and troubleshooting
• Diffusion of tools that can automatically generate API implementations in different

programming languages using the specification as source

Two of the most common API documentation and specification formats, at the time of
writing this document, are RAML and OpenAPI Specification (formerly known as
Swagger). Both are widely utilized and have a large open source community. There are
also tools that automate the conversion across the different API documentation and
specification formats.

RAML is a language based on YAML; YAML is a syntax used to describe an API in a
‘human friendly’ way. YAML can easily be mapped to data types common to most high-
level languages. RAML syntax can be parsed automatically to produce documentation,
dynamic clients in different languages such as Python, and collections to be used with
tools like Postman.

As an example, a company can automatically generate, from the application’s source
code, a RAML specification file for a product. This RAML file can then be then used by
the same company to generate the Java source code to implement the server-side API
for the product which can then be shared with third parties. A partner could use the same
RAML file to generate Python source code to implement the client-side API. It’s somewhat
similar to what Web Service Definition Language (WSDL) enables for Simple Object
Access Protocol (SOAP) based services: automatically generate client code in multiple

P A G E 5

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

languages for calling the web service specified or server stubs for implementing the
service(s) instead. Consistency is a major benefit here: since all the implementations in
different languages adhere to the same specification, there is less space for ambiguity.

Additional information on RAML and OpenAPI Specification can be found on the
respective project web sites (RAML and OpenAPI Specification).

VMware offers a community supported RAML specification of NSX for vSphere API
(nsxraml) that can be used to simplify the consumption of NSX services. Some of the
examples and tools mentioned in this document use nsxraml. For additional details please
check the nsxraml page on GitHub.

NSX - REST API

NSX provides a REST API interface via NSX Manager. Any REST Client can utilize this
REST API interface provided by NSX Manager.

The next image shows the typical structure of a REST API call for NSX – using an
example that shows scopes.

Figure 1: NSX API Structure (example)

For security reasons, NSX enforces authentication before querying or changing the state
using REST APIs.

Using REST API with cURL

cURL is a simple tool used to transfer data from server to client. cURL supports
various methods, one being HTTP. While cURL may be used to manage NSX
manager, it’s not a very scalable approach unless cURL is being used from within
another programming language etc., to help automate. As such, the following
examples with cURL are primarily to help with the understanding how REST APIs
work.

If you are trying this out on a Mac, use xmllint to parse the output

P A G E 6

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

The below example uses cURL to call the REST API described in Figure 1 above.
Note the usage of various cURL options: -k to ignore any SSL related warnings; -u to
specify username and password.

skommu-mac:~ skommu$ cURL -k -u admin:password https://nsxmgr-
01.corp.local/api/2.0/vdn/scopes | xmllint --format -

Following is the output for the above cURL request:

1. <?xml version="1.0" encoding="UTF-8"?>
2. <vdnScopes>
3. <vdnScope>
4. <objectId>vdnscope-9</objectId>
5. <objectTypeName>VdnScope</objectTypeName>
6. <vsmUuid>421DE20E-63C4-914C-785F-C760AB465B3F</vsmUuid>
7. <nodeId>421DE20E-63C4-914C-785F-C760AB465B3F</nodeId>
8. <revision>1</revision>
9. <type>
10. <typeName>VdnScope</typeName>
11. </type>
12. <name>Global NSX Zone</name>
13. <description/>
14. <clientHandle/>
15. <extendedAttributes/>
16. <isUniversal>false</isUniversal>
17. <universalRevision>0</universalRevision>
18. <id>vdnscope-9</id>
19. <clusters>
20. <cluster>
21. <cluster>
22. <objectId>domain-c332</objectId>
23. <objectTypeName>ClusterComputeResource</objectTypeName>
24. <vsmUuid>421DE20E-63C4-914C-785F-C760AB465B3F</vsmUuid>
25. <nodeId>421DE20E-63C4-914C-785F-C760AB465B3F</nodeId>
26. <revision>230</revision>
27. <type>
28. <typeName>ClusterComputeResource</typeName>
29. </type>
30. <name>Compute-POD-02</name>
31. <scope>
32. <id>datacenter-2</id>
33. <objectTypeName>Datacenter</objectTypeName>
34. <name>DC</name>
35. </scope>
36. <clientHandle/>
37. <extendedAttributes/>
38. <isUniversal>false</isUniversal>
39. <universalRevision>0</universalRevision>
40. </cluster>
41. </cluster>
42. <cluster>
43. <cluster>
44. <objectId>domain-c219</objectId>
45. <objectTypeName>ClusterComputeResource</objectTypeName>
46. <vsmUuid>421DE20E-63C4-914C-785F-C760AB465B3F</vsmUuid>
47. <nodeId>421DE20E-63C4-914C-785F-C760AB465B3F</nodeId>

P A G E 7

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

48. <revision>243</revision>
49. <type>
50. <typeName>ClusterComputeResource</typeName>
51. </type>
52. <name>Compute-POD-01</name>
53. <scope>
54. <id>datacenter-2</id>
55. <objectTypeName>Datacenter</objectTypeName>
56. <name>DC</name>
57. </scope>
58. <clientHandle/>
59. <extendedAttributes/>
60. <isUniversal>false</isUniversal>
61. <universalRevision>0</universalRevision>
62. </cluster>
63. </cluster>
64. </clusters>
65. <virtualWireCount>498</virtualWireCount>
66. <controlPlaneMode>UNICAST_MODE</controlPlaneMode>
67. </vdnScope>
68. </vdnScopes>

Figure 2: Result of REST API Call

Using REST API with Postman

Postman is a REST Client tool to execute REST APIs from the Chrome web browser.
There are many different REST Client tools available for different browsers. RESTClient
on the Firefox browser is another specific example. This example shows how to use
Postman with the Chrome browser to call the same REST API used above.

Figure 3: Postman GUI

The below figure shows the output excerpt from Postman, which can be seen is the same
result obtained when using cURL.

P A G E 8

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 4: Data Returned via the REST API Cal From Postman

Postman is very useful for quickly and automatically generating code snippets for a given
API call. To use this feature, one can click on the Generate Code option in the upper
right corner of the Postman application and select the desired programming language for
which the code should be generated for. This auto-generated code will work without any
changes; however, if SSL related issues are encountered, the -k option can be added to
the respective cURL call.

P A G E 9

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 5: Use Postman to generate cURL code snippet

Below is another example to generate Python code for the same example call using
Postman. The procedure is similar to getting code for cURL; just select Python instead of
cURL.

Figure 6: Use Postman to generate Python code snippet

If SSL related issues are encountered with the generated Python code, pass the
variable Verify=False to the the requests.request method:

response = requests.request("GET", url, headers=headers, verify=False)

Example: create a Universal Distributed Logical Router (UDLR) in NSX
 6.2.2

This example demonstrates using the RESTClient plugin on the Firefox browser to create
a Universal Distributed Logical Router (UDLR) in NSX 6.2.2. The successful creation of
the UDLR named Universal DLR Test is confirmed from the Status Code returned by
the NSX Manager. The related XML data structure within the Body field shows all the
available fields with their respective values for the desired NSX object. If an error is

P A G E 1 0

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

received when submitting the NSX REST API call, the returned Status Code and
respective error message will be helpful to understand and troubleshoot the issue.
	

	
	

Figure 7: Using RESTClient on Firefox to Create a UDLR in NSX 6.2.2

Below is the body of the REST API call shown in Figure 7 used to create a UDLR. This is
entered within the Body field of the RESTClient in Figure 7. Note, parameters can be
adjusted based on requirements.

1. <edge>
2. <status>deployed</status>
3. <datacenterMoid>datacenter-2</datacenterMoid>
4. <datacenterName>PaloAlto</datacenterName>
5. <tenant>default</tenant>
6. <name>Universal DLR Test</name>
7. <fqdn>NSX-edge-Test</fqdn>
8. <enableAesni>false</enableAesni>
9. <enableFips>false</enableFips>
10. <vseLogLevel>info</vseLogLevel>
11. <appliances>
12. <applianceSize>compact</applianceSize>
13. <appliance>
14. <highAvailabilityIndex>0</highAvailabilityIndex>
15. <vcUuid>5013a4d4-9fa5-d86c-2166-3df1636e7d5a</vcUuid>

P A G E 1 1

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

16. <resourcePoolId>domain-c22</resourcePoolId>
17. <resourcePoolName>Edge Cluster</resourcePoolName>
18. <datastoreId>datastore-38</datastoreId>
19. <datastoreName>EMC_VNX_1-1</datastoreName>
20. <hostId>host-32</hostId>
21. <hostName>10.100.1.72</hostName>
22. <vmFolderId>group-v3</vmFolderId>
23. <vmFolderName>vm</vmFolderName>
24. <vmHostname>NSX-edge-Test</vmHostname>
25. <vmName>Universal DLR</vmName>
26. <deployed>true</deployed>
27. </appliance>
28.
29. <deployAppliances>true</deployAppliances>
30. </appliances>
31. <cliSettings>
32. <remoteAccess>true</remoteAccess>
33. <userName>admin</userName>
34. <password>VMwareVMware1!</password>
35. <passwordExpiry>99999</passwordExpiry>
36. </cliSettings>
37.
38. <autoConfiguration>
39. <enabled>true</enabled>
40. <rulePriority>high</rulePriority>
41. </autoConfiguration>
42. <type>distributedRouter</type>
43. <isUniversal>true</isUniversal>
44. <universalVersion>21</universalVersion>
45. <mgmtInterface>
46. <label>vNic_0</label>
47. <name>mgmtInterface</name>
48. <addressGroups/>
49. <mtu>1500</mtu>
50. <index>0</index>
51. <connectedToId>universalwire-11</connectedToId>
52. <connectedToName>Universal HA</connectedToName>
53. </mgmtInterface>
54.
55. <localEgressEnabled>false</localEgressEnabled>
56. </edge>

Figure 8: XML Data Structure Returned After RESTClinet API Call

Once the Send button is clicked, in NSX, the new UDLR can be observed as shown below
in Figure 9.

Figure 9: Verification on the UDLR Creation in the NSX Manager GUI

P A G E 1 2

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Programming Languages with NSX Rest API

This section demonstrates how the NSX Rest API can be leveraged via different
programming languages to further automate tasks and create workflows/programs with
advanced logic.

Why Use Programming Languages with NSX REST API?

Leveraging programming languages with the NSX REST API goes a step beyond simply
calling NSX REST API calls via REST Client tools. Programming languages such as
Python or Perl allow for introducing custom advanced logic and workflows.

Using conditional constructs available in all scripting/programming languages such as
if/then statements and control flow logic such as looping mechanisms and boolean
constructs, advanced programs and custom solutions can be created.

Further, an organization may already have a custom portal for managing/monitoring their
infrastructure. By leveraging the NSX REST API with respective programming languages,
organizations can build NSX support into their custom management portals or even
create a new custom cloud management platform.

Below, a basic concept and architecture discussion of how programming languages can
be utilized with NSX REST API is provided. In later sections, the programming languages
Python, Perl, and Go are briefly discussed and examples provided.

Basic Concept and Architecture

As mentioned prior, NSX provides a REST API interface via NSX Manager, and any
REST Client can utilize this REST API interface provided by NSX Manager. All popular
programming languages have REST Client libraries/methods that can be utilized for
REST operations discussed prior such as POST, GET, PUT, and DELETE. The
respective REST Client library is typically imported into a program allowing accessibility
to its REST Client methods. The below table provides examples of popular REST Client
libraries for several common programming languages.

P A G E 1 3

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Programming Language REST Client Library

Python “requests” is the most popular library and
one of the simplest to consume; some
other libraries that can also be utilized
include “siesta”, “httplib”, “httplib2”, “urlib”

PowerShell “Invoke-RestMethod” cmdlet

Perl “REST:Client” is the most popular library;
“LWP::UserAgent” can also be used

Java Several libraries that can be leveraged
include: “Unirest”, “Javalite HTTP”,
“Apache HttpClient”, “Jersey”

Go “net/http” is the most popular library;
some other libraries that can also be
utilized include “sling”, “resty”, “napping”,
“grequests”

Table 2: REST API Client Libraries for Common Programming Languages

Simple Scripts

Many simple utility scripts composed of one file may be written as shown in Figure 10
below. The script is short and steps are sequential in nature within the file. This may be
adequate for such tasks as returning the NSX Distributed Firewall (DFW) to default state.
This script serves its purpose for resetting the DFW to default state in-case one
accidentally blocks vCenter communication and can no longer access the GUI to make
the change.

In some programming languages this would consist of less than ten lines of code. A
generalized example layout below shows what this may look like using any programming
language

P A G E 1 4

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

1. Simple Generalized Program
2.
3.
4. Program Variables here such as NSX Manager URL, Username, and Password
5.
6.
7. Main body of script calling NSX REST API to delete DFW section and reset to default

Figure 10: Basic Script/Program Structure

However, as programs get more advanced or additional functionality is added, it soon
becomes clear splitting the program up into compartments or smaller functional units
becomes helpful not only for management but also for rapid development,
troubleshooting, and code reuse. In such cases the desire is to make the programs more
modular. The next section discusses how such programs can be made more modular.

Functions and Modular Programs

Assume additional functionality needs to be added to the prior example of returning the
NSX Distributed Firewall (DFW) to default state. New requirements now include the
following:

- display a warning message that the NSX DFW will be reset to a default state
- user must acknowledge to proceed by clicking y
- some new DFW rules must be added automatically to represent custom default
 state

From the above requirements we can compartmentalize these into three tasks:

1. Display a warning message and confirm acknowledgement
2. Delete DFW rules and put DFW into default state
3. Create new DFW rules to represent custom default state

Each of these identified tasks can be a separate function. A function in programming
languages is a specific reusable section of a code that can be called at any time to perform
a specific task. If needed, functions can also be written to accept arguments that are used
by the logic within the function to achieve needed results. Additionally, functions can also
be written to return values once the respective function is complete; a value can consist
of perhaps a value representing status or some other specific criteria.

So, instead of writing all logic sequentially within a file, specific functions can be created
as separate blocks of code and be called from within the program. These functions can
be within the same file or even in a separate file and imported in. Such a workflow would
look like the below.

P A G E 1 5

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

1. Simple Generalized Program
2.
3.
4. displayWarning() - Function for displaying warning message
5.
6.
7. deleteDfwSection() - Function for deleting DFW rules (putting DFW into default state)
8.
9.
10. addCustomDfwRules() - Function for adding custom default DFW rules
11.
12.
13. Main body of script calling respective functions above in sequence
14. displayWarning()
15. deleteDfwSection()
16. addCustomDfwRules()

Figure 11: Basic Script/Program Structure Using Functions

To further organize code, enable code reuse, and allow for faster deployment of
applications custom libraries of code can be created. These libraries typically group
together specific features/functionality that are related such as file manipulation or
Internet connectivity. The next section discusses libraries in more detail.

Libraries

Programming languages will include a standard library out of the box for common tasks
such as manipulating files, accessing operating system services, Internet connectivity,
etc. Many additional external libraries exist, and custom libraries can be created as
needed. Continuing with the example displayed above, below all custom functions
prior created for modifying DFW are placed into an external custom library called
CustomDFW which is then imported into the program to be consumed. CustomDFW
represents the custom library created providing respective DFW functions.

1. Simple Generalized Program
2.
3.
4. import CustomDFW - Custom DFW Library
5.
6.
7. displayWarning() - Function for displaying warning message
8.
9.
10. deleteDfwSection() - Function for deleting DFW rules (putting DFW into default state)
11.
12.
13. addCustomDfwRules() - Function for adding custom default DFW rules

Figure 12: Basic Script/Program Library Structure

P A G E 1 6

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

The below generalized program in Figure 13 imports the CustomDFW library and calls
respective functions. It can be seen how creating libraries enables a clean organized
structure which allows for ease of code development, code maintenance, and code
reuse.

1. Simple Generalized Program
2.
3.
4. import CustomDFW
5.
6.
7. Main body of script calling respective functions from imported library
8. displayWarning()
9. deleteDfwSection()
10. addCustomDfwRules()

Figure 13: Basic Script/Program Using Libraries

In the next few sections we’ll take a look at some specific programming languages and
respective examples.

Python

Python is a popular open-source, high-level programming language. Its popularity is in
part due to its ease of use, readability, low learning curve, rapid deployment nature, cross-
platform capabilities, and library support. As such, it has become one of the most popular
programming languages and a favorite among network admins and devops engineers.

A focus of Python is both rapid and ease of development. For example, to allow for rapid
and ease of development, Python is dynamically typed meaning that Python allows the
user to assign different object types to the same variable without having to declare that
variable of a certain type first. This allows quickly creating data constructs such as lists
containing object of different types. Python is also very readable and easy to troubleshoot
because it does not require semicolons to terminate statements or use braces to
designate blocks of code like other programming languages. Instead indentation is used
to designate specific blocks of code.

Figure 14 below demonstrates how indentation is used with Python to structure blocks of
code.

1. First line of Python code
2.
3. Loop 1
4. Loop line 1

P A G E 1 7

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

5. Loop line 2
6.
7. Fifth line of Python code
8.
9. If this is true
10. Do this
11. Else
12. Do this
13.
14. Last line of Python code

Figure 14: Python Code Structure

Additionally, Python is a very expressive language in the sense that the same task can
usually be done in Python in less lines of code than other languages. Python also supports
object oriented features such as user-defined classes and inheritance where objects can
inherit from other parent objects.

Further, Python’s a cross-platform language able to run on multiple platforms such as
MAC, Unix/Linux, and Windows. Python is an interpreted language, and, as such, can
run on any platform that has a Python interpreter; this allows for its cross-platform
capabilities.

Python also has a vast assortment of natively included and externally importable libraries;
this enables rapid development of solutions as it allows programmers to reuse efficiently
developed code within their custom projects. It’s important to note that when using the
popular REST Client requests library with Python as shown in the examples further
below, the requests library must be manually installed as it is not part of the Python
standard library. Example code below is written in Python 2.7.7 and the Python package
management system, pip, was used to install the requests package from the cli with the
following command: pip install requests.

Another important detail to note about Python is that there are two lines of versioning
available: Python 2.x and Python 3.x. Python 2.x is the traditional Python that simply
builds upon earlier versions of Python without breaking backward compatibility. Python
3.x is the first version of Python to break backward compatibility with older Python
versions; the reason for this was simply to improve some of the traditional Python
language syntax and details for consistency and to evolve the language in a way to make
it even more easy to understand, use, and build upon.

Whether to use Python 2.x or Python 3.x is a choice based on preference. NSX REST
API can be used with either one. However, as Python 2.x has been around longer, there
are likely Python 2.x libraries that have not been converted over to Python 3.x. If one of
these libraries are needed for respective development purposes or the program needs to
be merged into a larger existing Python 2.x program, Python 2.x can be used. Most
popular Python libraries have been converted over to Python 3.x and as such Python 3.x
would be a good choice for new projects.

P A G E 1 8

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

To learn more about Python, see the official Python website.

Example: Automating Security Group and Policy Creation

Imagine creating a security posture and having to identify

1. The appropriate workloads
2. What security policies need to be applied to respective identified workloads

With NSX, a user can create what is known as Security Groups. Security Groups can
easily be defined via the NSX Service Composer or via the Grouping Objects section
(NSX Managers à [Select NSX Manager] à Manage à Grouping Objects à
Security Groups) and allows for a unique model in consuming network and security
services.

Objects such as virtual machines (VMs) across which similar policies must be applied can
be defined inside a Security Group, and a consistent policy can then easily be mapped
across all the respective objects. Furthermore, objects can be dynamically included within
Security Groups and the security policies leveraging these Security Groups can then be
configured based on the built-in VMware NSX features or by those offered by 3rd party
solutions.

Assume the tasks at hand are:

1. Identify workload traffic and create security groups to dynamically include the
relevant workloads. This will help determine what security policies should be
applied to the specific workloads based on requirements

2. Create security policies leveraging created Security Groups

With NSX REST API, we can automate all of these steps and avoid a manual and time
intensive process. In this example, the automatic creation of security groups with dynamic
matching criteria will be demonstrated. Figure 15 below displays the NSX lab setup for
this example.

P A G E 1 9

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 15: Example NSX Lab Setup

Figure 16 below displays a screenshot from NSX 6.2.2 where it shows a Web Security
Group already created with one dynamically identified VM that’s included as part of the
Security Group; this correlates to the diagram above in Figure 15. It should be noted here
that the Web Security Group is only being used locally on a local logical switch. The
screenshot below shows the NSX Manager role as Primary because the deployment is
part of a Cross-VC NSX deployment, but in this case only local objects and no universal
objects are being used. To learn more about Cross-VC NSX and universal objects, see
the following blog post on the VMware NSX Network Virtualization Blog : Cross-VC NSX
for Multi-site Solutions.

The Security Groups and policies discussed in this example are for local objects within
one vCenter domain.

P A G E 2 0

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 16: Existing Security Groups in Setup

A Security Group can be manually created as shown below where dynamic matching
membership criteria is being defined. Imagine creating 100+ or even a 1000+ Security
Groups manually.

Figure 17 below shows the dynamic membership criteria that an object must meet to be
part of the Web Security Group. In this case the VM just has to contain the word Web in
the VM Name.

Figure 17: Using NSX Manager GUI to Create a Security Group

Currently, from Figure 16, it can be seen that the Web Security Group has been created
yet the Security Group is not yet utilized in any security rules/policies. The procedural
steps for creating the security posture in this case are:

P A G E 2 1

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

	
1. Identify workload traffic

2. Create Security Groups to dynamically include workloads that should be included as

part of the Security Group. This will help determine what security policies should be
applied to the specific workloads based on requirements.

3. Create security policies leveraging created Security Groups
	
Let’s apply this scenario to a larger scale; depending on specific environment and
workloads, there can potentially be many Security Groups and respective security policies
that need to be created. Let’s assume the end user has 100+ Security Groups that need
to be created. It can become tedious if one has to create so many Security Groups
manually. One method of automation can be to leverage the NSX REST API and a bit of
code. In this case we’ll demonstrate with python.
	
For our example, first, we create a CSV file with one Security Group per row. Each row
has two fields; the first field is the Security Group name, and, the second field is the
matching criteria, or, in this case, specifically the word to match in the VM name (meaning,
if the VM name contains this word, the VM will meet the criteria to dynamically be added
to respective Security Group). The fields per row are separated via a comma within a
CSV file.

Figure18 below shows a screenshot of the file used as input to the python script in this
example. Note, we demonstrate using just three Security Groups here based on our setup
but many more as needed can be added and created with this batch-type Security Group
creation script.

Figure 18: CSV File Used as Input to Python Script

By running the below python script, which reads in the CSV file as input and leverages
the respective NSX REST API calls, all the Security Groups in the CSV file with the
respective dynamic matching criteria are created.

First, the needed python libraries are imported, python variables used for the script are
set, and a reader object is created to iterate over the lines in the CSV file. The python
requests library is leveraged for the NSX REST API call and the python csv library is
leveraged for reading and parsing the CSV input file. It’s important to note that the
requests library is not part of the Python standard library and must be installed. The below
code is written in Python 2.7.7 and the Python package management system, pip, was

P A G E 2 2

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

used to install the requests package from the cli with the following command: pip install
requests.

Next, the python script iterates through the CSV file data via a loop reading the CSV data
line by line and the respective NSX REST API to create the Security Group is called. The
security_group python list variable contains two items, security_group[0], which
contains the Security Group name, and, security_group[1], which contains the Security
Group matching criteria for dynamic inclusion as discussed prior. For each iteration
through the list, the NSX REST API call is made to create the respective Security Group.

The full python code is displayed below and was run in this example with NSX 6.2.2. The
Python script is executed from the cli with the python create_security_groups.py
command. The script could be run in Unix/Linux or Windows as long as the Python
interpreter and respective requests library is installed.

1. #Script: create_security_groups.py
2. #
3. #Description: Script reads input from a CSV file and creates Security Groups with
4. #dynamic inclusion criteria. Used with NSX 6.2.2 and Python 2.7.11.
5.
6.
7. import csv #library used for reading and parsing data from CSV file
8. import requests #library used for making REST API calls
9.
10. #ignore specific warnings
11. from requests.packages.urllib3.exceptions import InsecureRequestWarning
12. requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
13.
14. #initialize variables with needed info for input file and to make NSX REST API call
15. nsx_username = "nsxadmin"
16. nsx_password = "notMyPassword!"
17. nsx_url = "https://10.100.1.72/api/2.0/services/securitygroup/bulk/globalroot-0"
18. csv_filename = "security_groups.csv"
19. myheaders={'content-type':'application/xml'}
20.
21.
22. try:
23. csv_file = open(cv_filename) #open CSV file for reading
24. except FileNotFoundError as e:
25. print "Input CSV file not found!"
26. `
27. try:
28. csv_data = csv.reader(csv_file) #get reader object to iterate over lines in CSV

 file
29. except IOError as e:
30. print "Error reading CSV file!"
31.
32. for security_group in cv_data: #loop through parsed lines read in from CSV fil

e
33. #print security_group[0] #uncomment for debugging - contains Security Group name

34. #print security_group[1] #uncomment for debugging - contains Security Group word

 to match in VM name
35.
36. #create XML payload with Security Group data read in from CSV file

P A G E 2 3

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

37. payload ='''''
38. <securitygroup>
39. <objectId>securitygroup-1</objectId>
40. <objectTypeName>SecurityGroup</objectTypeName>
41. <vsmUuid>422B2F08-25CF-AE4D-D78E-9450BA33618F</vsmUuid>
42. <nodeId>d4fa9b9f-7973-4971-9ae6-c8f7e693ab30</nodeId>
43. <revision>1</revision>
44. <type>
45. <typeName>SecurityGroup</typeName>
46. </type>
47. <name>''' + security_group[0] + '''</name>
48. <description>
49. </description>
50. <scope>
51. <id>globalroot-0</id>
52. <objectTypeName>GlobalRoot</objectTypeName>
53. <name>Global</name>
54. </scope>
55. <clientHandle>
56. </clientHandle>
57. <extendedAttributes/>
58. <isUniversal>false</isUniversal>
59. <universalRevision>0</universalRevision>
60. <inheritanceAllowed>false</inheritanceAllowed>
61. <dynamicMemberDefinition>
62. <dynamicSet>
63. <operator>OR</operator>
64. <dynamicCriteria>
65. <operator>OR</operator>
66. <key>VM.NAME</key>
67. <criteria>contains</criteria>
68. <value>''' + security_group[1] + '''</value>
69. <isValid>true</isValid>
70. </dynamicCriteria>
71. </dynamicSet>
72. </dynamicMemberDefinition>
73. </securitygroup>'''
74.
75. #print payload #uncomment this for debugging - payload for REST API request call

76.
77. #call NSX REST API to create Security Group with XML payload just created
78. try:
79. response = requests.post(nsx_url, data=payload, headers=myheaders, auth=(nsx_us

ername,nsx_password), verify=False)
80. except requests.exceptions.ConnectionError as e:
81. print "Connection error!"
82.
83. print response.text

Figure 19: Python Script Creates Security Groups Based on Input From CSV File

Figure 20 below shows the results within the NSX GUI. As expected, based on the
diagram in Figure 15, three Security Groups have been created each with one member
VM. Note, the prior Web Security Group is still present which displays the same number
of dynamically identified VMs as the Web Security Group created via python script, thus
further validating the results.

P A G E 2 4

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 20: Three Additional Security Groups Created

Perl

Perl is also quite a popular open-source programming language. One of Perl’s key
strengths is the vast amount of Perl modules/libraries available via the Comprehensive
Perl Archive Network (CPAN). There is also a CPAN module included with Perl which is
used to download and install Perl modules automatically from the CPAN repository.

Perl is a much older language than Python and thus has a larger amount of external
libraries available. It’s important to note that when using the popular REST Client
REST:Client module with Perl as shown in the examples further below, it must be
manually installed as it is not part of the Perl standard library. Example code below is
written in Perl 5.24.0.1, and, the Perl CPAN module/command was used to install the
REST:Client package from the cli with the following command: cpan install
REST:Client. The Data::Validate::IP library, used to validate IPv4 and IPv6 addresses,
is also not part of the Perl standard library and was also installed via CPAN.

Many beginning programmers also find Python easier to learn than Perl. Perl is more
traditional in the sense that like other programming languages, outside of Python, it uses
braces to designate blocks of code like loops, conditional statements, and functions. It
also uses semicolons to designate end of statements. Perl is a powerful and very flexible
programming language in the sense that there are many ways to accomplish the same
task.

Perl also supports object oriented features such as user-defined classes and inheritance
where objects can inherit from other parent objects.

Similar to Python, Perl’s a cross-platform language able to run on multiple platforms such
as MAC, Unix/Linux, and Windows. Perl is an interpreted language, and, as such, can
run on any platform that has a Perl interpreter; this allows for its cross-platform
capabilities.

P A G E 2 5

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 21 below demonstrates how braces and semicolons are used with Perl to
structure blocks of code.

1. First line of Perl code;
2.
3. Loop 1
4. {
5. Loop line 1;
6. Loop line 2;
7. }
8. Seventh line of Perl code;
9.
10. If this is true
11. {
12. Do this;
13. }
14. Else
15. {
16. Do this;
17. }
18.
19. Last line of Perl code;

Figure 21: Perl Code Structure

To learn more about Perl, see the Perl Programming Language Website.

Example: Monitoring VMware NSX SpoofGuard with REST API and
 Perl

In this example, the program does a query to get Virtual NICs that have the SpoofGuard
state of Active. SpoofGuard is a feature that can prevent the spoofing of IP addresses
by trusting an IP address of a VM upon first use. In this state the IP address will be Active.
If the IP address is later changed, communication will be blocked unless the IP address
change is manually approved. Figure 22 below displays the NSX lab setup used in this
example.

P A G E 2 6

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 22: Lab Setup

The complete Perl code is shown further below; the script runs against an environment
where each VM has one vNIC with both an IPv4 and IPv6 address. The program returns
all Active Virtual NICs and associated information in regards to where SpoofGuard is
enabled. NSX 6.2.2 and Perl 5.24.0.1 were utilized in this example.

The REST:Client module/library is used to provide the REST Client capabilities to
communicate with NSX Manager. The XML:Simple library is used to easily read the XML
output returned from the NSX REST API calls. It can be observed from the code that
different tasks within the program are broken into functions and the respective functions
are called in sequence based on requirements within the program.

First, the respective needed libraries are imported into the program and respective
variables to connect to NSX Manager are initialized. Next a function call is made to obtain
a REST Client object. Once the REST Client object is obtained, another function call is
made to call the respective NSX REST API to get Active IP addresses and associated
information in regards to where SpoofGuard is enabled.

Within the getXMLData function, once the respective data is returned in XML format from
the NSX REST API call, the XMLin method of the XML:Simple object is used to read
and parse the data. The resulting data is returned to the main program where it is looped

P A G E 2 7

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

through, and, for each entry/record, Nic Name, approved MAC address, approved IPv4
address, and approved IPv6 address is output. The full code is shown below in Figure 24.

Before running the Perl script, we confirm via the NSX GUI for SpoofGuard what the
Active Virtual NICs are. The Web Policy SpoofGuard policy in Figure 23 below is
enabled on the web-tier shown as the Web logical switch in Figure 22 above. Further, it
can be seen that there are two entries, one for the Web VM with IP address 172.100.10.1
and another for the Web 3 VM with IP address 172.100.10.2; this correlates with the lab
diagram in Figure 22. Since the SpoofGuard operation mode is set to Trust On First Use,
both these respective VMs’ IP addresses are automatically initially trusted/approved and
considered Active. 	
	

Figure 23: NSX GUI Displaying SpoofGuard Active Virtual NICs

The Perl script is executed from the cli with the perl spoofguard_active_ips.pl command. The
full code is shown below. The script could be run in Unix/Linux or Windows as long as the Perl
interpreter and respective REST:Client and Data::Validate::IP Perl modules are installed.

1. #Script: spoofguard_active_ips.pl
2. #
3. #Description: Script runs against an environment where each VM has a single vNIC with
4. #both an IPv4 and IPv6 address. The program returns all "Active" IP addresses in
5. #relation to SpoofGuard and respective Nic Name, approved MAC Address, approved IPv4
6. #Address, and approved IPv6 Address. Used with NSX 6.2.2 and Perl 5.24.0.1.
7.
8.
9. use REST::Client; #REST Client library used to make REST API calls
10. use MIME::Base64; #library used for base64 encoding
11. use XML::Simple; #library used for ease of reading XML

P A G E 2 8

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

12. use Data::Validate::IP qw(is_ipv4 is_ipv6); #library used to validate IPv4 and IPv6
addresses

13.
14.
15. #uncomment below line if getting SSL connectivity/certificate error
16. #$ENV{"PERL_LWP_SSL_VERIFY_HOSTNAME"} = 0; #disable certificate check
17.
18. #function to draw separator between records
19. sub drawSeparator
20. {
21. print "--------------------\n";
22. return;
23. }
24.
25.
26. #function to print heading
27. sub printHeader
28. {
29. print "SpoofGuard Active Virtual NICs: \n\n";
30. return;
31. }
32.
33.
34. #function creates and returns REST Client object
35. #takes NSX Manager URL with IP address as argument
36. sub getRestClient
37. {
38. #create REST Client object
39. my ($arg) = @_;
40.
41. my $restclient = REST::Client->new(host => $arg);
42. return $restclient;
43. }
44.
45.
46. #function calls respective NSX REST API call and returns results
47. #takes REST Client object, NSX REST API call, base64 encoded
48. #username and password, and REST API 'content-type' header variable
49. #as arguments
50. sub getXMLData
51. {
52. my ($client, $nsx_rest_spoofguard_active_api, $encoded_auth, $nsx_content_type)

= @_;
53.
54. #make NSX REST API call to get "Active" Virtual NICs and respective info for

spoofguard
55. $client->GET($nsx_rest_spoofguard_active_api,
56. {"Authorization" => "Basic $encoded_auth",
57. "Accept" => $nsx_content_type});
58.
59. $xmlResponse = new XML::Simple; #create object for ease of reading XML
60.
61. #read in respective XML data from NSX API response using XMLin method
62. $xmlData = $xmlResponse->XMLin($client->responseContent(), KeyAttr =>

['spoofguard']);
63.
64. return $xmlData
65. }
66.
67.
68. #initialize variables for connecting to NSX Manager and calling NSX REST API

P A G E 2 9

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

69. my $nsx_manager = "https://10.10.10.72";
70. my $nsx_username = "admin";
71. my $nsx_password = "notMyPassword!";
72. my $nsx_rest_spoofguard_active_api = "/api/4.0/services/spoofguard/spoofguardpolicy-

5?list=ACTIVE";
73. my $nsx_content_type = "application/xml";
74.
75. #use Base64 ecoding for transmitting respective data
76. my $encoded_auth = encode_base64("$nsx_username:$nsx_password");
77.
78.
79. my $client = getRestClient($nsx_manager); #get REST Client object
80.
81. #get NSX REST API call result data
82. my $xmlData = getXMLData($client, $nsx_rest_spoofguard_active_api, $encoded_auth,

$nsx_content_type);
83.
84. printHeader();
85.
86. #loop through respective results and for each entry/record, print Nic Name,
87. #approved MAC Address, approved IPv4 Address, and approved IPv6 Address
88. foreach $xmlRecord (@{$xmlData->{'spoofguard'}})
89. {
90. drawSeparator();
91. print "Nic Name: \t\t" . $xmlRecord->{'nicName'} . "\n";
92. print "Approved Mac Address: \t" . $xmlRecord->{'approvedMacAddress'} . "\n";
93.
94. $ip_address_1 = $xmlRecord->{'approvedIpAddress'}->{'ipAddress'}->[0];
95. $ip_address_2 = $xmlRecord->{'approvedIpAddress'}->{'ipAddress'}->[1];
96.
97. if(is_ipv4($ip_address_1))
98. {
99. print "Approved IPv4 Address:\t" . $ip_address_1 . "\n";
100. print "Approved IPv6 Address:\t" . $ip_address_2 . "\n";
101. }
102. else
103. {
104. print "Approved IPv4 Address:\t" . $ip_address_2 . "\n";
105. print "Approved IPv6 Address:\t" . $ip_address_1 . "\n";
106. }
107. }
108. drawSeparator();
109.
110.
111. #uncomment below lines to see response status and headers
112. #print "Response status: " . $client->responseCode() . "\n";
113. #foreach ($client->responseHeaders())
114. #{
115. # print $_ . "=" . $client->responseHeader($_) . "\n";
116. #}

Figure 24: Perl Script For Displaying “Active” IP Addresses for SpoofGuard

Once the above script is run with the perl spoofguard_active_ips.pl command at the
cli, the below output is generated. As can be seen, the results match what is displayed in the
GUI in Figure 23 confirming the results are correct.

P A G E 3 0

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 25: Output of Perl Script Displaying “Active” IP Addresses for SpoofGuard

In this example, entries with the SpoofGuard state of ACTIVE are shown. To see entries
with other SpoofGuard states, we can simply modify the key value pair at the end of the
query. For example, to see entries with REVIEW_PENDING state, the list=ACTIVE key
value pair at the end of the NSX REST API call can be changed
to list=REVIEW_PENDING. In the code above, the $nsx_rest_spoofguard_active_api
variable can be changed to /api/4.0/services/spoofguard/spoofguardpolicy-
5?list=REVIEW_PENDING.

Note, for purposes of calling the NSX REST API, the default policy ID is always
spoofguardpolicy-1. If custom policies have been created, the policy ID can be retrieved
via REST API Get call with the following URL: https://[NSX Manager IP
Address]/api/4.0/services/spoofguard/policies/.

In Figure 23, it can be seen there are no entries that need review for the Web Policy
SpoofGuard policy as shown by the 0 under the Need Review column. For
demonstration, the IP address of the Web VM with IP address 172.100.10.1 is changed
to 172.100.10.3 and the IP address of Web 3 VM with IP address 172.100.10.2 is
changed to 172.100.10.4. These IP address changes are detected by SpoofGuard. As
shown in Figure 26 below, before the VMs are allowed to communicate using the new
respective IP addresses, the changes must be approved. The column Need Review has
also changed to 2 as expected. Selecting the Virtual Nics IP Required Approval option
from the drop down box displays the entries needing review/approval. Note, the
Approved IPv4 Address and Detected IPv4 Address for each of the two entries
respectively is different.

P A G E 3 1

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 26: Virtual NIC IP Address Changes Requiring Review/Approval

If in the Perl code, the $nsx_rest_spoofguard_active_api variable is changed to
/api/4.0/services/spoofguard/spoofguardpolicy-1?list=REVIEW_PENDING,
information can be displayed about IP Addresses that SpoofGuard has blocked and need
review/approval. As can be seen in Figure 27 below, the correct results are displayed
matching the results shown by the GUI in Figure 26. Note, additional fields and respective
code was added to show the corresponding detected MAC and IP Addresses. These new
fields correspond to the detectedMacAddress and detectedIPAddress data fields that
can be obtained from the $xmlRecord variable within the script. The respective
title/header for the results was also updated.

P A G E 3 2

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 17: Output of Perl Script – SpoofGuard IP Addresses Pending Review

Go

Go (also often referred to as Golang) is an open source, compiled, programming
language developed by Google and many community contributors since 2007. It’s
distributed under a BSD-style license.

Go’s mission is to “make easy to build simple, reliable and efficient software.” It provides
several packages with built-in functions that allow programmers to develop software
quickly. For example, it provides HTTP and XML packages that can be used to interact
with REST APIs very effectively. The Go language is rapidly gaining traction in the open
source community and several popular projects (Docker, Terraform) are written in Go.
Additional information about Go, as well as examples and tutorials can be found on the
Go project’s web site.

Go provides REST Client libraries that can be used to directly interact with the NSX REST
API. There are also open source libraries that allow RAML to be parsed and used. This
document is not meant to be a guide for the Go programming language, and a simple
example is provided below that does not leverage RAML parsing.

P A G E 3 3

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Example: Creating NSX Services in Go

Services (or Applications) are used in NSX to define port numbers used in the Distributed
Firewall rules. Once NSX is installed, a large number of built-in services for the most
common use cases is already provided; however, users might be required to define new
custom services.

Below, a simple program is shown written in Go that will create custom NSX Services
using the NSX REST API, allowing the user to specify name, description, protocol (TCP,
UDP, etc.) and value (a comma-separated list of ports and port ranges).

The program consists of code in a single main function that performs the following:

• Checks initial arguments to retrieve host name of the NSX Manager, credentials
and an input file

• Parses the input file (semicolon separated list of entries) to retrieve the list of
Services to create

• For each Service, an XML document is generated and sent over the NSX Manager
API using the HTTP POST method

• Parses the return code, and, if successful, returns the NSX object ID of the created
Service

The NSX REST API Guide, under section Add Service, specifies that all services must
be created by executing an HTTP POST to the following URL:

https://nsxmgr-ip/api/2.0/services/application/scopeId

The guide also mentions that for all Services the scopeId parameter in the URL
corresponds to the global scope (globalroot-0). The NSX API documentation also
provides a detailed description of the XML structure that must be included in the HTTP
request body to create the new Service:

1. <application>
2. <objectId/>
3. <type>
4. <typeName/>
5. </type>
6. <description>(application description)</description>
7. <name>(application name)</name>
8. <revision>0</revision>
9. <objectTypeName/>
10. <element>
11. <applicationProtocol>(application protocol)</applicationProtocol>
12. <value>(port value(s))</value>
13. </element>
14. </application>

Figure 28: XML Structure to Insert in the Request Body

Some of the parameters are empty or fixed, and the relevant ones are highlighted in red:

P A G E 3 4

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

description, name, applicationProtocol and value. All these parameters are strings of
text. As can be seen, this program does not do any validation of the inputs: if some illegal
argument is specified on the command line or in the input file, it will be passed directly to
the NSX API. If errors are encountered, NSX will return respective errors and the program
will exit. Best practice is to add validation routines to such programs.

The following figure shows how the semicolon separated input file looks (comments begin
with the # character):

1. # name, description, applicationProtocol, value
2. Test1;Test TCP Protcol;TCP;444
3. Test2;Test UDP Protocol;UDP;4871
4. Test3;Test TCP Protocol Range;TCP;181,1000-2000
5. Test4;Test Protocol Range;UDP;391,1821-3291
6. Test5;Test FTP;FTP;2121

Figure 29: Protocols Definition Input File

The program’s Go code is presented below, and is compiled from the nsx-
importservices.go source file. The reader is encouraged to refer to the comments in the
code to better understand the program flow:

1. package main
2.
3. // Import required packages
4. import (
5. "encoding/xml"
6. "fmt"
7. "os"
8. "path/filepath"
9. "net/http"
10. "io/ioutil"
11. "strings"
12. "crypto/tls"
13. "encoding/csv"
14. "bytes"
15.)
16.
17. // Define the NSX structure for the NSX service ("application") as a set of structs
18. // The desired XML format is as follows:
19. //<application>
20. // <objectId/>
21. // <type>
22. // <typeName/>
23. // </type>
24. // <description>(application description)</description>
25. // <name>(application name)</name>
26. // <revision>0</revision>
27. // <objectTypeName/>
28. // <element>
29. // <applicationProtocol>(application protocol)</applicationProtocol>
30. // <value>(port value(s))</value>
31. // </element>
32. //</application>
33.
34. type Application struct {

P A G E 3 5

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

35. XMLName xml.Name `xml:"application"`
36. ObjectId string `xml:"objectId"`
37. Revision int `xml:"revision"`
38. Type Type `xml:"type"`
39. Name string `xml:"name"`
40. Description string `xml:"description"`
41. Element []Element `xml:"element"`
42. }
43.
44. type Type struct {
45. XMLName xml.Name `xml:"type"`
46. TypeName string `xml:"typeName"`
47. }
48.
49. type Scope struct {
50. XMLName xml.Name `xml:"scope"`
51. Id string `xml:"id"`
52. ObjectTypeName string `xml:"objectTypeName"`
53. Name string `xml:"name"`
54. }
55.
56. type Element struct {
57. XMLName xml.Name `xml:"element"`
58. ApplicationProtocol string `xml:"applicationProtocol"`
59. Value string `xml:"value"`
60. }
61.
62. func main() {
63.
64. // Check arguments and return error if incorrect
65. // Note: there is no formal validation of the arguments in this example
66. if(len(os.Args) != 5) {
67. fmt.Printf("Syntax error\nUsage: %s [NSX Manager Address] [Username] [Password]

 [Input File]\n\n", os.Args[0])
68. os.Exit(1)
69. }
70. nsxManager := os.Args[1]
71. nsxUser := os.Args[2]
72. nsxPassword := os.Args[3]
73. inputFileName := os.Args[4]
74.
75. // Check the path and open the input file for read
76. readFilePath, err := filepath.Abs(inputFileName)
77. if err != nil {
78. fmt.Println(err)
79. os.Exit(1)
80. }
81. csvfile, err := os.Open(readFilePath)
82. if err != nil {
83. fmt.Println(err)
84.
85. os.Exit(1)
86. }
87. // make sure the descriptor will be closed later
88. defer csvfile.Close()
89.
90. // Read and parse the CSV file
91. reader := csv.NewReader(csvfile)
92. // Four fields are expected for each record, comments start with '#' and separator

is semicolon
93. reader.FieldsPerRecord = 4

P A G E 3 6

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

94. reader.Comment = '#'
95. reader.Comma = ';'
96. rawCSVdata, err := reader.ReadAll()
97. if err != nil {
98. fmt.Println(err)
99. os.Exit(1)
100. }
101.
102.
103. // Parse the CSV data and add it a slice of Application types
104. // Warning: there is no formal validation of the input in this example, all argumen

ts are passed to the NSX API
105. var nsxServices []Application
106. for _, chunk := range rawCSVdata {
107. var x Application
108. var e Element
109. x.Name = chunk[0]
110. x.Description = chunk[1]
111. e.ApplicationProtocol = chunk[2]
112. e.Value = chunk[3]
113. x.Element = append(x.Element, e)
114. x.Revision = 0
115.
116. fmt.Printf("Read application from CSV file:\n\tName: %s\n\tDescription: %s\n\tP

rotocol: %s\n\tValue: %s\n", chunk[0], chunk[1], chunk[2], chunk[3])
117. nsxServices = append(nsxServices, x)
118. }
119.
120. // Initialize the HTTPS client to skip SSL certificate verification
121. tr := &http.Transport{ TLSClientConfig: &tls.Config{InsecureSkipVerify: true}}
122. client := &http.Client{Transport: tr}
123.
124. // For each application read from the file, create an HTTPS POST request to the NSX

 Manager
125. for _, srv := range nsxServices {
126.
127. // Encode the XML representation of this object in a buffer
128. var buf bytes.Buffer
129. xmlbuf := xml.NewEncoder(&buf)
130. err = xmlbuf.Encode(&srv)
131. if err != nil {
132. os.Exit(1)
133. }
134. // Uncomment the following line to output the created XML body
135. //fmt.Println("XML Body: " + buf.String())
136.
137. // Prepare the HTTPS POST request with the XML body
138. fmt.Println("Importing service: " + srv.Name)
139. req, err := http.NewRequest("POST", "https://" + nsxManager + "/api/2.0/service

s/application/globalroot-0", &buf)
140. if err != nil {
141. fmt.Println(err)
142. os.Exit(1)
143. }
144.
145. // Configure Basic authentication and Content-Type
146. req.SetBasicAuth(nsxUser,nsxPassword)
147. req.Header.Set("Content-Type", "application/xml")
148.
149. // Execute the HTTPS request
150. resp, err := client.Do(req)

P A G E 3 7

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

151. if err != nil {
152. fmt.Println(err)
153. os.Exit(1)
154. }
155. defer resp.Body.Close()
156.
157. // Check the response type (expected 201 - Created)
158. fmt.Println("HTTP Response is: " + resp.Status)
159. if(resp.StatusCode != 201) {
160. b, err := ioutil.ReadAll(resp.Body)
161. if err != nil {
162. fmt.Println(err)
163. os.Exit(1)
164. }
165. fmt.Println("Error in executing query - got the following error:")
166. fmt.Println(string(b))
167. os.Exit(1)
168. }
169.
170. // NSX returns the created application id as the last field of the Location hea

der URL
171. // Parse it and print it out
172. loc, err := resp.Location()
173. if err != nil {
174. fmt.Println(err)
175. os.Exit(1)
176. }
177. l := strings.Split(loc.String(),"/")
178. fmt.Println("Successfully created application Object ID: " + l[len(l)-1])
179. }
180. }

Figure 30: Go Program to Create Custom NSX Services Leveraging the Relevant NSX REST API

In this example, we used XML structures to define the document hierarchy and leveraged
the built-in XML encoder to generate the HTTP body. Users can also choose to build the
HTTP body by simply concatenating strings with variables. There is no preferred option:
the choice depends on the desired flexibility and reusability of the code.

The following picture shows the output of the program when run with the correct
parameters:

P A G E 3 8

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 31: Output After a Successful Run of the Go Program

After a successful run, the program outputs that the services were correctly created
(HTTP Post returned 201 Created). In the example shown above, the object IDs of the
created services are application-401, application-402, application-403, application-
404 and application-405: these handlers can be used for subsequent CRUD operations.

Finally, it’s possible to connect to the NSX Manager UI and observe that the new services
were created according to the information specified in the input file; this is shown below.

P A G E 3 9

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 32: NSX Services Created Using a Go program – NSX GUI verification

Automation Tools with NSX REST API

The previous sections documented how to consume the NSX REST API using clients
such as a web browser, cURL, or via different programming languages. Administrators
and engineers use such methods to build scripts that avoid the manual execution of
repeatable tasks, and these methods are very effective. However, sometimes these
methods can produce challenges in terms of management and maintenance.

To streamline the automation of tasks in a more structured manner, products, such as
orchestrators and configuration management tools can be leveraged. With these
solutions, users can define workflows or playbooks that include a list of tasks which will
be automatically executed when some event occurs. Orchestrators and configuration
management tools are often modular and highly configurable, allowing customers and
partners to add additional capabilities to the product.

This document is not focused on discussing how these technologies work or how they
differ from each other, but presents examples on how to leverage the NSX REST API
using the respective tools. Two example products discussed in more detail below are
VMware vRealize Orchestrator, a solution adopted by many VMware customers, and
Ansible, an open source platform written in Python.

vRealize Orchestrator

VMware vRealize Orchestrator (vRO) is a powerful solution that simplifies the automation
of complex IT tasks and integrates with several VMware and 3rd party components to
extend service delivery and operational management. Given its flexibility and integration
capabilities, many VMware customers use it for their automation strategy. It’s packaged
with vCenter Server, and, at the time of writing, does not require additional licenses.

P A G E 4 0

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

This document is not meant to be a comprehensive guide on vRealize Orchestrator, but
a few concepts below are important to mention:

• vRO is modular software and can be extended through Java plugins. VMware
provides plugins to integrate it with many solutions, including vCenter and NSX

• vRO also includes a number of general purpose plugins that allow users to
integrate with other solutions through several technologies, including AMQP, SSH,
SQL, JDBC, PowerShell and HTTP REST APIs

• VMware Solution Partners ship plugins that can be imported in vRO and used to
create workflows that involve the integration with 3rd party components. Available
plugins can be downloaded from VMware’s Solution Exchange web site.

• Users can build simple or complex workflows using vRO UI by simply
concatenating different components. vRO also ships with an integrated Javascript
parser that can be used to build the required logic and is easy to learn

• vRO workflows can be invoked manually, through APIs, by vRA, and AMQP
message bus. The workflows can also be scheduled to run at specific times.

For additional details on vRealize Orchestrator please refer to the VMware vRealize
Orchestrator web site. Figure 33 below displays a vRO workflow being built and
leveraging NSX REST API.

Figure 33: Building a vRO Workflow

vRO also provides a HTTP REST API client allowing for NSX REST API to be called
directly from the tool; a NSX vRO Plugin is also available.

P A G E 4 1

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 34: vRO Leveraging NSX REST API

As mentioned, VMware ships an NSX plugin that includes a number of built-in workflows
that allow basic consumption of NSX features without requiring knowledge of the NSX
API. The below screenshot shows the existing workflows available in the NSX vRO plugin
at the time of writing.

Figure 35: NSX vRO Plugin Workflows

P A G E 4 2

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

More capabilities will be added over time as the initial focus of the NSX plugin is meant
to enable the NSX integration with vRealize Automation. More information on this topic
can be found in the
vRealize Automation section of this document.

While several basic NSX operations are already included in the plugin, users might be
required to automate tasks that are not natively present: extensibility can easily be done
as vRO ships with a powerful HTTP REST API plugin that administrators can leverage to
build custom integrations with NSX.

Two examples are provided here on how to create vRealize Orchestrator workflows using
the HTTP REST API plugin and JavaScript to achieve the following:

• Create an IP Set in NSX
• Enable or Disable HA on an NSX Edge

These examples require basic knowledge of vRO, but are easy enough to follow even for
beginners. Please refer to the vRealize Orchestrator page on the VMware Technology
Network website for additional information and resources.

Example: Create an IP Set in NSX Using vRealize Orchestrator

IP Sets can be included within NSX Security Groups or used natively in the Distributed
Firewall (DFW). IP Sets can be used to describe objects on the network that are not
present within the vCenter environment (i.e. an external physical server).

We’ll create a vRealize Orchestrator workflow that will create a new IP Set on the NSX
Manager, allowing the user to specify name, description and value (a comma-separated
list of IP addresses).

Before creating the workflow, we’ll register our NSX Manager as an endpoint in our
vRealize Orchestrator inventory: this is a common practice that will allow users to not
have to specify the NSX Manager IP address and credentials every time, but just refer to
the NSX Manager endpoint as an object (of type REST:RestHost).

To create the endpoint just run the Add a REST host workflow in the Library à HTTP-
REST à Configuration folder and specify the required NSX Manager information (URL,
credentials, timeout and certificate), as shown in the below figures.

P A G E 4 3

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 36: Run the "Add a REST host" Workflow in vRO

Figure 37:: Specify NSX Manager IP Address, Timeout and Certificate in vRO

P A G E 4 4

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 38: Specify NSX Manager Basic Authentication in vRO

Figure 39: Specify NSX Manager Credentials in vRO

Please note that the Operation timeout (seconds) parameter is set to 180 seconds as
some tasks on NSX are blocking (they do not return until the operation in the backend is
completed) and the default value (60 seconds) could lead to timeout errors.

Check whether the workflow has been executed correctly and if the endpoint is shown in
the HTTP-REST section of the vRO inventory:

Figure 40: Verify vRO Workflow Completition

P A G E 4 5

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 41: vRO Inventory with NSX as an HTTP-REST Endpoint

We can now prepare a vRealize Orchestrator workflow that creates a new IP Set in NSX.
The workflow contains a single scriptable task, which includes JavaScript code that:

• Builds an XML document according to the NSX API specification (refer to the NSX
API guide)

• Sends an HTTP POST request to the NSX Manager with the XML document as
the body

• Parses the return code and, if successful, returns the NSX object ID of the created
IP Set

The NSX API documentation, under section Create an IPset, specifies that all IP Sets
must be created by executing an HTTP POST to the following URL:

https://nsxmgr-ip/api/2.0/services/ipset/scopeId

The guide also mentions that for all IP Sets the scopeId parameter in the URL
corresponds to the global scope (globalroot-0).

P A G E 4 6

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

The NSX API documentation also provides a detailed description of the XML document
that must be included in the HTTP request body to create the new IP Set:

1. <ipset>
2. <objectId />
3. <type>
4. <typeName />
5. </type>
6. <description>
7. (IP Set description)
8. </description>
9. <name>(IP Set name)</name>
10. <revision>0</revision>
11. <objectTypeName />
12. <value>(comma separate list of IPs)</value>
13. </ipset>

Figure 42: XML Schema

Some of the parameters are empty or fixed, and, the relevant ones are highlighted in red:
description, name and value. All these parameters are strings of text.

The vRealize Orchestrator workflow can be created interactively using the UI by dragging
and dropping components in the canvas as well as binding input and output parameters.
This document assumes that the reader has the basic knowledge to use vRO: please
refer to the respective documentation for additional information.

The following figures show how the vRO workflow looks like (inputs, outputs and schema):

Figure 43: “Create NSX IP Set” vRO Workflow Inputs

P A G E 4 7

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 44: “Create NSX IP Set” vRO Workflow Outputs

Figure 45: “Create NSX IP Set” vRO Workflow Schema

The scriptable task is bound to all the workflow inputs and outputs so that all variables
are available in the JavaScript code. The visual binding of the task is shown in the below
figure.

Figure 46: “Create NSX IP Set” vRO Workflow’s Scriptable Task Visual Binding

The following JavaScript code is used in the Scripting section of the task. Please refer
to the comments in the code to understand the logic/flow better.

1. // vRealize Orchestrator script: Create NSX IP Set
2. // This script uses the REST Plugin for vRO to create an IP Set in NSX
3. // Inputs are:

P A G E 4 8

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

4. // - nsxManagerRestHost (type REST:RESTHost): specifies the NSX Endpoint to be used as
REST API target

5. // - ipSetName (type string): specifies the name of the IP Set to be created
6. // - description (type string): specifies the description of the IP Set to be created
7. // - value (type string): specifies the value (comma separate IP list) of the IP Set to

 be created
8. // Outputs:
9. // - ipSetId (type string): NSX ID of the created IP set
10.
11.
12. // XML Schema for IP Set creation (from API guide) is:
13. //
14. //<ipset>
15. //<objectId />
16. //<type>
17. //<typeName />
18. //</type>
19. //<description>(IP Set description)</description>
20. //<name>(IP Set name)</name>
21. //<revision>0</revision>
22. //<objectTypeName />
23. //<value>(comma separate list of IPs)</value>
24. //</ipset>
25. //
26.
27. // Prepare the HTTP body as an XML document with the required parameters
28. var xmlbody = new XML('<ipset />');
29. xmlbody.objectId = "";
30. xmlbody.type.typename = "";
31. xmlbody.description = description;
32. xmlbody.name = ipSetName;
33. xmlbody.revision = 0;
34. xmlbody.objectTypeName = "";
35. xmlbody.value = value;
36. // Uncomment the next line to dump the generated XML to the debug
37. //System.debug("Generated XML is: " + xmlbody);
38.
39.
40. // HTTP POST request is prepared using the URL: /2.0/services/ipset/scopeId
41. // Note that "/api" is not shown in the request URL as it's already set in the endpoint

 configuration
42. // scopeId is globalroot-0
43. var request = nsxManagerRestHost.createRequest("POST", "/2.0/services/ipset/globalroot-

0", xmlbody.toString());
44. request.contentType = "application/xml";
45.
46.
47. // Execute the HTTP request
48. System.debug("Creating IP Set " + ipSetName);
49. System.debug("POST Request URL: " + request.fullUrl);
50. var response = request.execute();
51.
52. // Evaluate the HTTP response
53. // We expect a HTTP 201 (Created), otherwise throw an exception
54. System.debug("GET Response Status Code: " + response.statusCode);
55. if (response.statusCode == 201) {
56. System.debug("Successfully created IP Set " + ipSetName);
57. }
58. else {
59. throw("Failed to create IP Set " + ipSetName);
60. }

P A G E 4 9

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

61.
62. // Return created IP Set id (it's the last element in a returned URI in the "Location"

HTTP header
63. // (it is also contained in the body of the respose)
64. ipSetId = response.getAllHeaders().get("Location").split('/').pop();
65. System.debug("Created IP Set ID is " + ipSetId);

Figure 47: Javascript Code for vRO Script

The way the XML schema is created follows the ECMAScript for XML (E4X), which is an
extension that adds native XML to JavaScript. This simplifies how XML information can
be prepared and parsed to better interact with RESTful APIs.

Users can also choose to build the HTTP body by simply leveraging JavaScript strings,
as in the below code example (that achieves the same result as in the previous example,
but without using the E4X syntax to prepare the XML document) – note that the string is
now used directly in the createRequest function, without the .toString() conversion.

1. // Prepare the HTTP body as an string with the required parameters
2. stringbody='<ipset><objectId /><type><typeName /></type><description>' + description +

'</description><name>' + ipSetName + '</name><revision>0</revision><objectTypeName /><v
alue>' + value + '</value></ipset>';

3. // Uncomment the next line to dump the generated string to the debug
4. //System.debug("Generated string is: " + stringbody);
5.
6. // HTTP POST request is prepared using the URL: /api/2.0/services/ipset/scopeId
7. // Note that "/api" is not shown in the request URL as it's already set in the endpoint

 configuration
8. // scopeId is globalroot-0
9. var request = nsxManagerRestHost.createRequest("POST", "/2.0/services/ipset/globalroot-

0", stringbody);
10. request.contentType = "application/xml";

Figure 48: Alternative Usage of Javascript to Build HTTP Body

As an alternative, vRO also provides an XML library to implement the document structure
if required.

Now that the workflow is created, users can run it in vRealize Orchestrator to create a
new IP Set in NSX, specifying the parameter strings and the NSX Manager endpoint
(selected from the available HTTP-REST object list in the inventory). A screenshot
displaying this is shown below in Figure 49.

P A G E 5 0

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 49: Run "Create NSX IP Set" vRO Workflow

Once the workflow run is completed successfully, it’s possible to verify in the vRealize
Orchestrator debug logs that the IP Set was successfully created (HTTP Post returned
201 – Created). In the example shown in the following figure, the new object ID is ipset-
6; this handler can be used for subsequent CRUD operations.

Figure 50: "Create NSX IP Set" vRO Workflow Logs

Using the NSX GUI, it’s possible to verify that the new IP Set is created and it contains
the expected addresses; this is validated below in Figure 51.

P A G E 5 1

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 51: IP Sets as They Appear in NSX GUI

This example demonstrated how to create vRealize Orchestrator workflows that leverage
the NSX REST API via the HTTP-REST plugin.

Example: Enable or Disable HA on an NSX Edge Using vRO

NSX Edges can be configured to run in Active/Standby high availability (HA) mode; the
feature can be enabled at deployment time or later. The vRealize Orchestrator plugin for
NSX does not implement such methods, but, similar to the previous example, in this
example, it will be implemented using the HTTP-REST module.

To avoid redundancy, this example omits the general initial details presented in the
previous section, including the configuration of an HTTP-REST endpoint for the NSX
Manager.

This workflow requires the user to specify the NSX Manager HTTP-REST endpoint, the
Edge object ID as an input string, and a boolean that determines whether HA must be
enabled or not. The difference from the previous example is that now the user prompts
for a desired state (i.e. HA enabled or disabled), so we first need to query the current
configuration to determine whether an action is needed.

The workflow contains a single scriptable task, which includes JavaScript code which
performs the following:

• Queries the NSX API to retrieve the HA configuration of a specific Edge

• Parses the returned XML document to discover whether HA is currently enabled

• Determines if HA is already in the desired state (if so, nothing to do)

P A G E 5 2

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

• If HA is not in the desired state, modifies the XML document to change
configuration and sends an HTTP POST request to the NSX Manager with the
updated body. Note that only a single field of the original XML document is
modified, while all other HA parameters are preserved

• Checks the return code to determine if the operation was successful. The workflow
does not return any output; an exception will be thrown in case of error

The NSX API documentation, under the section Working with High Availability (HA),
specifies that HA configuration must be managed through the following URL:

https://nsxmgr-ip/api/4.0/edges/edgeId/highavailability/config

The same URL is used for retrieving the existing configuration (via HTTP GET) or
modifying it (via HTTP PUT).

Another difference from the previous example is that now an Edge object ID is required;
this information is specified in the URL with the parameter edgeId. The workflow must
complete the URL with the ID provided by the user as an input parameter.

The NSX API documentation also provides a detailed description of the XML document
that is returned by the HTTP GET request as shown below.

1. <highAvailability>
2. <vnic>(vNic index for HA)</vnic>
3. <ipAddresses>
4. <ipAddress>(First peer IP address)</ipAddress>
5. <ipAddress>(Second peer IP address)</ipAddress>
6. </ipAddresses>
7. <declareDeadTime>(Dead timer in seconds)</declareDeadTime>
8. <enabled>(enabled - true or false)<enabled>
9. </highAvailability>

Figure 52: XML Schema

For this specific scenario we just want to enable or disable HA, so we ignore all the
parameters except the <enabled> field.

As this workflow has no outputs and the schema and scriptable task visual bindings are
similar to the previous example, only the inputs are shown in the below figure.

P A G E 5 3

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 53: “Configure Edge HA” vRO Workflow Inputs

The following JavaScript code is used in the Scripting section of the task. Please refer
to the comments in the code to understand the logic/flow better.

1. // vRealize Orchestrator script: Configure HA on NSX Edge
2. // This script uses the REST Plugin for vRO to enable HA on an NSX Edge
3. // It first retrieves the configuration of the NSX Edge and evaluates whether it's requ

ired to enable or disable HA
4. // If a change is required, perform the action
5. // Inputs are:
6. // - nsxManagerRestHost (type REST:RESTHost): specifies the NSX Endpoint to be used as

REST API target
7. // - edgeID (type string): specifies the ID of the Edge (from NSX Manager)
8. // - enabled (type bool): specifies whether Edge HA should be enabled or disabled
9. // No outputs
10.
11. // Retrieve the existing configuration
12. // HTTP GET request is prepared using the URL: /api/4.0/edges/edge-

id/highavailability/config
13. // Note that "/api" is not shown in the request URL as it's already set in the endpoint

 configuration
14. var request = nsxManagerRestHost.createRequest("GET", "/4.0/edges/" + edgeID + "/highav

ailability/config");
15. request.contentType = "application/xml";
16.
17. // Execute the HTTP request
18. System.debug("Querying current HA configuration for Edge " + edgeID);
19. System.debug("GET Request URL: " + request.fullUrl);
20. var response = request.execute();
21.
22. // Evaluate the HTTP response
23. // We expect a HTTP 200 (OK), otherwise throw an exception
24. System.debug("GET Response Status Code: " + response.statusCode);
25. if (response.statusCode == 200) {
26. System.debug("Response is success (200)!");
27. // We can optionally output in the debug the entire XML document output (uncomment

the next line)
28. //System.debug("Response content is " + response.contentAsString);
29. }
30. else {
31. throw("Failed to get HA configuration for Edge " + edgeID);
32. }
33.
34. // We were able to retrieve the Edge configuration, let's now parse the returned XML

P A G E 5 4

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

35. // Use the XML parser to parse the HTTP XML in the response
36. var document = XML(response.contentAsString);
37. // Uncomment the next line to dump the parsed XML to the debug
38. //System.debug("Edge HA configuration is " + document.toString());
39.
40.
41.
42. // Determine if we need to do change something or if the HA state is already the desire

d one
43. // Initialize a boolean variable to false: if we need to do something will change to tr

ue later
44. var dosomething = false;
45. if(enabled) { // HA desired state is enabled
46. if(document.enabled == "true") { // HA already enabled, nothing to do!
47. System.debug("HA is already enabled on Edge " + edgeID);
48. }
49. else { // HA was not enabled, we must do something
50. // Directly modify the XML document with the syntax below
51. document.enabled = "true";
52. dosomething = true;
53. }
54. }
55. else { // HA desired state is disabled
56. if(document.enabled == "true") { // HA was enabled, we must do something.
57. // Directly modify the XML document with the syntax below
58. document.enabled = "false";
59. dosomething = true;
60. }
61. else { // is already disabled, nothing to do!
62. System.debug("HA is already not enabled on Edge " + edgeID);
63. }
64. }
65.
66. // It's been determined that we need to do something, we need to submit the change to t

he NSX API
67. if(dosomething) {
68. // Uncomment the next line to dump the modified XML to the debug
69. //System.debug("Modified HA configuration is " + document.toString());
70. // Conver the XML to a string that we will send in the HTTP body
71. xmlbody=document.toString();
72. // Uncomment the next line to dump the HTTP body we are about to send
73. //System.debug("HTTP body being sent: " + xmlbody);
74. // HTTP PUT request is prepared using the URL: /api/4.0/edges/edge-

id/highavailability/config with the required HTTP body
75. // Note that "/api" is not shown in the request URL as it's already set in the endp

oint configuration
76. var request = nsxManagerRestHost.createRequest("PUT", "/4.0/edges/" + edgeID + "/hi

ghavailability/config",xmlbody);
77. request.contentType = "application/xml";
78. System.debug("Setting HA to " + enabled + " on Edge " + edgeID);
79.
80. // Execute the HTTP request
81. System.debug("PUT Request URL: " + request.fullUrl);
82. var response = request.execute();
83.
84. // Evaluate the HTTP response
85. // We expect a HTTP 204 (No Content), otherwise throw an exception
86. System.debug("PUT Response Status Code: " + response.statusCode);
87. if (response.statusCode == 204) { // success!
88. System.debug("HA successfully set to " + enabled + " on Edge " + edgeID);
89. }

P A G E 5 5

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

90. else {
91. throw("Failed to set HA to " + enabled + " on Edge " + edgeID);
92. }
93. }

Figure 54: Javscript code for vRO Workflow

Now that the workflow is created, users can run it in vRealize Orchestrator, specifying the
Edge object ID and its desired HA state; a screenshot is shown below in Figure 55.

Figure 55: Run "Configure Edge HA" vRO Workflow

Once the workflow run is completed successful, it’s possible to verify in the vRealize
Orchestrator debug logs that the configuration is changed as shown in Figure 56 below.

Figure 56: "Configure Edge HA" vRO Workflow Logs When an Action is Performed

On the NSX UI, it can be verified that the HA for edge-1 is now enabled as shown below.

P A G E 5 6

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 57: NSX Edge HA

As HA is already enabled, running the workflow again with the same parameters will
return the below messages in the debug log and no action is performed.

Figure 58:: "Configure Edge HA" vRO Workflow Logs When No Action is Performed

This example again demonstrated how to create vRealize Orchestrator workflows that
leverage the NSX REST API via the HTTP-REST plugin.

Ansible

Together with Puppet, Chef and Salt, Ansible is a popular configuration management tool;
it can be used to describe the state of a system and provides tools to manage its lifecycle.
It can also be used for provisioning new systems; this operation can really be seen as a
(complex) change of state. Ansible can also provide and orchestrate these functions on
a vast number of systems at the same time.

Given that state management is at the core of Ansible, idempotency is a critical
characteristic: if the current state and the desired state are the same, no actions are
carried out. So running twice the same Ansible playbook on the same system will result
in the second run not producing any change.

To end on a light note, the name Ansible is taken from science fiction where it stands for
a device that can transfer information with a speed greater than lightspeed.

P A G E 5 7

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Example: Using Ansible Playbook to Manage Logical Switch State

The goal of this example is to show how an Ansible playbook could be used to manage
the state of a logical switch; it will be done leveraging the work done with RAML
(http://raml.org/).

As always, the first thing to do is check the start state of the testing environment,
specifically the number of NSX Logical Switches already available. We use Postman and
leverage a collection automatically generated from the RAML file defining the NSX-v API.

Figure 59: Using Postman to Verify the Number of Logical Switches Present

There are a total of four logical switches, which is confirmed by looking at the vSphere
web client as shown in Figure 60 below.

Figure 60: Using NSX Manager GUI to Verify the Number of Logical Switches Present

Let’s now have a look at the Ansible playbook that will be used to create a new NSX
logical switch: create_logicalswitch.yml

1. -emazza@emazza-ubuntu-vm:~/Documents/AnsiblePlaybook$ more create_logicalswitch.yml
2. ---
3. - hosts: 127.0.0.1
4. connection: local
5. gather_facts: False
6. vars_files:
7. - answerfile.yml
8. tasks:
9. - name: nsx_logical_switch Operation
10. nsx_logical_switch:
11. nsxmanager_spec: "{{ nsxmanager_spec }}"

P A G E 5 8

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

12. state: present
13. transportzone: "Local-Transport-Zone-A"
14. name: "Ansible-LS"
15. controlplanemode: "UNICAST_MODE"
16. description: "Ansible Logical Switch"
17. register: create_logical_switch

Figure 61: Ansible Playbook (create_logicalswitch.yml)

The first lines specify that this playbook will be run on the same machine where Ansible
is installed, that facts gathering will not be performed, and that some parameters needed
by the playbook are stored in the file named answerfile.yml (see below). Note that the
path of the file specifying the RAML format of the NSX-v API is explicitly called out,
together with the NSX Manager login credentials

1. emazza@emazza-ubuntu-vm:~/Documents/AnsiblePlaybook$ more answerfile.yml
2. nsxmanager_spec:
3. raml_file: '/home/emazza/Documents/AnsiblePlaybook/nsxraml/nsxvapi.raml'
4. host: '10.152.65.157:21443'
5. user: 'admin'
6. password: 'VMware1!'

Figure 62: Parameter Specification (answerfile.yml)

Looking again at the Ansible playbook, it’s important to note the following line

1. nsx_logical_switch:
2. nsxmanager_spec: "{{ nsxmanager_spec }}"
3. state: present
4. transportzone: "Local-Transport-Zone-A"
5. name: "Ansible-LS"

Figure 63: “state: present” Line in Ansible Playbook

The code in Figure 63 highlights the specification of the desired state the system must be
at the end of playbook run: a logical switch named Ansible-LS must be present in the
NSX transport zone named Local-Transport-Zone-A. This is linked with the well-known
idempotent characteristic of Ansible: it compares the current and desired state of the
system and only executes changes when needed. So when the playbook will be called
twice in a row, the second run will not produce any change to the system as the starting
state already match the desired final state.

Below it is shown how this works at a high level. The playbook calls the function
nsx_logical_switch.py (line 10 in Figure 61); this script is written in Python and stored
under the library folder of the machine where Ansible is installed.

P A G E 5 9

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 64: File Organization

Looking at the code, we can see the definition of the parameters that have been passed
via the Ansible playbook (line 02 to line 11). At line 15 the NsxClient class is made
available via importing the respective module via the client.py script; NsxClient is used
to create a NSX client session object (line 15) which will be used to interact with the
system programmatically.

1. def main():
2. module = AnsibleModule(
3. argument_spec=dict(
4. state=dict(default='present', choices=['present', 'absent']),
5. nsxmanager_spec=dict(required=True, no_log=True),
6. name=dict(required=True),
7. description=dict(),
8. transportzone=dict(required=True),
9. controlplanemode=dict(default='UNICAST_MODE', choices=['UNICAST_MODE',
10. 'MULTICAST_MODE', 'HYBRID_MODE'])
11.),
12. supports_check_mode=False
13.)
14.
15. from nsxramlclient.client import NsxClient
16. client_session=NsxClient(module.params['nsxmanager_spec']['raml_file'],
17. module.params['nsxmanager_spec']['host'], module.params['nsxmanager_spec']['user'],
18. module.params['nsxmanager_spec']['password'])

Figure 65: nsx_logical_switch.py (snippet)

Looking now at the rest of the code, the further below steps can clearly be identified

1. from nsxramlclient.client import NsxClient
2. client_session=NsxClient(module.params['nsxmanager_spec']['raml_file'], module.params['

nsxmanager_spec']['host'], module.params['nsxmanager_spec']['user'],
3. module.params['nsxmanager_spec']['password'])
4.
5. vdn_scope=retrieve_scope(client_session, module.params['transportzone'])
6. lswitch_id=get_lswitch_id(client_session, module.params['name'], vdn_scope)
7.
8. if len(lswitch_id) is 0 and 'present' in module.params['state']:

P A G E 6 0

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

9. ls_ops_response=create_lswitch(client_session, module.params['name'],
10. module.params['description'], module.params['controlplanemode'], vdn_scope)
11.
12. module.exit_json(changed=True, argument_spec=module.params,
13. ls_ops_responsels_ops_response=ls_ops_response)

Figure 66: nsx_logical_switch.py (snippet)

• Line 05: retrieval of the vdn scope corresponding to the transport zone passed as

input

• Line 06: retrieval of the id of the logical switch belonging to the transport zone with
name equal to the parameter name: defined in the playbook (Ansible-LS in this
example)

• Line 08 to Line 13: if there is no such logical switch and the requested state is present,
then the create_lswitch function will be called

Below the create_lswitch function that is defined in the same nsx_logical_switch.py
file is looked at in more detail. This function basically creates a python dictionary
representing a logical switch, fills it with the appropriate data, and passes it to the create
method of the NSX client session object previously defined.

1. def create_lswitch(session, lswitchname, lswitchdesc, lswitchcpmode, scope):
2. lswitch_create_dict = session.extract_resource_body_schema('logicalSwitches',
3. 'create')
4. lswitch_create_dict['virtualWireCreateSpec']['controlPlaneMode'] = lswitchcpmode
5. lswitch_create_dict['virtualWireCreateSpec']['name'] = lswitchname
6. lswitch_create_dict['virtualWireCreateSpec']['description'] = lswitchdesc
7. lswitch_create_dict['virtualWireCreateSpec']['tenantId'] = 'Unused'
8. return session.create('logicalSwitches', uri_parameters={'scopeId': scope},
9. request_body_dict=lswitch_create_dict)

Figure 67: “create_lswitch” function

The below screenshot shows the respective Ansible playbook run output.

Figure 68: Ansible Playbook Run Output

P A G E 6 1

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

The output is showing that the operation completed correctly and that one change to the
state of the system has been made (remember that this logical switch did not exist before).
Another look at Postman output will confirm this: there are now five logical switches, one
of which has been recently created by the Ansible playbook

Figure 69: Verification via Postman NSX REST API Call Output

Figure 70: Verification of Ansible Playbook’s Run Results

Running the same playbook again will not cause any change in the system as the current
state is already the final desired state. Figure 71 below shows this in practice: the
playbook runs correctly (ok=1) but no changes have been made (changed=0).

P A G E 6 2

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 71: Ansible Playbook Run Output

We can look at how this is managed at the code level in the nsx_logical_switch.py file.
At line 07 the Ansible playbook is required to create a logical switch with the name of a
logical switch that already exists. From line 08 to line 25 we cycle through the other
attributes of this logical switch to understand if their values match the ones set in the
playbook and mark accordingly a change request flag. Finally, from line 26 to line 32 we
deal with the appropriate course of action based on the final value of the change request
flag.

1. if len(lswitch_id) is 0 and 'present' in module.params['state']:
2. ls_ops_response=create_lswitch(client_session, module.params['name'],
3. module.params['description'], module.params['controlplanemode'], vdn_scope)
4.
5. module.exit_json(changed=True, argument_spec=module.params,
6. ls_ops_responsels_ops_response=ls_ops_response)
7. elif len(lswitch_id) is not 0 and 'present' in module.params['state']:
8. lswitch_details=get_lswitch_details(client_session,lswitch_id[0])
9. change_required=False
10. for lswitch_detail_key, lswitch_detail_value in
11. lswitch_details['virtualWire'].iteritems():
12. if lswitch_detail_key == 'name'
13. and lswitch_detail_value != module.params['name']:
14. lswitch_details['virtualWire']['name']=
15. module.params['nsxmanager_spec']['name']
16. change_required=True
17. elif lswitch_detail_key == 'description'
18. and lswitch_detail_value != module.params['description']:
19. lswitch_details['virtualWire']['description']=module.params['description']

20. change_required=True
21. elif lswitch_detail_key == 'controlPlaneMode'
22. and lswitch_detail_value != module.params['controlplanemode']:
23. lswitch_details['virtualWire']['controlPlaneMode']=
24. module.params['controlplanemode']
25. change_required=True
26. if change_required:
27. ls_ops_response=change_lswitch_details(client_session,lswitch_id[0],
28. lswitch_details)
29. module.exit_json(changed=True, argument_spec=module.params,
30. ls_ops_responsels_ops_response=ls_ops_response)
31. else:
32. module.exit_json(changed=False, argument_spec=module.params)

Figure 72: Idempotency in nsx_logical_switch.py

P A G E 6 3

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Let’s see this in action and request a final state which will result in a change of the
description of the already existing logical switch.

Figure 73: Ansible Playbook Run Output

Figure 74: Checking name change using NSX Manager GUI

Finally, let’s request a final state such that this logical switch must not exist anymore in
the system.

1. emazza@emazza-ubuntu-vm:~/Documents/AnsiblePlaybook$ more destroy_logicalswitch.yml
2. ---
3. - hosts: 127.0.0.1
4. connection: local
5. gather_facts: False
6. vars_files:
7. - answerfile.yml
8. tasks:
9. - name: nsx_logical_switch Operation
10. nsx_logical_switch:

P A G E 6 4

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

11. nsxmanager_spec: "{{ nsxmanager_spec }}"
12. state: absent
13. transportzone: "Local-Transport-Zone-A"
14. name: "Ansible-LS"
15. controlplanemode: "UNICAST_MODE"
16. description: "Rebranded Ansible Logical Switch"
17. register: create_logical_switch

Figure 75: Ansible Playbook (destroy_logicalswitch.yml)

Figure 76: Ansible Playbook Run Output

Figure 77: Using Postman to Verify the Number of Logical Switches Present

Figure 78: Using NSX Manager GUI to Verify the Number of Logical Switches Present

Cloud Management Platforms with NSX REST API

Many organizations are building private cloud solutions to provide their users with tools
that automatically deploy infrastructure services. Cloud architects have quickly realized
that automating the provisioning and destruction of Virtual Machines (VMs) is not
sufficient to satisfy business requirements: too often configuration changes in network

P A G E 6 5

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

and security are also required to provide the desired service, and, with manual
provisioning of such components, the benefits of the entire cloud initiative are limited.

For example, when manually deploying production environments, the process often
follows a chain of events that involve operations by several teams (VI, network, security,
storage, load balancing, applications, etc.). This model not only slows down the
deployment, but is also prone to human errors that can lead longer wait times or
misconfigurations in security policies thus resulting in insecure environments. A common
example is the removal of firewall policies related to decommissioned applications, which
is a rarely performed task.

Moreover, as organizations are transitioning towards Micro-segmentation, the
requirement of granular security policies deployed alongside the applications is becoming
important, which again is not easy to perform via manual operations. Lastly, many
companies are developing applications in-house and their dev and test environments,
while not requiring the same levels of availability and security of production, are critical to
deliver new features and are therefore considered revenue generating. In such
environments, network and security configurations (such as NAT, Load Balancer and
Firewall) are often required and must be automated.

For the above reasons, modern IaaS clouds provide automated and integrated
consumption of virtual machines, network constructs (such as Logical Switches and Load
Balancers), security policies, middleware and applications. Depending on the scope of
the initiative (production, dev, test/QA, etc.) and the organizational structure, private cloud
solutions can offer different levels of governance and consumption models (i.e. whether
giving users access to service catalogs or directly to CMP APIs, implementing approval
workflows and strict resource management, etc.).

While describing the differences among several Cloud Management Platform (CMP)
solutions is out of the scope of this document, it is important to mention that using NSX
as the underlying network and security platform is extremely beneficial as all possible
governance and consumption models can apply to it. With NSX it’s possible to automate
all the configuration actions by leveraging the NSX REST API: several Cloud
Management Platforms (CMPs) already provide out-of-the-box integrations to consume
the services provided by NSX, such as Logical Switching, Logical Routing, Distributed
Firewall and Logical Load Balancing.

This section describes how one of the most widely used CMP solutions, VMware vRealize
Automation, leverages the NSX API to automate the consumption of services.

Other solutions can already integrate with NSX out-of-the-box and it’s important to
understand that, since most CMPs are modular, it’s possible to extend their capabilities
to consume NSX services either via the REST API or through vRealize Orchestrator. The
other examples provided in this document should be useful to understand how to
implement such extensions using common programming languages.

P A G E 6 6

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

vRealize Automation

VMware vRealize Automation (vRA) is a cloud automation solution that automates the
delivery of custom infrastructure, application, and IT services across a multi-vendor hybrid
cloud infrastructure. Details on vRA are available on VMware’s vRA web site, but, in short,
it provides an automated way of deploying and managing applications through a service
catalog and natively integrates with NSX.

The latest version of vRA at the time of writing is 7.0. It allows native consumption of both
pre-created and on-demand NSX network and security services through the concept of a
blueprint: cloud architects can design entire application stacks (that include VMs, pre-
existing or on-demand networks, load balancers, security groups, policies and tags) and
publish them in a service catalog. Cloud consumers can then deploy, manage and destroy
applications by leveraging the service catalog, as shown in the picture below.

Figure 79: Cloud Consumption Model with vRA

This document is not meant to be a comprehensive guide on how vRA can consume NSX
services, but the most significant aspects of the consumption layer from the network and
security perspective are presented below.

Converged
Blueprint

Cloud
Consumers

Cloud Admin

Applications

Extensibility

Security

Networking

Unified Service
Catalog

Network Profiles
Security Groups Security Policies

Network Admin Security Admin

On-Demand Load
Balancer

AVAILABILITY SECURITYCONNECTIVITY

Security Tags
On-Demand

Networks

P A G E 6 7

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

In regards to Networking, vRA can natively consume the following services based on
NSX:

• External networks: vRA can deploy VMs on to existing NSX Logical Switches. This
is very useful for production applications that get deployed on pre-existing, shared
networks.

• NAT networks: when overlapping addressing is required (very often for dev and
test environments), vRA can create new NSX Logical Switches and NSX Edges
and define NAT rules to allow reusability of address space across different
deployments. It’s possible to define 1:1 and 1:Many network profiles, depending
on the required external access. Once the application is decommissioned, vRA
removes the created network objects alongside VMs.

• Routed networks: some organizations require cloud users to create on-demand

routed networks. As part of a blueprint, cloud architects can configure vRA to
create new NSX Logical Switches and attach them to an existing NSX Distributed
Logical Router during the provisioning process. vRA also manages the IP
addressing accordingly to avoid overlapping. As in the NAT case, once the
application is decommissioned, dynamically created NSX Logical Switches are
also removed.

• Load balancing: vRA can create an NSX Edge at application deployment time and
configure it as a load balancer for the required services. Both in-line and one-arm
topologies are supported, depending on the network profile.

• DHCP: if required, vRA can configure DHCP services on an NSX Edge when it

configures 1:Many NAT networks.

vRA can also natively consume NSX Service Composer capabilities, allowing security
admins to define a security posture that is consumed by the cloud platform. vRA leverages
the following NSX security capabilities:

• Pre-created NSX Security Groups: vRA can discover existing Security Groups that
exist in NSX and add VMs to them during the provisioning of the application. Once
the application owner deletes the VMs, they disappear from the Security Groups,
reducing the risk of stale firewall rules.

• On-demand NSX Security Groups: vRA is also capable of creating new NSX
Security Groups for each VM tier (i.e. web, app or DB), and attaching existing
Security Policies to them. When users decommission the applications, the on-
demand Security Groups are also removed by vRA.

• Pre-created NSX Security Tags: vRA can discover and attach existing NSX

Security Tags to the VMs it creates, allowing a tag-based consumption of security.

P A G E 6 8

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

• App Isolation: to simplify security automation, vRA also provides an option (App

Isolation) that can be enabled at the blueprint level. When selected, vRA will
automatically generate NSX Security Groups and Security Policies to block all
communications across different application deployments, unless explicitly
permitted by other rules. This is extremely useful to provide Micro-segmentation
without the need of complex application scoping.

The below picture shows a graphical representation of two applications deployed by vRA
that include security, load balancing and App Isolation with NSX.

Figure 80: vRealize Automation Topology Example with App Isolation

All the NSX capabilities that vRA can consume are configured using the Converged
Blueprint Designer (CBD): it provides a canvas in the UI where users can drag and drop
different components (VMs, networks, security groups, load balancers, etc.) and build the
required application topology. Blueprints can also be exported in a YAML file that users
can be modify and re-upload (blueprint-as-code).

The below picture shows an example of the Converged Blueprint designer, where a 2-tier
application (Web and DB) that includes two on-demand routed networks, a load balancer
and an on-demand security group for the web tier are being utilized.

Web

App

Database

VM VM

VM VM VM

VM

Web

App

Database

VM VM

VM VM VM

VM

P A G E 6 9

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Figure 81: vRealize Automation Converged Blueprint Designer

As mentioned, vRealize Automation can leverage the NSX REST API to achieve the
required configurations. To add some detail about the implementation, it is relevant to
mention that the actual consumption model is implemented through vRealize Orchestrator
(vRO), using the NSX vRO Plugin, as shown in the Figure 82 below.

Figure 82: vRealize Automation Consumption of NSX Through vRealize Orchestrator

Among the several design reasons that drive this choice, the most relevant is the ability
of extending the native consumption model. NSX is a platform that provides a
comprehensive set of capabilities and not all of them are automated by the native
vRealize Automation integration, as the out-of-the-box focus is set on the most common
use cases. The ability to extend the default behavior and enable additional use cases is
a great capability that can be leveraged through the different vRA extensibility options,
that all leverage vRO as the underlying orchestration layer.

vRealize Automation

vRealize Orchestrator

vRO REST API

NSX
NSX REST API

NSX Model

NSX vRO Plugin

NSX Interface for vRA

P A G E 7 0

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

A vRO plugin for vRA allows for purpose-built custom automation of NSX objects.

Figure 83: NSX and vRA – Extensibility using vRO

While more features are being added in the native integration, some examples on use
cases that require extensibility and are simple to enable are the following:

• Change the size or the Syslog targets of an NSX Edge deployed by vRA
• Enable a persistence algorithm on an NSX Load Balancer configured by vRA
• Define Day 2 operations to add additional NAT rules for an application

These and many other use cases can be enabled by leveraging two vRA extensibility
features:

• EBS (Event Broker Service): allows cloud administrators to subscribe vRO
workflows to specific events, effectively modifying the behavior of the native
integration. For example, one could subscribe a workflow that will change the size
of the NSX Edge to the event that is generated upon deployment: this way, as
soon as the end user triggers the deployment of an application, vRA will create an
NSX Edge and call the workflow to change its size.

• XaaS (anything as-a-service): vRO workflows can be published in vRA and
invoked directly from the service catalog by the end users, allowing direct
consumption. XaaS can also be used to embed vRO workflows directly within a
converged blueprint, allowing potentially unlimited extensibility use cases. For
example, a Day 2 operation that adds additional NAT rules on an existing NSX
Edge could be defined using XaaS and published in the service catalog, allowing
end users to invoke it against a previously deployed application.

As both extensibility approaches leverage vRealize Orchestrator as the underlying layer,
the same content (vRO workflows and actions) can be reused across both options.

vRealize Automation

vRealize Orchestrator

Rest API

NSX
Rest API

NSX Model

NSX vRO
Plugin

NSX Interface for vRA

P A G E 7 1

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Additional details about the NSX plugin for vRO and how it’s possible to consume the
NSX API via the REST plugin are provided in the section related to vRealize Orchestrator.

P A G E 7 2

VMware,	Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

References

NSX REST API

VMware vRealize Orchestrator Documentation

