

CONTAINERS AND
CONTAINER NETWORKING
For Network Engineers

JANUARY 2018

VMware NSX Container Networking

1

1	 Introduction 2	

1.1	 The Digital Transformation Journey 2	

1.2	 What is Cloud Native? 4	

1.3	 Do Microservices=Containers and Containers=Microservices? 4	

2	 Container Basics 7	

2.1	 Container runtimes and formats 9	

2.2	 Docker Introduction 10	

2.3	 Container Operating Systems 12	

3	 Service Discovery 14	

3.1	 SkyDNS 15	

3.2	 Weave-DNS 15	

3.3	 CoreDNS 15	

4	 Consensus Management Tools 16	

4.1	 Consensus Protocols 16	

4.1.1	 Paxos 16	

4.1.2	 Raft 17	

4.2	 Distributed State Machines 17	

4.2.1	 Zookeeper 17	

4.2.2	 Etcd 18	

4.2.3	 Consul 18	

5	 Container Clustering and Scheduling 19	

5.1	 Docker Swarm 20	
5.2	 Kubernetes 22	

5.3	 Mesosphere 24	

6	 Container Networking 26	

6.1	 Docker single host networking 26	

6.2	 Docker multi-host networking 30	

6.3	 Calico 30	

6.4	 Weave 31	

6.5	 Flannel 33	

6.6	 VMware NSX 34	

6.6.1	 NSX Native Container Networking 38	

6.6.2	 Microsegmentation of Microservices 42	

6.6.3	 Monitoring & Analytics for Microservices 47	

7	 Conclusion 56	

VMware NSX Container Networking

2

Intended Audience

This document is targeted toward virtualization and network architects interested
in deploying VMware NSX® network virtualization solutions in conjunction with
containers and solutions that are part of the container ecosystem (ex. PaaS and
CaaS platforms).

Revision History

Version Updates Comments

1.1 Fixed images/updates to
consensus and schedulers

NSX-T 2.1

1 Introduction
This whitepaper provides guidance and information for network engineers wanting
to learn more and potentially design environments that leverage container
technology. We will also examine the benefits of the VMware NSX-T® platform
as it relates to both containers and their associated technologies.

1.1 The Digital Transformation Journey

For many teams involved in IT, including many network engineers focused on the
trends and innovations happening within the data center, the last couple of years
has seen quite a lot of change. Many alternatives in architectures, protocols,
connectivity, operations, virtualization, the emergence of software defined
everything, API driven programmability and dev-ops, have drastically altered not
only the landscape of companies and partnerships, but provided a platform so that
said companies have completely changed the fundamental way they do business.

It’s no secret in the modern business landscape that many of the most popular
services and companies have completely grasped this shift or disruption in

VMware NSX Container Networking

3

technology and leveraged various aspects to completely revolutionize the industry
that they are in. Let’s consider some of the more commonly known examples:

• World’s largest taxi company owns no taxis
• World’s largest phone company own no telco infrastructure
• World’s most popular media owner creates no original content
• World’s largest movie warehouse owns no cinemas
• World’s largest software vendors don’t write many of the apps
• World’s largest accommodation provider owns no real estate

It takes significant business acumen, forward thinking, leadership, market
awareness, and innovation through new technology adoption to become the worlds
largest or most popular anything. Luckily, a number of these companies are quite
open and have documented or spoke publically about the changes they’ve gone
through in their DC design and architecture. You can get examples of public and
hybrid cloud app deployments, changes in app development process and time to
market of products, leveraging of open source software and tools, workflow and
lifecycle management, etc. The area we are going to discuss in this paper is around
the applications specifically and efficiencies in application development.
Applications, historically speaking, have been created where process, logic, data,
and UI design were interdependent. Instead, most of the companies listed above
have started creating applications or modular services based on business process.
These processes are typically sanctioned (approved by technical and management
teams) and provide a tested technique for how a company wants to operate or
conduct their business. Let’s consider a basic example – an electronic commerce
company might have services that would codify how a sales transaction should be
processed:

1. Check inventory
2. Check credit
3. Remove from inventory

These three services are great candidates for a reusable container. This
containerized service would then be available as an API to development teams that
need to include that process in their application. So why is this so important? This
containerization concept becomes very attractive, not only because it aligns
directly to the business and business outcomes, but also eliminates the need to have
isolated complex code that no one besides the author could understand/modify. It

VMware NSX Container Networking

4

also provides better application scale and agility by utilizing loosely coupled
services that can scale up or down independently of other parts of the application.
Leveraging containers and containerization in the data center is considered one of
the hottest technology trends of 2018. In fact, according to IDC data, by 2020 fifty
percent of the Global 2000 will see the majority of their business depend on their
ability to create digitally-enhanced products, services, and experiences. Many of
the previously mentioned companies are a bit ahead of the curve in this respect,
and understand this trend toward digitally enhanced products and services;
therefore, are already leveraging containers as a part of their larger application
architecture methodology and building many new applications based on a
microservices framework.

1.2 What is Cloud Native?
Two constants surrounding the entire conversation with containers and modernized
application development are agility and speed. Many areas of IT, most specifically
application developers and platform service teams, have begun talking about and
looking deeper into the notion of “cloud native apps”. To really define what cloud
native means, it’s important to define a couple of characteristics that are usually
associated with the term. Most importantly, a cloud native app is an application
designed to run optimally in a cloud environment. That means, we assume in a
cloud environment everything (network, VMs/systems, storage, etc) can be
programmatically provisioned, allowing for full automation using existing tools.
The second part of the assumption is that failures are to be expected, which means
our application needs to have resiliency built into the framework. Containers,
which are designed to be lightweight and be run anywhere (and through the use of
orchestrators can be highly available/resilient), align with the goals of cloud native
applications and therefore we often discuss the two hand in hand.

1.3 Do Microservices=Containers and Containers=Microservices?
This is quite a common question – as well as misconception, so it’s appropriate to
address this right of the bat while discussing microservices as an emerging
application architecture. As engineers who have all been through the virtual
machine trend, the well understood benefits of VMs as a prevailing infrastructure
technology in the areas of efficiency, management, optimization and resource
utilization etc. are rarely disputed. Containers themselves are just another type of
emerging/modernized infrastructure technology (technically, the technology for

VMware NSX Container Networking

5

containers goes back a number of years – see the diagram below from the container
Wikipedia page):
	

	
	

	
While containers were developed many years ago, the emerging aspect of the
technology is primarily made possible by maturing linux features combined with a
broad and every growing ecosystem of companies focused on many aspects of the
technology (which are all discussed later in this document).

As mentioned previously, one of the early companies publically discussing their
use of containers publically was Netflix. A number of years ago they spoke at
multiple conferences about how their application architecture was changing. Some
business challenges arose that needed to be addressed - in order to scale systems
and deliver content appropriately, as well as remaining competitive in the digital
content market place, changes needed to be made. Netflix made a decision to
move away from their traditional monolithic application architecture, that many of

VMware NSX Container Networking

6

enterprises’ today still leverage, to more of a microservices based application
architecture:

Leveraging containers, as an infrastructure technology, was a choice Netflix could
or could not have decided to use to achieve their application architecture goals.
The microservices piece of the example from Netflix is basically the change that
each service (account, catalog, recommendation) became it’s own “application”
with a single function, much like the payment system we talked about earlier, as
opposed to having all those functions and their dependencies wrapped inside a
large resource hungry single VM instance or bare-metal OS machine build that is
used in the monolithic example. Containers are often deemed ideal technology for
enabling microservices because the goals of containers (lightweight, easily
packaged, can run anywhere) align with the microservices architecture goals and
benefits, but they are not the same thing – a microservice may run in a container
but it could also run as a fully provisioned VM.

VMware NSX Container Networking

7

This document is intended for a technical audience and primarily focuses on the
technical aspects of containers, container orchestration, and container networking.
Areas we will cover in this document include container basics and how they
compare to virtual machines, we will also cover the various container formats and
runtimes. We will look into operating systems that focus on containers and
scheduling for containers as well as other frameworks. Additionally, we will take
a look at some key technologies such as Service Discovery and Consensus
Management tools that allow these distributed systems to function. Container
networking will be the final focused topic, with a brief look across the solutions in
the industry that exist for container networking. But more specifically what
VMWare is doing with NSX to differentiate itself because it’s important to
remember, while NSX is viewed as industry leader in network virtualization, it’s a
lot more than “just networking”.

2 Container Basics
In their most basic form, containers are a method of operating system
virtualization. Conversely, a virtual machine is a method or form of hardware
virtualization. In the diagram below, the hypervisor is responsible for sharing
system resources among the guest VMs. Each guest VM running on that
hypervisor has its own operating system. Comparing this to the right side of the
diagram, containers on a host all share a single operating system.

VMware NSX Container Networking

8

A fundamental difference between containers and VMs is that a container is a
“running instance” of an image. Unlike a VM, you cannot copy it and run it on
another host like you would an OVA or VM image file. Most hypervisors (ESX,
Fusion, KVM) are considered to be a type of hardware virtualization – the
hypervisior virtualizes the physical/compute layer so that multiple machines can
share and reside on that hardware. Conversely, containers (LXC, docker) are a
form of operating system virtualization (where there is only a single operating
system on the physical/compute hardware). Containers are general referred to as
ephemeral, which means to last for a very short time. Simply put: containers spin
up, perform some task, and then typically are deleted and forgotten. Containers are
essentially a process or a running instance of a program. Observing the diagram
below, on the left there is a diagram showing a textbook process. In reality,
processes need config files, libraries, etc. But a container “unshares” a process and
its dependencies from the rest of the system providing isolation.

Containers accomplish this isolation by leveraging two Linux Kernel features:
namespaces and cgroups. Namespaces are available for Interprocess calls(IPC),
Networks, Mount points, Process IDs (PID), User and Unix Time Sharing (UTS –
Host and Domain name). A namespace can be created for each of these resources
and unshared from the rest of the system giving the container it’s own view of the

VMware NSX Container Networking

9

system. Cgroups or control groups allow the administrator to place limits on and
account for system resources like CPU, memory, disk I/O, network, etc.

2.1 Container runtimes and formats
A runtime is an abstraction of the underlying operating systems features like
namespaces, cgroups, Union File System, and capabilities that enable containers.
The container format is the file system bundle along with associated metadata that
the container needs to run. In June of 2015, a large number of companies got
together to create the Open Container Initiative (OCI). Docker donated it’s runtime
and container format, referred to as runC, to this effort. Around this same time,
CoreOS and their rkt containers were building their own format and runtime called
appc. CoreOS and Docker have since decided to work together and incorporate
many of the features of appc into runC, so that the industry could adopt a common
spec. The key difference between the two runtimes was that Docker starts all new
containers under the docker daemon. So, Docker will effectively manage every
container. Appc leveraged systemD to start and handle lifecycle of the containers.
Today runC can be used with the docker-engine(daemon) or it can use systemD to
manage the lifecycle of containers.

In addition to OCI there are still a few other runtimes/formats worth mentioning:

• LXC - this is the “classic” Linux container solution. LXC is an interface to
the low level linux tools that enable containers. LXD is a project to improve
upon the user experience that LXC offers. LXD provides an improved CLI
and a REST API, an Openstack Nova plugin, as well as a Daemon which
manages the containers.

• Clear Containers – a container effort by Intel. Clear containers take a
completely different approach and leverage Intel VT technologies and
KVM. Each Clear container is actually a full Linux operating system with
all of the elements that talk to hardware removed. The premise is simple,
why should the OS spend any time initializing “pretend” hardware? The
result is that Clear containers can boot in under 150ms and have the benefits
of VMs in terms of isolation.

• Garden – a long time effort in the marketplace, put together by Pivotal.

VMware NSX Container Networking

10

2.2 Docker Introduction
Docker was originally created by a Platform as a Service (PaaS) provider called
DotCloud. Docker was designed as tool to allow developers to create an
application along with its dependencies, package it, ship it, while allowing it to be
able to be ran anywhere. While this flexibility can certainly be desired, in many
small to large enterprises, this represents a separation of concerns. For example, the
developer needs to ensure that the application works, while the IT/Infrastructure
folks are only concerned with running the Docker-engine on a server:

Docker’s architecture is simple and is outlined in the diagram below. The Docker
client is a CLI interface that communicates with the Docker-Engine (formally
called Docker-daemon). The Docker-engine in responsible for managing images
and creating containers based on those images. Dockerhub, is an example of an
image registry that Docker offers, holds official versions of popular software like
Centos, Ubuntu, Nginx, etc. This provided registry gets used quite often due to the
simplicity - any developer can create a Dockerhub account and post images of their
software in the registry.

VMware NSX Container Networking

11

A key concept as depicted from the above diagram, in Docker, are the images.
Containers are a running instance of an image/program. A Docker image leverages
a Linux feature called Union File System. The Union File System allows “layered”
images. Let’s consider an example: we have three applications - an Apache web
server, a mail server, and a database and they all ran on Ubuntu. With this, we
would be able to share the base Ubuntu image among all three applications. Not to
mention, since Ubuntu is only ~187MB, this leads to savings in disk size, BW for
downloads etc.

The layered file system illustrated in the diagram above shows the container as a
running instance of the image and is depicted as a “writable Container”. Any
changes the user makes to any files will be written on this layer and “overwrite”
the layer below. The diagram example shows down one layer, that the user added
“Apache”. One more layer down is “emacs” and finally at the bottom, there is a
base layer of “Debian”.

VMware NSX Container Networking

12

2.3 Container Operating Systems
Containers can run on any Linux Distribution running a Kernel of 3.10 or later;
however, many existing distributions (including RedHat and Canonical), including
some new entrants, are promoting “slimmed down” versions of their distribution
focused only on containers. The solutions do not have traditional package
management system like Aptitude or YUM… rather, if you want to add a service
or application, you simply run that service in a container. Since there is no
package management system there is also no way to upgrade the OS. Most of
these vendors offer simple ideas to addressing an upgrade solution – let’s say you
have an active version and you went ahead and download an upgraded version…
you simply reboot the machine into the upgraded version, and if need be you can
perform a rollback to the previous version. In addition, the OS and application
files are usually “read-only” to prevent tampering and mitigate security threats as
much as possible.

 Red Hat Enterprise Linux Atomic – Atomic is based on RHEL 7 and has
less than 200 installed packages vs. 6,500 for standard RHEL7. Docker and
Kubernetes are installed by default. http://www.projectatomic.io

 Snappy Ubuntu Core – Ubuntu Core is a minimal OS that has been
around for some time and runs on anything from a phone to Raspberry Pi. Snappy
is a new packaging system that replaces aptitude. Snappy supports “Frameworks”
and “apps”. In this system Docker is a Framework and containerized apps can be
redistributed by Snappy. Snappy Ubuntu Core does not have docker loaded by
default. http://www.ubuntu.com/cloud/snappy

 RancherOS – is a minimal Linux distribution (less than 20MB) that
runs everything in containers. In Rancher OS after the Kernel boots it immediately
starts a Docker Daemon known as System Docker. It does not use init or systemD.
System Docker then starts whatever services are needed. Rancher then starts “User

VMware NSX Container Networking

13

Docker” which is a Docker Daemon inside a container. All user containers run
inside this container. Since all components of Rancher run in containers they are
able to use docker packaging and distribution to deliver upgrades and rollbacks.
http://rancher.com/rancher-os/

 Photon OS – Photon is an open source project sponsored by
VMware and designed for Containers including Docker, rkt, and Garden. Photon
is a lightweight OS designed to integrate into vSphere.
https://vmware.github.io/photon/

 CoreOS – is based on Chromium OS/Gentoo Linux. It does not have a
package management system installed and so requires all services to be run as in
containers. In addition, the only way to update the CoreOS system is to subscribe
to automatic updates. There are three channels; alpha, beta, and stable. Updates
are downloaded to the passive partition and when complete there are a couple of
options on how quickly to reboot. CoreOS is designed to be clustered together.
Several independent servers running CoreOS can operate as one by using CoreOS’
Fleet distributed init system and etcd consensus and discovery tool (these are all
discussed later in this document). Fleet and etcd agents run on each node and
update the other nodes with state of the server. Fleet is essentially a low-level
scheduler of systemD. In early 2017, CoreOS announced its plan to depart from
fleet by early 2018, and decided to embrace Kubernetes as the best tool for
managing and automating container infrastructure at scale. CoreOS offers its own
“enterprise ready kubenetes” solution called Tectonic.
https://coreos.com/using-coreos/

VMware NSX Container Networking

14

3 Service Discovery
The concept of service discovery is not unique to containers, in fact it’s been
gaining mindshare in mainstream system architecture principles, but given the
dynamic nature of containers, it becomes a critical component of the solution.
With the ability to scale containers pretty much on-demand, the more and more
services running in an environment can expand exponentially; therefore, requiring
some sort of mechanism to ensure there are no two services listening on the same
port. While at the core, service discovery is as simple as knowing what process in
a cluster is listening on a TCP or UDP port, a more modern summarization could
be a facilitator of connections to ephemeral services. To that point, when running
multiple machines, things get even more complicated across a distributed system
(when systems fail, when we look to scale an application but try to use server
resources most efficiently, etc.). In docker, there are many use-cases of when we
would need to store and retrieve some data related to those services running in the
cluster we are working with:

• Service registration refers to the process that stores the host and port a
particular service is running on.

• Service discovery refers to the process that will allow others to discover

information collected during the registration process.

The main goal of the following service discovery tools is to manage how processes
and services in a cluster find and talk to one another. That means for each new
instance of a service and/or an application, it would leverage service discovery to
identify the current environment and then store that information. The storage itself
comes in the form of a registry, typically leveraging a key/value format. The
discovery service is typically used in a distributed system, so many of the inherent
benefits of having multiple systems – scalability, fault tolerance/HA, distributed
systems, etc. can be leveraged in a design.

Additionally, most discovery tools offer some sort of API that can be used by a
new service to register itself, as well by others to find information about that
service. The following list of tools is not exhaustive. In fact, some of these
services can be combined with others in development (confd, registrator) to
address additional areas of service discovery. A comprehensive service discovery
solution should offer:

VMware NSX Container Networking

15

1. A consistent service directory/HA
2. A method to register services and monitor health
3. A method to lookup and connect to services

Generally, we can say there are multiple services running together that combine to
make service discovery tools – some tools are DNS management based and others
that fall under the Consensus management based category. DNS is used in some
cases because it’s widely known and understood, but in the world of containers,
many developers think DNS is insufficient for a number of reasons:

1. DNS is not optimized for real-time changes
2. DNS has no native HA datastore
3. DNS doesn’t automatically create/destroy entries
4. DNS designed for known ports (http=80 ssh=22) but not random

service ports
SRV records were designed to address #4, but developers who use libraries or APIs don’t/can’t specify a SRV lookup

3.1 SkyDNS
SkyDNS is a distributed service for announcement and discovery of services, built
on top of etcd. It utilizes DNS queries to discover available services. This is done
by leveraging SRV records in DNS, giving configuration options around
subdomains, priorities, and weights.

3.2 Weave-DNS
The Weave DNS server provides automatic discovery by answering name queries
for services in a Weave network. This provides a simple way for containers to find
each other via hostnames.

3.3 CoreDNS
CoreDNS is a CNCF incubating project that offers a number of benefits around
simplicity, while known for being fast and efficient. It’s DNS server can be used
in a multitude of environments, but most recently we see customers running
CoreDNS as the designated replacement for kube-dns in Kubernetes 1.9 for service
discovery.

VMware NSX Container Networking

16

4 Consensus Management Tools
A number of the larger tech companies who were truly focused on understanding
the requirements of building distributed systems decided to look at slightly
different approaches. In 2006, Google released a research publication describing
their Chubby lock service. Chubby is their distributed lock service, as well as
reliable storage for a loosely-coupled distributed system. The project’s design
emphasis was on availability and reliability, as opposed to high performance. The
link for the paper is available below, it describes the initial design and use,
compares with actual use, and explains how the design was modified. Chubby
implemented distributed consensus based on Paxos to provide a consistent key-
value store. This could be used for resource locking, leader elections, reliable low-
volume storage, etc.

http://research.google.com/archive/chubby-osdi06.pdf

Distributed consensus is considered to be the act of reaching agreement among a
collection of nodes cooperating to solve a problem. Open source distributed
computing and storage platforms have leveraged consensus algorithms as essential
tools for replication and resiliency (removing single points of failure). Consensus
protocols are the basis for the state machine replication approach to distributed
computing. For example, Apache zookeeper utilizes consensus protocol to achieve
fault tolerance by replicating the configuration repository across many servers.

4.1 Consensus Protocols

4.1.1 Paxos
Paxos is a family of protocols for solving consensus in a “network of unreliable
processors”. The assumption is that the nodes or the communication medium
between them will experience failure. Paxos is relatively older, first published in
1989 named after a fictional legislative consensus system on Paxos island in
Greece, and has historically dominated both academic and commercial discourse
relative to distributed consensus. But due to this perception that Paxos was too
complicated, and it’s apparent focus on the academics of how to reach consensus, a
simpler alterative was published a few years ago called Raft.

VMware NSX Container Networking

17

4.1.2 Raft
Raft is a consensus algorithm, much like Paxos, but focused on being very easy to
use. In fact, the Raft Consensus Algorithm claims equivalency to paxos in fault
tolerance and performance, but differs in the fact that it’s very broken down into
many independent sub-problems (like micro services architecture) which makes it
very clean and easy to understand. The Raft github page provides lots of
additional details on the project and some of it’s differences, but even very specific
details like how Raft manages changes to cluster management have been enhanced
and modernized. The protocol uses an approach where joint consensus is reached
using two overlapping quorums, defined by the old and new cluster configuration,
thus providing dynamic elasticity without disruption to operations. Raft has been
positively embraced by the software development community and it’s leveraged in
many open source implementations written in a variety of languages.

4.2 Distributed State Machines

4.2.1 Zookeeper

Apache zookeeper was one of the earliest projects of this type. It originally started
as a project to address and assist in the maintenance of the various components of
the Hadoop Apache project (open source equivalent of Chubby). Learning from
those principles, the project now boasts a centralized service for maintaining
configuration and naming information. It also provides distributed synchronization
and group services. In fact, consensus, group management, and presence protocols
are all leveraged by Zookeeper so that services/applications do not need to
implement them on their own.

Since Zookeeper has been around for a long time, its biggest advantages come
from maturity, robustness, and feature rich-ness. Zookeeper is often criticized
however for being overly complex compared to some of the other tools, and it also
leverages Java – which has specific dependencies making it much more resource
hungry.

VMware NSX Container Networking

18

4.2.2 Etcd

etcd is a key/value store written in Google Go Lang, developed by CoreOS, that
provides simple access via HTTP. Etcd is preferred quite often because it’s very
easy to deploy, configure and use. Its architecture is fully distributed and provides
a configurable system that can used to build service discovery. Additional benefits
include: secure (optional SSL cert auth), reliable data persistence (leverages raft),
fast (1000s of writes per instance), very good documentation.

4.2.3 Consul

Consul is a consistent datastore that leverages a key/value store that can not only
store data about the cluster, but also allows the use of “watches” to support
numerous tasks associated around data changes, providing lots of out of the box
customization and notifications built-in. Consul contains an imbedded or built-in
service discovery framework that includes health checks of the nodes and services,
and claims there is no need to run your own or use a third party one. Additionally,
Consul’s consensus mechanism is based on Raft and leverages a gossip protocol to
propagate knowledge of the cluster out of the box, which works and can simplify
setup for nodes in the same cluster, as well as across data centers. Main “core
benefits” is a focal area for the project, some of these features really make Consul
stand out: configurable health checks, ACL functions, HAproxy configuration,
multiple DC support, and a useful Web UI.

VMware NSX Container Networking

19

5 Container Clustering and Scheduling
In the vast majority of environments, customers are going to want to run and
manage containers on a group of machines in a similar way to how they manage
VMs with vSphere and vCenter today. This is where container orchestration and
the various projects focused on this area come into the mix. The Cloud Native
Compute Foundation (CNCF) is a Linux Foundation Collaboration Project whose
mission it is to standardize orchestration. (https://cncf.io) There’s a ton of history
here with the project, but let’s just touch upon the highlights:

• Primary focus on “integrating the orchestration layer of the container
ecosystem”

• Kubernetes is the seed technology
• Google contributed it’s Kubernetes (k8s) project to CNCF
• For the purposes of this whitepaper, we will focus only on the three

(the more widely deployed) projects in this space
I. Swarm

II. K8s (in 2018, the leader and de-facto standard
container orchestration)

III. Meso Marathon
• Other projects in the ecosystem exist (ex. Rancher’s Cattle, Nomad,

Shipyard, Amazon’s EC2 orchestration service, etc).

Container orchestration systems will generally include load balancing, service
discovery, replication/high availability, affinity/anti-affinity but their primary job
is scheduling. The orchestration system needs to understand what resources are
available on each machine in the cluster. Schedulers are not unique to
orchestration systems, applications like Hadoop or Data Center Operating Systems
like we saw earlier rely on schedulers as well. There are generally three types of
schedulers in use today as illustrated in the diagram from Google’s whitepaper on
their Omega scheduler below:
	

VMware NSX Container Networking

20

	

1. Monolithic – A single “all knowing” process that runs on one machine. This
is the simplest scheduler and the one used by Docker Swarm, Fleet, and
Hadoop.

2. Two-level – separates resource allocation with task placement. This is used
by Mesos/Mesosphere. Two level schedulers first identify available
resources and offer them to the framework specific scheduler. This allows
multiple frameworks to share a given pool of resources and still be able to
implement their own schedulers. In Mesos, Hadoop jobs can run side by
side with Docker containers. The first schedule makes the offer to a given
framework who either accepts or declines the offer. While the offer is being
made the resources are locked and not useable by other frameworks. This is
referred to as “pessimistic concurrency”.

3. Shared state – these schedulers are the most difficult to implement because
every node needs to have the full state of every other node in the cluster.
The schedulers have a common view of all available resources and can
schedule jobs against them. This is referred to as “optimistic concurrency”
and is more efficient than the two-level pessimistic concurrency found in the
two-level scheduler. Shared state is used by Google’s Omega, Hashicorp
Nomad and Microsoft Apollo.

5.1 Docker Swarm
Swarm is Docker’s own clustering solution. It aggregates a collection of
individual hosts running Docker-engines into a “swarm”, presenting itself like a
single Docker virtual host. Docker swarm relies on a consensus tool like etcd, that

VMware NSX Container Networking

21

was discussed previously, to discover the nodes as well as share state among all the
nodes in the system. Swarm supports several scheduling strategies including bin
pack (most loaded host first), spread (least loaded host), and random (which will
not consider a nodes’ CPU). In addition, Swarm has the notion of filters which
allow containers to be placed based on Affinity/anti-affinity, dependencies, labels ,
node health, etc.

The high-level Swarm Architecture consist of the following:

Docker CLI – Swarm uses the Docker CLI (making it very easy for someone
familiar with Docker to start using Swarm) and this interacts directly with the
Swarm Managers.

Swarm manager – Controls the entire cluster, allocates resources. There is an HA
feature available which supports creating multiple replicas. A Key/Value store is
used to keep the replicas up to date and to elect a leader.

Docker-engine (formally daemon) - This is the same docker engine without swarm
and runs on each worker node.

Dicscovery backend – Swarm supports multiple discovery backends to identify
nodes in a cluster:

I. Text file – list IP addresses of the cluster
II. Dockerhub hosted token. You can request a token from Dockerhub

and then let each host register with that token
III. Key/Value stores like etcd, Consul, Zookeeper

VMware NSX Container Networking

22

5.2 Kubernetes
Kubernetes was developed and by Google and is the technology behind the Google
Cloud Platform. Kubernetes is open source and is seed technology donated to the
Cloud Native Compute Foundation. Kubernetes supports deployments on physical
or virtual machines as well as public clouds. It has a substantial list of features
including:

• Application configuration and secret management
• Manual and automatic scaling of applications
• Service discovery
• Load balancing
• Storage orchestration
• Automated rollouts/rollback
• Constraints and filters to control placement of containers
• Statistics gathering

Kubernetes differs from swarm and other container orchestration systems because
it has the concept of a “pod”. A Kubernetes pod is a group of containers that form
and application and share an IP stack, volume, and context (things like namespaces
and cgroups). For example, a pod might consist of a web server container, an App
container and a DB container. They would be deployed as a group, share IP and
perhaps a volume. The Kubernetes scheduler could be given an instruction to
“keep 10 pods running all on different workers” and the scheduler would keep
track of the pods and ensure that there are always 10 copies running on unique
hosts. If one host fails, Kubernetes will start a pod on another host.

VMware NSX Container Networking

23

Additionally, service discovery and load balancing are an integral part of
Kubernetes. As pods are created they are assigned labels which identify what
service they offer. The load balancers are updated with services and their
corresponding IPs when pods are scheduled. On every node Google runs a
statistics collector in a container called cAdvisor.

The Kubernetes architecture consists of the following components and is outlined
in the diagram below:

Kubectl – this is basically the CLI method to interact directly with API server

API Server – this is the target for all operations to the data model

Controller manager – handles replication of pods, embeds core control loops
(attempts to move from current state to desired state)

VMware NSX Container Networking

24

Scheduler – the K8s default scheduler is a monolithic scheduler. However, the
K8s architecture falls into shared state scheduling (category 3 discussed above)
because you can have multiple schedulers (even of the same type, e.g. kube-
default) running, optimistically accessing the shared (etcd) state.

The master can run on any server and can be collocated with worker nodes
depending upon the size of the cluster. K8s API servers uses etcd as a highly
available durable key-value store. This is the main role of the etcd nodes in the k8s
architecture. The worker nodes contain:

Kublet- this is the agent that communicates with the master Docker-engine

cAdvisor- this is a pod that collects statistics from the node and reports back to the
master

Kube-proxy – east/west load balancing mechanism across nodes using NAT in
iptables

5.3 Mesosphere
Mesosphere is the commercial product that implements Apache Mesos, more
specifically Mesosphere Inc. is the company and DC/OS is their platform. This
comes in two flavors – one being open source, “Enterprise” being the commercial
platform of Mesosphere Inc. The solution allows multiple frameworks to use a
pool of resources in a data center. Mesosphere supports 40 frameworks. Mesos’
actual scheduler, Marathon, deals with scheduling of containers specifically.

VMware NSX Container Networking

25

Marathon is an open source container orchestration platform for Mesos as well as
Mesosphere DCOS. Marathon was essentially designed to be the scheduler for
Mesos environments. In addition to containers, it can also be used to schedule any
long running service - including other schedulers like Chronos (a framework to
replace cron) Typically in a Mesos environment, Marathon is the first framework
started (this essentially replaces init for the Mesos cluster). All long running apps,
including containers are started with marathon. Marathon supports the following
features:

• High availability – active/passive cluster
• Constraints – to influence container placement
• Service discovery
• Load balancing
• Health checks
• Event subscription
• Metrics
• Built-in Web Interface, handy if you prefer a GUI for managing clusters

VMware NSX Container Networking

26

6 Container Networking

6.1 Docker single host networking

Prior to Docker 1.9 there was very limited support for networking. A container
had three options 1) no network 2) Docker0 bridge 3) Linked to another container.
In 1.9 and later, Docker has deprecated the option to directly link two containers
and replaced it with the ability for containers to share networking. The docker CLI
uses the “—network=” option to allow the administrator to specify networking.
The section below describes options in v1.9 and later.

VMware NSX Container Networking

27

 172.20.2.0/24 GW=.1

--net=none – (container C1 in above diagram) the container is provided with a
loopback address only.

--net=Bridge – (container C2 and C3 in above diagram) the bridge created by the
bridge driver for the bridge network is called docker0. Each container is connected
to a bridge network via the Veth pair.

VMware NSX Container Networking

28

In 1.9 and later you can create a bridge via the docker network create command
and specify a variety of options (things like IP address, external connectivity etc).
C2 and C3 are basically placed in their own network namespace, are allowed to
communicate because they are on the same bridge, but that bridge is a private
network restricted to that single host. Simply put, containers on different bridge
networks cannot communicate (even within the same host). External access
requires port mapping; therefore, Docker will automatically create an IP tables
outbound source SNAT rule allowing the container outbound access.

We can see the outbound rule by entering:

iptables –t nat -L

--net=Container:NAME_or_ID (C4) This option allows two containers to share
networking. This could be useful in cases where apps are bundled or it can be used
to conserve IP addresses.

--net=host(C5) this option allows a container to share all of the networking with
the host.

In order for inbound traffic to reach the container, Docker will create a DNAT
entry in iptables. If the container is started with a –P flag, the mapping will be
automatic in the sense that Docker will either get the ports that should be exposed

VMware NSX Container Networking

29

from the metadata of the image or from the composition file. In this instance,
Docker will also ensure that there is no one else using the port on the host. If the
container is started with –p the user needs to specify the ports.

docker run –d –P nginx

A docker ps will show the mappings:

In this case the docker engine has selected unused ports on the host 32773 -> 80
and 32772 -> 443 and mapped them to the nginx container.

We can see the iptables rule by entering the following command:

iptables –t nat –L –n

If the administrator specifies the –p option they must also include the port
information:

Docker run –d –p 4800:80 nginx

VMware NSX Container Networking

30

In the example above we specified a port mapping of 4800:80. Docker will create
the iptables rules and docker-proxy just as with the –P option but it will not
guarantee 4800 is not already in use.

6.2 Docker multi-host networking

 As of Docker 1.9 standard install, Docker Engine supports multi-
host networking through the overlay network driver. The support comes from
Docker’s leverage of libnetwork, a VXLAN based overlay network driver.
Docker’s built-in overlay network solution is a simple VXLAN implementation -
at a basic level, a Layer 2 overlay scheme is built over a Layer 3 network:
	

	

6.3 Calico

 Project Calico is an approach to both Openstack and Docker
networking. It uses a purely L3 based approach, as opposed to the VXLAN
overlay based models of many other container based multi-host networking
options. This pure IP based network, combined with BGP for route redistribution,
is the key to understanding how Calico scales and builds the virtual network from
the host (leveraging native linux kernel for L3 forwarding and ACL enforcement).

VMware NSX Container Networking

31

	

Architecturally, calico is quite simple. Most network engineers are familiar with
the “vswitch” concept from the hypervisor part of the compute stack. In calico,
instead of relying on vswitches, the project treats each physical server/host as its
own VRouter, and then runs BGP (via BIRD, an open source BGP stack) between
each one of the routers:

	

6.4 Weave

 Weave, developed by Weaveworks, is another alternative approach to
multi-host Docker networking. A weave network consists of a number of peers
(aka weave routers) residing on different hosts. Weave routers establish both TCP
and UDP sessions between one another. The TCP connections are primarily used
for protocol handshaking and topology update exchange. The UDP connections
are created and used to carry encapsulated network packets. This particular point
is one of the main things Weave touts about their networking architecture. Both
TCP and UDP connections can be encrypted:

VMware NSX Container Networking

32

Let’s look a bit deeper into how Weave works. Weave starts by creating a weave
network bridge on each host. Each container is directly connected to this bridge.
Also connected to this bridge is a weave router container running on each host.
The weave router sniffs packets in promiscuous mode (via pcap) from its weave
bridge connected interface. When locally switching traffic between containers,
and between host and local containers, weave router is not used and the linux
kernel routes the packets via weave bridge. The captured packets by weave router
are forwarded over the UDP channel to other weave router peers on other hosts.

Additionally, Weave offers an integrated IP address allocator and Weave DNS
(which was mentioned earlier) services so that containers can discover each other
by hostname (ap1 or ap1.weave.local).

VMware NSX Container Networking

33

6.5 Flannel

 Flannel is another UDP or VXLAN based approach to multi-host Docker
networking. Flannel looks to differentiate itself by providing a simple solution so
that each container gets a unique IP that can be used for container to container
communication. Flannel uses packet encapsulation to create a virtual overlay
network that spans every host in the cluster. A flannel agent, flanneld, gives each
host an IP subnet (/24 by default) from a preconfigured address space, which
Docker is then able to allocate IPs to individual containers. Flannel leverages etcd
to store all network configuration, allocated subnets, and auxiliary data (ex. Host
IPs). A flanneld daemon runs on each host while is primarily used for routing of
packets and watching information in etcd. Packet forwarding is achieved by a
number of different methods. These strategies are known as backends:

• udp: use UDP to encapsulate the packets.
• vxlan: use in-kernel VXLAN to encapsulate the packets.
• host-gw: create IP routes to subnets via remote machine IPs.
• aws-vpc: create IP routes in an Amazon VPC route table.

The easiest and most simplistic backend is UDP. UDP backend encapsulates every
IP fragment in a UDP packet, building a simple overlay network between hosts.
The diagram below shows this overlay between two hosts:

	

VMware NSX Container Networking

34

UDP is the default and most simplistic backend, but some of the tradeoffs might be
a worth consideration. Since UDP uses the linux userspace to encapsulate every
packet, there might be considerable performance difference, compared to the vxlan
backend. The vxlan mode not only offers some hardware features to enhance
performance, it leverages the native linux kernel VxLAN support to provide a
much faster network.

6.6 VMware NSX

 The software-defined data center (SDDC) stack has been
embraced for compute and storage functionalities, and for network virtualization,
we’ve certainly come a long way as well. NSX has played a key role in redefining
and modernizing networking in the data center. NSX has subsequently emerged as
the industry’s leader in software defined networking (SDN) by providing a
network virtualization and security platform for the enterprise, that has enabled our
customers to make this transition to the digital era.

Earlier we covered the concept of digital transformation, and this is one of the key
priorities for any CIO in the enterprise. The challenge is when IT receives
infrastructure sounding goals and objectives like security of applications and data,
speed of delivery, and application high availability, the lightbulb goes off – a
traditional enterprise network strategy may not be sufficient any longer a to meet
the demands of new approaches in application development and new application
architectures (containers, microservices, PaaS).

VMware NSX-T is designed to address these emerging application frameworks
and architectures that have heterogeneous endpoints and technology stacks. NSX
allows IT and development teams to choose the technologies best suited for their
particular applications. NSX is also designed for management, operations and
consumption by development organizations – in addition for IT. As developers
embrace these newer technologies like containers, and the percentage of workloads
running in public clouds increases, network virtualization must expand to offer a
full range of networking and security services, native, in these environments. And
that’s exactly where we are with NSX – a network virtualization solution for a
multi-cloud and multi-hypervisor environments. By providing seamless network
virtualization for workloads running on either VMs or containers, the NSX

VMware NSX Container Networking

35

technology you are already familiar with is now supporting cloud and container
environments:

The NSX-T architecture is designed around four primary fundamental attributes.
These attributes enable greater decoupling, not just at the infrastructure layer itself
(hardware & hypervisor), but also at the public cloud (AWS and Azure) and
container level (Kubernetes and Pivotal).

Policy and Consistency: this attribute focuses on intended policy definition and
realizable end state via RESTful API. NSX-T maintains unique & multiple
inventories and controls to enumerate desired outcomes across diverse domains

Networking & Connectivity: this attribute is focused on the consistent logical
switching and distributed routing supporting multiple vSphere and KVM nodes,
without being tied to a compute manager/domain. This connectivity further
morphed with containers and cloud via domain specific implementation (k8s or
PCF) while still providing connectivity across heterogeneous end points

Security & Services: this attribute allows for a unified security policy model, just
like networking connectivity. The services such as load balancer, NAT, Edge FW
and DFW across multiple compute domains without lock-in to specific compute.
Allowing for consistent security between VMs and container workloads is essential
to assuring the integrity of the overall security framework design set forth by
security operations

VMware NSX Container Networking

36

Visibility: this attribute becomes critical for customers attempting to operationalize
mixed workloads, like VM and containers. It enables for consistent monitoring,
port counters and stats, SPAN, traceflow, etc. via a common toolset, across the
domains, that network operations and administrators are familiar with

Before we take a deeper look into how these goals and visions for NSX are working
for containers, let’s take a quick look at how NSX networking works. NSX
leverages an overlay networking model, similar to ones we’ve discussed prior, but
let’s focus on what are the differences and solution differentiators. The NSX
overlay topology control is enhanced by introduction of GENEVE-based
encapsulation. GENEVE is a tunneling mechanism for tunnel end points (TEPs) to
carry layer 2 information over Layer 3, while still leveraging the traditional offload
capabilities offered by NICs for performance. In the NSX logical network, each of
the compute nodes is considered a transport node and will have a TEP. TEPs are
the overlay tunnel endpoints that are used to encapsulate and de-encapsulate
packets between hosts. One of the primary changes between VXLAN and
GENEVE is in the length and types of fields in each packet header. The ability to
insert additional context into the overlay header by using Metadata as TLV (Type,
Length, Value) unlocks doors for future innovations and new features in context
awareness, end-to-end telemetry, security, and encryption. More information on
GENEVE can be found on the IETF website (https://datatracker.ietf.org/doc/draft-
ietf-nvo3-geneve/).

NSX provides next-generation optimized networking (routing and switching),
which allows for minimal configuration while supporting both distributed and
localized forwarding. As an example, NSX distributed routing allows for routing
between subnets on a ESXi or KVM (multi-hypervisor) to be handled in kernel,
meaning the traffic never has to leave the hypervisor. Another important out of the
box concept - as you can see by the diagram below, the idea of tenancy is built right
into the routing model:

VMware NSX Container Networking

37

Let’s define a few important terms to help understand the above diagram:

• Logical Switch is a broadcast domain which can span across multiple
compute hypervisors. VMs in the same subnet would connect to the
same logical switch.

• Logical Router provides North-South, East-West routing between
different subnets & has two components: Distributed component that
runs as a kernel module in hypervisor and Centralized component to
take care of centralized functions like NAT, DHCP, LB and provide
connectivity to physical infrastructure. The Tier 0 router is
owned/configured by the infrastructure teams, and provides a gateway
service between logical and physical network. Tier 0 supports
dynamic routing and ECMP to the physical and is usually tied to an
edge node. Tier 1 logical routers are owned/configured by the tenant,
and is always connected to a Tier 0 logical router.

Types of interfaces on a Logical Router
• Downlink- Interface connecting to a Logical switch.
• Uplink– Interface connecting to the physical

infrastructure/physical router.
• RouterLink– Interface connecting two Logical routers.

VMware NSX Container Networking

38

• Edge nodes are appliances with a pool of capacity to run the
centralized services and would be an on/off ramp to the physical
infrastructure. Edge nodes contain or host one or multiple Logical
routers to provide centralized services and connectivity to physical
routers. Edge node will be a transport node just like compute node and
will also have a TEP IP to terminate overlay tunnels. They are
available in two form factors: Bare Metal or VM (both leveraging
Linux Foundation’s Data Plane Development Kit (DPDK)
Technology).

6.6.1 NSX Native Container Networking
Now let’s take a deeper look into how NSX integrates and supports

containers. NSX integration with Platform as a Service (PaaS) and Containers as a
Service (CaaS) platforms provides networking, security, monitoring, and multi-
tenancy for cloud native and containerized applications. The next few sections will
cover an in-depth deeper dive on three use-cases customers are looking to solve
surrounding containers and how NSX works with these container platforms –
native container networking, micro-segmentation of microservices, and monitoring
& analytics for microservices.

The NSX native container networking integrates with something called the
container network interface (CNI). This is a network driver used by Kubernetes,
OpenShift, Cloud Foundry and Mesos. The CNI spec is an alternate/opposition

VMware NSX Container Networking

39

proposal to Docker’s libnetwork container network model (CNM) that we
discussed previously. NSX supports direct integration with Kubernetes and
Openshift, as well as integration with Pivotal Cloud Foundry (PCF). Additionally,
NSX is leveraged as the networking option in the Pivotal Container Service (PKS).

The NSX-T Container Plug-in (NCP) was built to provide direct integration with a
number of environments where container-based applications could reside. The
primary component of NCP runs in a container and communicates with both NSX
Manager and the Kubernetes API server, in the case of K8S/OpenShift. NCP
monitors changes to containers and other resources, but it also manages
networking resources such as logical ports, switches, routers, and security groups
for the containers through the NSX API. Below are examples of the interaction
between k8s/OS and PCF with NCP:

Integration PCF + NSX example

VMware NSX Container Networking

40

Integration Kubernetes + NSX example

Example Kubernetes NSX topology

VMware NSX Container Networking

41

In this example topology, the NSX and k8s integration dynamically builds separate
network topologies per k8s namespace. This means every k8s namespace gets one
or more logical switches (each k8s pod has its own logical port on the NSX logical
switch) and one Tier 1 router. The “blue containers” near the bottom represent k8s
pods, which are simply a group of one or more containers. Additionally, every
node can have pods from different Namespaces and different IP
subnets/topologies. The Kubernetes NSX integration takes advantage of the
optimized high-performing east/west and north/south routing topology (including
dynamic routing to the physical network) that we discussed earlier. From the
security standpoint, every pod has distributed firewall (DFW) rules applied on its
interface. Further solution highlights include the ability to leverage NSX IP
address management (IPAM), which supplies subnets from IP Blocks to k8s
Namespaces, and individual IP/MACs to pods. In the example above, we’ve
leveraged two separate IP Blocks to provide routed addresses to one Namespace,
and non-routable internal NAT’d IPs to the other Namespace. Lastly, NSX brings
its network toolbox to the table within this integration, in order to address visibility
and troubleshooting in a container networking environment. Most network
administrations and operators rely on certain tools and features to do their job
effectively, and NSX 2.0 currently supports port counters, SPAN/mirroring, IPFIX,
the traceflow/port connection tool, and spoofguard.

Looking deeper into a NSX and Kubernetes setup, we can view the default settings
in from a Kubernetes deployment. The standard out of the box k8s includes a
default, kube-system, and kube-public namespace. Quickly from the NSX GUI or
via API call, we are able to locate the logical switches and Tier 1 routers associated
with this basic k8s configuration, and verify our NAT and no-NAT IPAM
configuration:

VMware NSX Container Networking

42

6.6.2 Microsegmentation of Microservices

Security is an immensely important conversation today to anyone working in
information technology because applications run the business and we’ve seen very
recently with some organizations, a breach can have severe repercussions to the
business if things are comprised. Therefore, more and more questions about the
safety around these applications and their data get asked daily. Some customers
are looking at additional perimeter security measures in the data center, while
others have looked at implementing a zero-trust security model within the data
center network. Network virtualization helps reduce the risk and supports that
higher-level security strategy. That being said, microsegmentation provided
through network virtualization paves the way and is one of the key building blocks
to a successful zero-trust model. Micro-segmentation is used to decrease the level
of risk and increase the security posture of the modern data center. This is achieved
through discovery and modeling of the communication patterns between all the
machines in an environment, then recommending security policies and distributed
firewall rule recommendations. Micro-segmentation also helps with ongoing
security operations, audit and compliance, providing real-time visibility into

VMware NSX Container Networking

43

security group memberships and firewall rules. NSX offers support for the
microsegmentation of containers leveraging our NSX and k8s integration.

Let’s consider a simple scenario. There’s a new Namespace created in k8s called
“nsx-secure” and we’re going to deploy some container based applications there.
The image below shows a simple YAML application spec that calls for four pods
to be running, all containing the “nsx-demo” container:

What’s also important to note from this file is that in the metadata, a security group
of “web-tier” has been configured. Essentially, this configuration will add a tag to
all four of the containers that get spun up add automatically add them into the NSX
security group. Let’s again verify the configuration. First, we’ll verify that the
pods have been built:

VMware NSX Container Networking

44

Then let’s take a look at and verify the NSX configuration (the logical switch, the
logical ports on the LS, and the security tags):

VMware NSX Container Networking

45

In our simple application example, when defining our zero-trust policy, the app
owner knows that none of these web containers should be communicating with one
another. Meaning the intent is clear - block all of these containers from using any
services (for example http or https) between one another, even though they exist
across multiple k8s worker nodes or possibly in the same node. By leveraging the
distributed firewall (DFW) feature in NSX, we can construct a simple rule to stop
any service from communicating between containers in the source “web-tier”
group to a destination of “web-tier” group. Based on the dynamic group
membership of our containers in the “web-tier” security group we verified in the
previous step, the pods are automatically made members of this group. Since
every k8s pod has DFW rules applied directly to it, we can verify quickly that our
containers are secure - in the environment, each container has a port scan app
embedded to scan and check if port 80 is open for all IP addresses in the same IP
subnet, and with this basic DFW configuration in place, our port scan shows that
port 80 is indeed blocked for the other container IPs in the subnet:

VMware NSX Container Networking

46

The traditional web/app/db 3-tier model that often gets talked about when speaking
about application architecture makes sense to most folks. If pods get deployed into
multiple security groups based on similar labels or nomenclature, this
microsegmentation between k8s pods is a very common use case our customers are
looking to automate and solve. Leveraging NSX and the DFW, in our setup, we
have provided security policy between our containers inside of the “web” group
and between the “app” group:

VMware NSX Container Networking

47

6.6.3 Monitoring & Analytics for Microservices
Software defined networking and new application architectures (like
microservices) impose new requirements upon enterprise networking teams and
present new ways of developing and managing network architectures. Goals like
delivering highly availability service level agreements (SLAs) for mission-critical
applications has demanded an increase in visibility and tooling. Consistent uptime,
availability, and responsiveness to issues on the network can only be achieved with
tools and visibility provided by network virtualization. Here we’re going to
examine some of the tools and visuals available from NSX:

VMware NSX Container Networking

48

• Logical Switch/Logical Router detail

• Logical Switch/Logical Router interface counter (BUM, drops, etc)
detail

VMware NSX Container Networking

49

• Logical Interface (connected to POD/container) detail

• Logical interface (connected to POD/container) interface counter detail

VMware NSX Container Networking

50

Port connection tool – this tool is a visualization of connectivity between two
container logical ports. As the topology is built, realized state data like machine
information, logical port status, and tunnel health status, gets represented as hop by
hop connectivity between various points in the path.

• Define logical source port and destination port

VMware NSX Container Networking

51

• Path output between two containers on same host machine

• Path output between two containers on different host machines (green is

overlay)

VMware NSX Container Networking

52

Traceflow – this tool expands upon the visualization of connectivity between two
logical ports by allowing an administrator to inject user-defined packet types into
the network topology

• Define traceflow between ingress pod interface and web pod interface

• Packets between ingress pod and web pod are dropped by DFW

VMware NSX Container Networking

53

• Define traceflow between container interface and L3 IP outside NSX
network

• Packets between web pod and external to NSX IP address are
successful

VMware NSX Container Networking

54

vRealize Log Insight – this tool from VMware is focused on intelligent log
management and analytics. Log lnsight delivers heterogeneous and highly scalable
log management with intuitive, actionable dashboards, sophisticated analytics and
broad third-party extensibility. It provides deep operational visibility and faster
troubleshooting across physical, virtual and cloud environments. LogInsight has
long supported NSX, and a LogInsight content pack for NSX and containers is
supported:

• Dashboard showing all NSX Container events

VMware NSX Container Networking

55

• Searchable raw log data from all NSX Container related events

VMware NSX Container Networking

56

7 Conclusion

The VMware NSX® network virtualization and security platform can help
organizations achieve the full potential of cloud-native apps and bring a number of
benefits to the table. NSX enables advanced networking and security across any
application framework, helps speed the delivery of applications by removing
bottlenecks in developer and IT team workflows, enables micro-segmentation
down to the microservice level, enhances monitoring and analytics for
microservices, and has reference designs to help organizations get started. It
enables a single network overlay and micro-segmentation for both VMs and
containers as well as common monitoring and troubleshooting for traditional and
cloud-native apps. Additionally, NSX integrates with existing tools in the data
center and public cloud for IT teams, while easily plugging into the container
ecosystem to empower developers without slowing them down.

NSX empowers both developers and IT teams to work together to the benefit of
both, as well as the businesses they support, by enabling common networking,
security, workflows, and management across any device, any app, any framework,
and any infrastructure. Increased speed and agility for developers coupled with
increased connectivity, security, visibility, and control for IT teams mean that the
entire organization can operate in tandem to drive the digital transformation of
their businesses forward.

