
Scaling Java and PostgreSQL
to Great Heights

Charles Lee

Hyperic

What is Hyperic HQ?

Hyperic HQ is the
industry's only
comprehensive product
that provides cross-
stack visibility for
software in production,
whether it's open
source, commercial, or
a hybrid.

Translation: HQ collects and transactionally
read and write a lot of data

Just How Much Data?

 100 Platforms

 700 Servers

 7000 Services

 150,000 metrics enabled (20 metrics per
resource)

 15,000 metric data points per minute
(average)

 21,600,000 metric data rows per day

Scenario: IT infrastructure of 100
servers (medium size deployment)

Distribution of HQ

 All inclusive installer package (JRE,
JBoss, HQ, embedded database)

 PostgreSQL embedded - easy
license, cross-platform support,
enterprise performance

 Works with PostgreSQL, Oracle, or
MySQL backends

Application Performance
Bottleneck

It’s the Database

 Dependent on hardware
performance (disk, CPU, memory,
etc)

 I/O

 Network latency (remote database)

 Slow queries

Breaking Through the Bottleneck

 Upgrade I/O (DAS/NAS/SAN)
 Upgrade H/W (64bit multiprocessors,

increased RAM, etc)
 Upgrade to PostgreSQL 8.2.4

 Upgrade to 64-bit JRE 6

Anything else we can do?

Case Study: Hi5.com (top 15 visited
website)

Using Hyperic 2.6

Data Access Object (or DAO)

The Data Access Object (or DAO) pattern
definition from Sun:

 separates a data resource's client
interface from its data access mechanisms

 adapts a specific data resource's access
API to a generic client interface

The DAO pattern allows data access
mechanisms to change independently of
the code that uses the data.

Postgres, Oracle
RDBMS

Entity EJB
Data Access

Session EJB
Business Logic

User Interface
Presentation

HQ 2.7 HQ 3.0

QuickTime and a
TIFF (LZW) decompressor

are needed to see this picture.

Postgres, Oracle
RDBMS

Hibernate
Data Access

Session EJB
Business Logic

User Interface
Presentation

The Hyperic HQ Stack

What’s the Problem (with EJB2)?

 Bad transaction handling,
pessimistic locking

 N+1 database problem

 EJBQL - a poor query language

 Home grown caches

Why Migrate to Hibernate?

 Straightforward transaction
demarcation

 Lazy fetching

 HQL and Criteria based queries -
more fully featured

 Secondary cache integration

 Popular framework

EJB2 Entity Beans and Transactions

 Entity Beans are
proxy objects

 Use Value objects
to travel through
transaction
boundaries

 Often lock
pessimistically
causing
transaction
deadlocks

MANAGER

ENTITY
BEAN

ENTITY
BEAN

VALUE OBJECT

BOSS
GUI
CLI

TX TXTX

TX

MANAGER

Hibernate POJOs and Transactions

 POJOs set up to
lazy load
collections

 POJOs travel
through
transaction
boundaries

 Hibernate Sessions
use optimistic
locking because of
session cache

POJO POJO

BOSS
GUI
CLI

TX

N + 1 Database Problem

Database lookups to retrieve object
data

v Issue query to retrieve collection
of primary keys (PKs)

v Issue individual query to retrieve
object data per PK in collection

Total number of queries performed:
N (rows) + 1 (for PKs)

N + 1 Database Relieve

 EJB2 - none
 Problematic in HQ 2.7

 Hibernate has several solutions:
v Lazy fetching

v Explicit outer-join declaration for associations

v HQL supports explicit outer join fetch (“left join
fetch”)

v Multi-level caching support

Secondary Level Cache

Caching reduces unnecessary roundtrips to
the database

 EJB2 has no support for second-level
cache

 Hibernate supports multi-level cache with
pluggable architecture
 Database state can stay in memory

 Caches both POJOs and queries

 Use fast and proven caches: EHCache, JBoss TreeCache, etc

The Query Languages

 EJBQL
 Lacks trivial functions like “ORDER BY”

 JBossQL
 Some additional functions like “ORDER BY”, “LCASE”, etc.

 Declared SQL
 Direct SQL-like queries declared as EJB finder methods, but

not database-specific

 HQL (and Criteria API)
 Close to SQL
 Object oriented
 Hibernate allows query results to be paged

Data Consolidation

 Data compression runs
hourly

 Table storing all
collected data points
(most activity) capped
at 2 days worth

 Lower resolution tables
track min, avg, and
max

Inspired by RRDtool - an open source Round Robin
Database to store and display time series data

Limited Table Growth

MEASUREMENT_ID

TIMESTAMP

VALUE

Size Limit 2 Days

MEASUREMENT_DATA

Size Limit 14 Days

MEASUREMENT_ID

TIMESTAMP

VALUE

MIN

MAX

MEASUREMENT_DATA_1H

Size Limit 31 Days

MEASUREMENT_ID

TIMESTAMP

VALUE

MIN

MAX

MEASUREMENT_DATA_6H

MEASUREMENT_DATA_1D limit 1 year

Performance Comparison

Database
Server

Application
Server

124268TCP
Inbound

35Load

1.5 GB4.5 GB
Total JVM
Memory

16Load

HQ 3.0HQ 2.6

H5.com - using external database server

As A Result

 HQ’s performance improved
dramatically

 Hi5.com can downgrade hardware

 Continue to rely on PostgreSQL

 Adding hundreds more boxes to
production environment under HQ’s
management

Questions and Comments

Charles Lee

clee@hyperic.com

