Configuring SNMP on VMWare ESX
Server 4.0

Dell Technical White Paper

By Sankara Gara
Dell | Product Group - Enterprise

Revision History

Version

Date

Description

Author(s)

1.0

20 May 2009

First Version

Sankara Gara

THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND
TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY

KIND.

Dell, the DELL logo, PowerEdge, PowerVault, and Dell EqualLogic are trademarks of Dell, Inc.; Microsoft is a registered trademark of Microsoft
Corporation in the United States and/or other countries. EMC, CLARIiON, and UltraFlex are trademarks or registered trademarks of EMC

Corporation.

Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products.

Dell disclaims proprietary interest in the marks and names of others.

© 2009 Dell Inc. All rights reserved. Reproduction in any manner whatsoever without the express written permission of Dell, Inc. is strictly

forbidden. For more information, contact Dell.

CONTENTS

CONFIGURING SNMP ON VMWARE ESX SERVER 4.0......oooiiiii ettt 1

REVISION HISTORY L.ttt bbb e e b bR Rt h b et ne e n bt r et e e e e 2
INTRODUGCTION ...ttt ettt e e e e bt e Rt e R e e R bt e R s e e R e e nE e e e Ee e Ee e se e e Re e ahe e aRe e neenreenrenbeenreenreas 4
CONFIGURING SNMP SERVICEoi ittt st sb e r e n e nn e enneenreas 4
SAMPLE SCRIPT FOR CONFIGURING SNMP ON VMWARE ESX SERVER 4.0.......ccccccovniniiiiiiiiiee 6

TESTING THE CONFIGURATION ..ot 15

Introduction

On ESX4.0 server, the VMWare SNMP provider is now its own daemon (vmware-hostd) and does not
register with the system default SNMP daemon (snmpd), requiring a management console to request
VMWare SNMP data on another port than what OMSA registers with (snmpd). This white paper
describes a procedure to configure the VMWare SNMP daemon and the system default SNMP daemon
so that they both can provide SNMP data on one port — the snmpd one.

Configuring SNMP Service

The obijective of this configuration is to allow ESX4.0 server to be managed through a single default port
161 using SNMP protocol. To do this, snmpd is configured to use the default port 161 and vmware-
hostd is configured to use a different (unused) port, e.g. 167. Any SNMP request on the VMWare MIB
branch will be rerouted to vmware-hostd using the proxy feature of the snmpd daemon.

The VMWare SNMP configuration file can be modified manually on the ESX server or by running
VMWare RCLI command vicfg-snmp from a remote system (Windows or Linux). The RCLI tools can be
downloaded from the VMware website (http://www.vmware.com/download/vi/drivers_tools.html).

Below are the required steps for the configuration. Following these steps is a python script that automates
the configuration process. You may copy and paste the contents to a file and run it on the ESX server to
do the configuration.

1. Edit the VMWare SNMP configuration file (/fetc/vmware/snmp.xml) either manually or run the following
vicfg-snmp commands to modify the SNMP configuration settings including the SNMP listening port,
community string, and the trap target ipaddress/port and trap community name and then enable the
VMWare SNMP service.

vicfg-snmp.pl --server <ESX IP addr> --username root --password <passwords
-c <community names> -p X -t <DMC_IP_Address>@162/<community name>

Above, X represents an unused port. To find an unused port, you may look at the /etc/services file
for the port assignment for defined system services. Also, to make sure that the port selected is not
currently being used by any application/service, run the netstat -a command on the ESX server.
NOTE: Multiple DMC IP addresses can also be mentioned using a comma-separated list.

To enable VMWare SNMP service run the following command:

vicfg-snmp.pl --server <ESX IP addr> --username root --password <passwords

To view the configuration settings run the following command:

vicfg-snmp.pl --server <ESX IP addr> --username root --password <passwords

After the modification, the configuration file will look like this :

<?xml version="1.0">

<configs
<snmpSettingss>
<enables>true</enables>
<communities>public</communitiess
<targets>143.166.152.248@162/public</targets>
<port>167</port>
</snmpSettings>
</config>

Stop the SNMP service if it is already running on your system:

service snmpd stop

Add the following line at the end of the /etc/snmp/snmpd.conf:.

proxy -v 1 -c public udp:127.0.0.1:X .1.3.6.1.4.1.6876
Where X represents the unused port specified above, while configuring SNMP.
trapsink <DMC IP Address> <community namex>

The trapsink specification is required to send traps defined in the proprietary MIBs.
Restart mgmt-vmware service with the following command:

service mgmt-vmware restart

Restart the snmpd service with the following command:

service snmpd start

NOTE: If the srvadmin (OMSA) is installed and the services are already started they should be
restarted as they depend on the on snmpd service.

So that the snmpd daemon starts upon every reboot, run following command:

chkconfig snmpd on

Run the following command to ensure that the SNMP ports are open before sending traps to the
management station.

esxcfg-firewall -e snmpd

Sample Script for Configuring SNMP on VMWare
ESX Server 4.0

The following sample python script as an example to configure SNMP in the VMware ESX Server 4.0
environment. This script may work well in some environments, while in other environments you may need
to develop your own script entirely from the beginning.

CAUTION: The sample scripts are provided as examples only and have not been
tested nor are they warranted in any way by Dell; Dell disclaims any liability in
connection therewith. Dell provides no technical support with regard to content
herein. The script has been written to reconfigure a new non-tampered default
snmp.xml and snmpd.conf files present on a ESX 4.0 System.

#1/usr/bin/python

#1/bin/sh

#

DELL INC. PROPRIETARY INFORMATION

#

This software is supplied under the terms of a license agreement
or nondisclosure agreement with Dell Inc. and may not be copied
or disclosed except in accordance with the terms of that agreement.
#

Copyright (c) 2009-10 Dell Inc. All Rights Reserved.

(c) 2009 Dell Inc.

#

SCRIPT NOTES
Script

ita_esx4 _snmp_config.py is provided to configure the snmp settings and
enablement of snmp traps on a VM ESX 4.0 System.

(c) 2009 Dell Inc. All rights reserved.

THIS SOFTWARE 1S DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT IS

PROVIDED ISWITHOUT ANY WARRANTY, EXPRESS, IMPLIED OR OTHERWISE,

INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTY OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE OR ANY WARRANTY REGARDING TITLE OR
GAINST

INFRINGEMENT. IN NO EVENT SHALL DELL BE LIABLE FOR ANY DIRECT,
NDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTUTUTE GOODS OR SERVICES; LOSS OF
SE,

DATA, OR PROFITS;OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
HEORY

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

HFAFHCH=%>HFHHFHFHFHFHH

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
OFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#

S

#

#

The sample scripts are provided as examples for customers that

want to develop their own deployment process. Some customers may find

that the scripts work well in their environment, while some customers
may need to develop their own scripts entirely from scratch. The sample
scripts are provided as examples only and have not been tested nor are
they warranted in any way by Dell; Dell disclaims any liabilty in

connection therewith. Dell provides no technical support with regard

to content herein. The script has been written to reconfigure a new

non-tampered default snmp.xml and snmpd.conf files present on a ESX 4.0
#

#

System.
H e ———————————————————————————
LIST OF ERRORS:
#
“"requires an argument' -
In case of value of argument being not provided.
#
“Script only Applicable for VMWARE ESX 4" :-
Script being run on a system other than an ESX 4.0
#
"No modifications performed as no options given." :-
User runs the scripts witout any options
#
"Unsupported System':-
User runs the script on a non ESX 4.0
#
S
ERROR RETURN CODES:
#
1: Wrong Usage
2: Backup Failure
3: Service Failure
4: System Mismatch
#
B e ————————————————————————
LIST OF MODIFIED FILES :
/etc/vmware/snmp . xml
/etc/snmp/snmpd.conf
#
A backup of original snmpd.xml and snmpd.conf will be created
in their respective directories as snmp_bkup.xml and snmpd_bkup.conf.
Everytime the script is run, log will be generated and stored
in /tmp/ita_esx log.txt.
#
H
MODIFICATIONS PERFORMAED:
#
The script performs a check if the system is a VMWARE ESX 4.0
system or not. It proceeds only on an ESX 4.0 it proceeds, otherwise

it exits flagging "Unsupported System."

#

All the options provided by user are extracted and we exit without any
modifications if all are found to be NULL i.e user runs without any

options.

#

The snmpd service is stopped and for each field, namely

community, port and target, a check is performed to figure out if the
user has already configured it. If not the new supplied values are

added. In Case if the user has already configured some fields, new

values are appended in a comma seperated format.

#

The vmware management service and the snmpd service are

restarted and an exception is created for snmp service through the

iptables firewall.

#

H
#

Assumptions:

The script assumes that the snmp.xml and snmpd.conf files are

present.The user running the script has root privelages.

#

H e

#check 1f the system is a Vmware ESX 4.0 or not
import sys

import getopt

import xml._dom_.minidom

import string

import os

import shutil

import time

log fd = None
Set defaults

error=0
warning=1
informational=2

modified_linel="## Begin Modified by ita.py ##\n"
modified_line3="\n## End Modified by ita.py ##\n"

system check="vmware -v | grep -q "ESX 4'*"

error_wrong_usage=1
error_backup_failure=2
error_service_failure=3
error_system_mismatch=4

snmp_xml_path= "/etc/vmware/snmp.xml*
snmpd_conf_path= "/etc/snmp/snmpd.conf*®
snmpd_conf_bkup_path="/tmp/snmpd.conf_bak*"
snmp_xml_bkup_path="/tmp/snmp.xml .bak*”
proxy_line_index=None

config = { "communities”: None,
"communities_conf": None,

"port”: None,

"targets”: None,

"force": False,
"debug”: False,
"verbose": 0,

"logfile™: "/tmp/ita_esx4 snmp_config.log”,
}
def display usage():
print®-*-
Usage:
/ita.py -c -p -t
arguments:
-c| --community: Community name
-p] --port: Port number
-t] --targets: Targets value for sending traps
-f] --force: Overwrite an already configured port
-d] --debug: Debug Mode
-1] --logFile: LogFile Name with complete path
-v] --verbose: level(minimal=0,default=1,maximum=2)
-h] --help: Display the help
-0] --document Display the Script Comments

def parse_arguments(args, config):

[“help®,
"verbose",

parse_arguments()
The functions parses all the arguments provided
by the user and check for any missing arguments

or errors.

global log fd

try:

opts,
"communities=",
"document®])

rem_args = getopt.gnu_getopt(args,
"port=", "targets=",

"hc:p:t:fdl:vo",
*force®, "debug-,

except getopt.GetoptError:

raise

#fetch all

for arg, val
if arg in (*-h",

elif

elif

elif

optional arguments passed by user
in opts:
"—-help™):
display_usage()
sys.exit(0)
arg in ("-c", "--communities®):
config[“communities®™] = val
arg in (*-t", "--targets"):
config["targets®"] = val
arg in ("-p*, "--port"):
try: config["port®] = int(val)
except ValueError: raise "Port must be an integer®
arg in (*-f*, "--force"):
config["force"]=True
arg in (*-d*, "--debug”):
config[“debug®]=True

“logfile=",

elif arg in ("-17, "—--logfile"):
config["logfile"]=val
elif arg in ("-v", "--verbose®):
config[“verbose®]=config[“verbose™]+1
elif arg in ("-0", "--document®):
display_usage()
print _ doc
sys.exit(0)

ifT config[“verbose®] > 2: config["verbose™] = 2

#open the user specefied logfile
log_fd = open(config[~logfile™], "a")
#communities field is mandatory
iT config["communities®] is None:
print "Communities field is mandatory"®
sys.exit(error_wrong_usage)

#i1T no options are given just exit.
if config["communities®] is None and config|["targets"] is None and
config["port"] is None:
print "No options are given. Exiting without modifications”
sys.exit(error_wrong_usage)

def get_tag_text(dom, tag name):
get _tag text()
The function fetches the present values of
the speceified tag in the existing snmp.xml.
text = *°
for node in dom.getElementsByTagName(tag name)[0]-.childNodes:
if node.nodeType == dom.TEXT_NODE:
text = text + node.nodeValue
ifT len(text) == 0: text = None
return text

def get_snmp_values_from_xml(dom):

get_snmp_values_from_xml ()

The function fetches the values of all
the existing fields which needs to be
modified from the exisiting snmp.xml.

try: snmp_communities = get tag text(dom, "communities™).split(",")
except: snmp_communities = []

try: snmp_enable = get tag text(dom, “enable®)
except: snmp_enable = None

try: snmp_port = int(get _tag text(dom, "port"))
except: snmp_port = None

try: snmp_targets = get tag text(dom, "targets®).split(®,")
except: snmp_targets = []

return snmp_communities, snmp_enable, snmp_port, snmp_targets

def replace_text(dom, node_name, text, parent_node name = None):
replace_text()
The function replaces the existing values
present in the xml with the new ones
specified by the user.
try:
node = dom.getElementsByTagName(node name)[0]
except IndexError:
Try creating the node @ parent
parent_node = dom.getElementsByTagName(parent_node_name)[0]
node = dom.createElement(node_name)
parent_node.appendChild(node)
Remove old text
for n in node.childNodes:
it n.nodeType == dom.TEXT_NODE:
node.removeChild(n)
Add new text
node.appendChild(dom.createTextNode(text))

def log(msg, loglevel):

global log fd

it loglevel > config["verbose®]: return

log entry = "%s :%d:%d: %s* % (time.ctime(), os.getpid(), loglevel,
msg)

ifT config["debug"] is True: # Onto stdout

print log_entry
log fd.write(log_entry+"\n")

def modify_snmp_xml(config):

modify_snmp_xml ()
The is the main function which does
conditional modifications in the snmp.xml
based on the opitonal argguments provided
by the user.
#parsing existing snmp.xml
log(msg="Parsing existing snmp.xml*,loglevel=informational)
dom=xml .dom.minidom.parse(snmp_xml_path)
snmp_communities, snmp_enable, snmp_port, snmp_targets =
get _snmp_values_from_xml(dom)

#Add communites only if it does"nt already exists
iT config["communities®] not in snmp_communities:
snmp_communities.append(config["communities®])

#Add targets only if it does"nt already exists
if config["targets™] is not None and config[“targets®] not in
snmp_targets:
snmp_targets.append(config[" targets™])

#Configure port if it does"nt exist. Else replace earlier port if -f
option os specified
if config[“port™] is not None and (snmp_port is None or
config[~“force"] is True):
snmp_port = config[“port™]

log(msg="Updating communites field",loglevel=informational)

replace_text(dom=dom, parent_node_name="snmpSettings”,
node_name="communities”, text=string.join(snmp_communities, ",%))

config["community_conf"]=string.join(snmp_communities, ",")

log(msg="Updating targets field",loglevel=informational)
replace_text(dom=dom, parent_node_name="snmpSettings~,
node_name="targets”, text=string.join(snmp_targets, ",%))

log(msg="Updating port field",loglevel=informational)
if config["port®] is not None:
replace_text(dom=dom, parent_node_name="snmpSettings”,
node_name="port®, text=str(snmp_port))

#Add enable field if absent.If already present, set its value to True

log(msg="Updating enable field",loglevel=informational)

replace_text(dom=dom, parent_node_name="snmpSettings”,
node_name="enable®, text="true®)

return dom

def revert_changes(error_msg, error_code):
revert_changes()
In case of a failure to perform
the modifications, this function
reverts the system back to the
original stste.
shutil .move(snmp_xml_bkup_path, snmp_xml_path)
shutil .move(snmpd_conf bkup_ path, snmpd_conf _path)
log(msg=error_msg, loglevel=error)
sys.exit(error_code)

def main():

parse_arguments(sys.argv[1l:], config=config)
log(msg="Parsed Arguments”,loglevel=informational)

result=raw_input(“Please read the notes first by executing the script
using option -0 or --document. Are You Sure You wamt to Continue? (Y/N) : %)
if result is not "Y" and result is not "y":
sys.exit(0)

log(msg="Checking System 0S*,loglevel=informational)
ret=os.system(system_check)
if ret is not O:
log(msg="Unsupported System. Script executes only on ESX
4.0",loglevel=error)

sys.exit(error_system_mismatch)

log(msg="Modifying XML",loglevel=informational)
dom = modify_snmp_xml(config)

log(msg="Checking SNMP Status"®, loglevel=informational)
ret val=os.system("pidof snmpd > /dev/null®)
if ret val==0 :
log(msg="Stopping SNMP service”,loglevel=warning)
os.system("service snmpd stop”®)
time.sleep(b)
ret val=os.system("pidof snmpd > /dev/null®)
if ret val==0:
revert_changes(error_msg="Error: Could not Stop SNMP
Service. Terminating without modifications”,error_code=error_service_failure)

log(msg="Checking vmware-hostd Status”, loglevel=informational)
ret_val=os.system("pidof vmware-hostd > /dev/null*®)
if ret val==0 :
log(msg="Stopping mgmt-vmware vmware®,loglevel=warning)
os.system("service mgmt-vmware stop®)

time.sleep(b)
ret_val=os.system("pidof vmware-hostd > /dev/null*®)

if ret val==0:
revert_changes(error_msg="Error: Could not Stop vmware-
hostd Service. Terminating without
modifications” ,error_code=error_service_failure)

log(msg="Creating Backup®,loglevel=informational)
shutil .copy(snmp_xml_path, snmp_xml_bkup_path)

log(msg="Updating the snmp.xml Ffile",loglevel=warning)
snmp_xml = open(snmp_xml_path, *w®)

dom.writexml (snmp_xml)

snmp_xml_.close()

shutil.copy(snmpd_conf path, snmpd_conf bkup path)

snmpd_conf = open(snmpd_conf_path).readlines()
config["proxy_line_index"] = None

try: port_conf = get tag text(dom, "port")
except:
revert_changes(error_msg="Error: No port Value
Specified”,error_code=error_wrong_usage)

proxy_entry = "proxy -v 1 -c %s udp:127.0.0.1:%s .1.3.6.1.4.1.6876\n"
%(config[“communities™],port_conf)

try:
proxy line_index = [i for i,x in enumerate(snmpd conf) if
Xx.startswith(modified linel)][0]
Entry already present. Needs to be modified
snmpd_conf[proxy_line_index+1] = proxy_entry
New entry needs to be created
except IndexError:
snmpd_conf.extend(modified linel)

snmpd_conf.extend(proxy_entry)
snmpd_conf.extend(modified_line3)

log(msg="Updating the snmpd.conf file",loglevel=warning)
open(snmpd_conf_path, “"w")_writelines(snmpd_conf)

log(msg="Starting SNMP service",loglevel=warning)
os.system("service snmpd start®)
time.sleep(b)
ret=os.system("pidof snmpd > /dev/null*®)
if ret is not O:
revert_changes(error_msg="Error: Could not start snmpd
service',error_code=error_service_failure)

log(msg="Starting mgmt-vmware vmware®,loglevel=warning)
os.system("service mgmt-vmware start")
time.sleep(7)
ret=os.system("pidof vmware-hostd > /dev/null*®)
if ret is not O:
revert_changes(error_msg="Error: Could not start mgmt-vmware
service',error_code=error_service_Tfailure)

log(msg="Unblocking SNMP service from Firewall~",6loglevel=warning)
os.system("esxcfg-firewall --e snmpd®)
ret=os.system("esxcfg-firewall --q snmpd®)
if ret is not O:
revert_changes(error_msg="Error: Could not unblock snmpd service
from firewall',error_code=error_service_Tailure)

log(msg="SNMP modifications completed
SuccessfTully®, loglevel=informational)

print("SNMP modifications completed Successfully®)
if _ name_ == " main__":

main()
sys.exit(0)

Testing the Configuration

Basic testing of the configuration involves walking the MIB-2 system branch, the Dell 10892 MIB branch
and the VMWare MIB branch using port 161. The MIB walks will be successful (no timeout or no null
data) if the configuration is correct. Also send test traps from the ESX4.0 server and check if the traps are
received in DMC Event Console.

1) Using any SNMP MIB browser or snmpwalk command to walk the following OIDs.
System -.1.3.6.1.2.1.1
Dell (if OMSA installed and started) - .1.3.6.1.4.1.674.10892.1

VMWare - .1.3.6.1.4.1.6876

2) Run the following command from a remote system (Windows or Linux) to send a test traps from
the ESX4.0 server.

vicfg-snmp.pl --server <ESX IP addr> --username root --password <passwords>

