

User Environment Manager

 Page 55

4.5.3 Modifying predefined settings

If you want to use different predefined settings, you can either click Edit… to modify the

predefined settings that were installed or created previously or click Update… and select

another profile archive.

In the first case, Windows Explorer will open to a folder with the expanded predefined

settings – see section 4.5.2.1 for more information. Note that only non-empty folders are

displayed. Click the button to add the other folders.

4.5.4 Multiple predefined settings

A single Flex config file can contain multiple predefined settings, to provide different

settings to different groups of users, for instance.

If you want to specify multiple predefined settings, each must have so-called conditions

defined that control whether the entry is applicable for a certain user. Conditions are

specified on the Conditions tab of the predefined settings dialog and are described in

detail in chapter 6.

FlexEngine will process the predefined settings in list order (indicated by the value in the

Order column), evaluating conditions. As described in 4.5.1, the order can be changed

using the Move Up and Move Down buttons.

If conditions match for multiple predefined settings, the last one “wins”.

4.5.5 Placeholders

Predefined settings can contain so-called placeholders that are replaced with information

from environment variables when imported. Placeholders can be used in file names and

folder names (to create user-specific names) and in the content of text files.

User Environment Manager

 Page 56

4.5.5.1 Placeholder format

Placeholders have the format [Flex#%var%] where var is the name of an environment

variable. For instance, if a predefined settings archive is imported containing a file named

Desktop\[Flex#%username%].txt, this will result in a text file on the user’s desktop with

the file name being set to the user’s name (i.e. the value of the %username% variable).

NOTE: The string Flex in the placeholder must be specified exactly like that, i.e. with a

capital F. The name of the environment variable is not case-sensitive, however.

4.5.5.2 Using placeholders in text files

To have FlexEngine process placeholders within the contents of a text file (for instance

.REG files, .TXT files, or .INI files), the file’s name must contain a specific token:

[Flex#] (case sensitive). This token will be removed on import, so it does not affect the

resulting file name – it is just used to trigger placeholder replacement.

NOTE: When a predefined settings archive is built (cf. 4.5.2.1 and 4.5.3), the Flex

Profiles.reg file in the Registry subfolder and .txt, .ini, or.xml files in any of the other

folders are scanned for placeholders. If a placeholder is found, the file name is

automatically marked up with the [Flex#] token.

The placeholders in the file contents are formatted in the same way as described in the

previous section: use [Flex#%var%] where var is the name of an environment variable.

To extend the example from the previous section: by renaming the file in the predefined

profile archive to Desktop\[Flex#%username%][Flex#].txt, its contents will be

processed as well.

If that file contains the text

 Hi [Flex#%username%], you are logged on to [Flex#%computername%].

and user JohnDoe logs on to computer WIN7B91, a file JohnDoe.txt will be created on

the desktop, with the following contents:

 Hi JohnDoe, you are logged on to WIN7B91.

NOTES

 When using placeholders in .REG files, use the alternative [Flex#%var%#reg]

format. This will escape any backslashes or double quotes in the replaced content,

in accordance with the .REG format.

 For applications that refer to users via their SID you can use [Flex#%SID%]. The

special %SID% variable is replaced by the user’s SID in the well-known S-1-5-21-

format.

 When processing placeholders in text files, FlexEngine tries to determine the text

encoding automatically. This auto-detect mechanism supports Unicode with a Byte

Order Mark (in the UTF-8, UTF-16 Big Endian, and UTF-16 Little Endian variants)

and the system’s default encoding.

If you need to process a file in a different encoding (or if the auto-detect fails in

your scenario), you can explicitly specify the code page by using the special token

[Flex#codepage] in the file name instead of [Flex#].

For instance, Sample[Flex#1251].txt would be interpreted as being encoded as

Windows Cyrillic (code page 1251). For a list of valid code pages, see Code Page

Identifiers on the Microsoft website.

http://msdn.microsoft.com/en-us/library/dd317756.aspx
http://msdn.microsoft.com/en-us/library/dd317756.aspx

