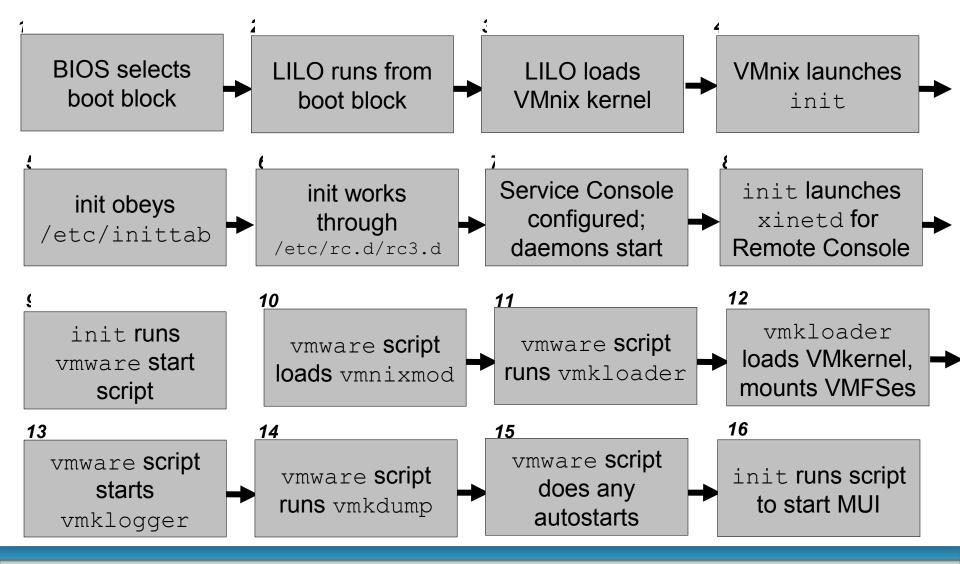


The Structure of ESX Server VMnix and the VMkernel Virtual Machines VMware Services

ESX Server System Management II Module 2

What is ESX Server?

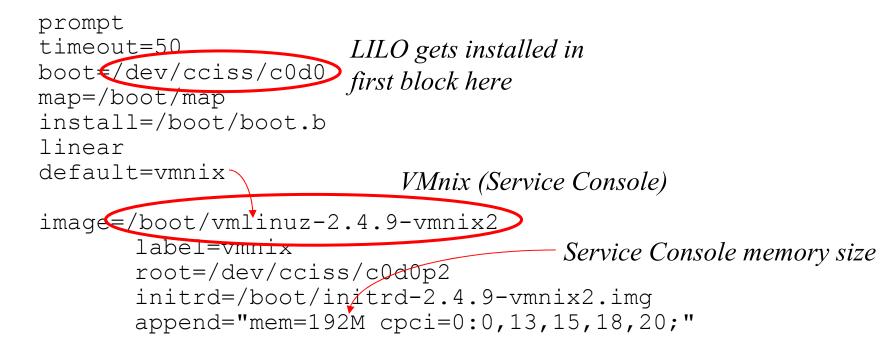
- A dedicated platform for virtual machines ("VMs")
 - VMs encapsulated for portability
 - VMs isolated from each other
 - Lowest possible virtualization overhead software
 - VMs have minimum guaranteed resource HARDWARE allocations
 - Allocations can be changed without rebooting


The components of ESX Server

ESX Server consists of

- An installer package, based on Red Hat Linux 7.2
- A lightly modified Red Hat Linux 7.2 installation
 - Called the Service Console, or VMnix
 - Serves as bootstrap loader for the VMkernel
 - Offers an administrative interface for VMkernel
 - Gives virtual machines access to non-virtualizable devices
- A proprietary OS for managing virtual machines
 - Called the VMkernel

ESX Server Boot Process


Step 1: The BIOS and LILO

- BIOS contains a boot order
 - Among removable media, all disk controllers, network boot
- When ESX Server is properly set up, boot order points to a local hard drive
- Its first physical block contains LILO, the Linux Loader

Steps 2 and 3: LILO and VMnix

LILO has been previously configured according to /etc/lilo.conf

Step 3: VMnix, the Service Console

- Service Console is a uniprocessor Linux 2.4 kernel, in a lightly modified Red Hat 7.2 environment
 - Uses same IOAPIC architecture for mapping interrupts as does VMkernel
- Service Console's role:
 - Bootstraps the VMkernel onto the system
 - Supports VMware Management Interface ("MUI"), Remote Console, SNMP, APIs

Steps 4 and 5: VMnix and init

- init is the first process spawned by any Linux kernel
- Its operation is controlled by /etc/inittab
 # tag:runlevels:mode:command
 id:3:initdefault:
 si::sysinit:/etc/rc.d/rc.sysinit
 ...
 13:3:wait:/etc/rc.d/rc 3
 ...
 1:2345:respawn:/usr/sbin/vmkstatus tty1
 2:2345:respawn:/sbin/mingetty tty2
 ...

Steps 6-8: /etc/rc.d/rc3.d

- rc3.d contains links to start scripts, to be run in numerical order
 - S scripts get invoked with a start argument, K with a stop

S00vmkstart	log the change in system status		
S10network	configures Service Console networking		
S12syslog	starts system logger daemon		
S55sshd	starts secure shell daemon		
S56xinetd	starts services super-daemon		
S90vmware	loads VMkernel, other ESX components		
S91httpd.vmware	starts MUI server		

Service Console networking setup (S10network)

- Service Console's NIC determined during install
- Correct driver gets associated with Service <u>Console Ethernet by /etc/modules.conf</u> alias eth0 e100
- IP address and netmask are set in /etc/sysconfig/network-scripts/ifcfg-eth0
 DEVICE=eth0
 ONBOOT=yes
 BOOTPROTO=static
 IPADDR=192.168.130.200
 NETMASK=255.255.255.0

Service Console networking (cont'd)

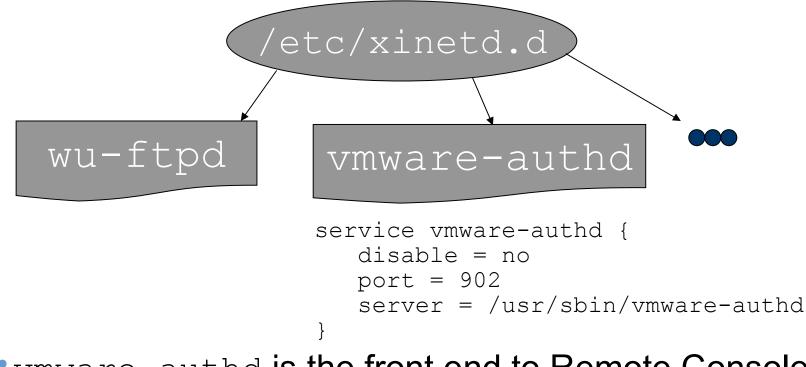
- Hostname and default gateway set in /etc/sysconfig/network NETWORKING=yes HOSTNAME=myesx.example.com GATEWAY=192.168.130.1
- DNS servers set in /etc/resolv.conf

search example.com
nameserver 192.168.130.2
nameserver 192.168.2.1

• Hostname needs an entry in /etc/hosts 192.168.130.200 myesx.example.com myesx

Service Console services (S12syslog, S55sshd)

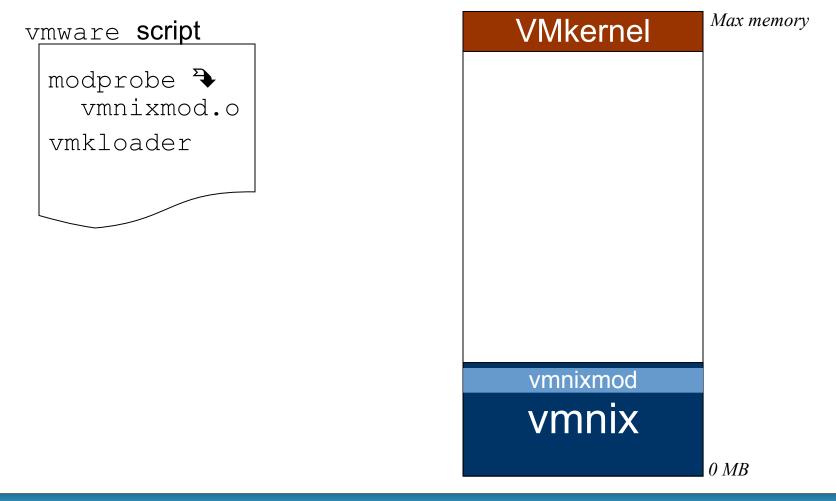
- syslogd is governed by /etc/syslog.conf *.info;mail.none;authpriv.none;cron.none; local6.none /var/log/messages local6.info /var/log/vmksummary
- sshd is governed by /etc/ssh/sshd_config #Port 22 #Protocol 2,1


•••

Subsystem sftp /usr/libexec/openssh/sftp-server

xinetd and Remote Console (S56xinetd)

• xinetd listens for incoming requests for service

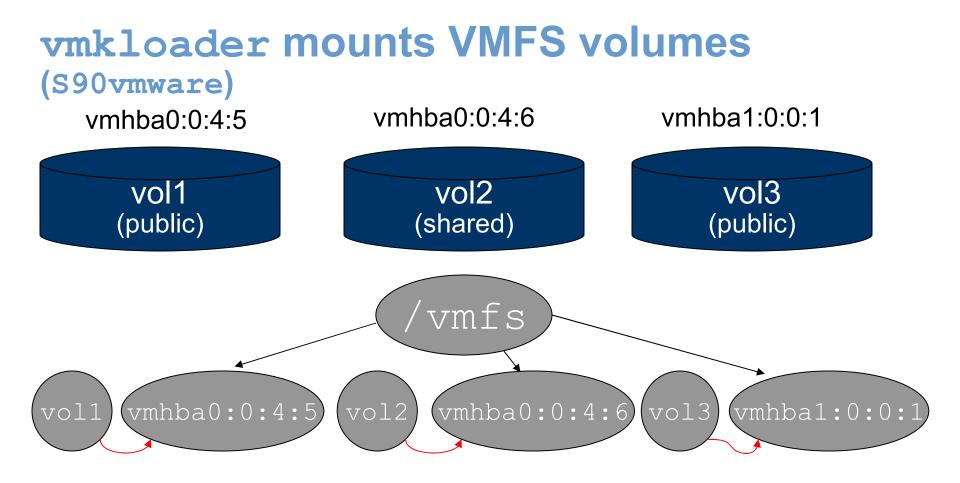


•vmware-authd is the front end to Remote Console

Steps 9-12: The VMkernel (S90vmware)

Physical memory

VMkernel device drivers


(S90vmware)

- Each PCI device has a vendor and sub-vendor ID
 - To scan physical system for PCI devices, showing vendor IDs

```
# lspci -H1 -M -n Intel vendor ID
[...]
00:0f.0 Class 0200: 8086:1229 (rev 05)
[...]
```

- Mapping from PCI vendor IDs to VMkernel drivers: # grep 1229 /etc/vmware/vmware-devices.map device,0x8086,0x1229,vmnic,Intel PRO/100,e100.0
 - To ensure that upgrades do not clobber your changes use /etc/vmware/vmware-devices.map.local
- VMkernel drivers reside in/usr/lib/vmware/vmkmod

• VMFS volumes are always visible in Service Console

Steps 13-14: VMkernel services (S90vmware)

- •vmware **boot script starts** vmklogger
 - Relays VMkernel messages to syslogd, the system logger daemon
- •vmware **boot script runs** vmkdump
 - Saves any prior VMkernel dump from the VMkernel dump partition

Step 15: Virtual machine autostarts (S90vmware)

- •vmware **boot script launches** vmstartstop.pl
- •vmstartstop.pl reads all registered VMs' configuration files from /etc/vmware/vm-list
- If a VM's configuration file contains
 autostart = "true", it will be powered on
 - And boot, if it has a boot device with a valid boot block
 - autostart = "poweron" and autostart = "resume" will also be powered on

Step 16: VMware Management Interface (S91httpd.vmware)

- Script S91httpd.vmware starts the Web server for the VMware Management Interface ("MUI")
 - Special-purpose Apache Web server
- Web server uses a proprietary form of XML RPC to communicate with vmware-serverd
 - vmware-serverd does back-end processing for MUI, Remote Console, scripting interfaces
 - Started on demand

vmware as seen by ps

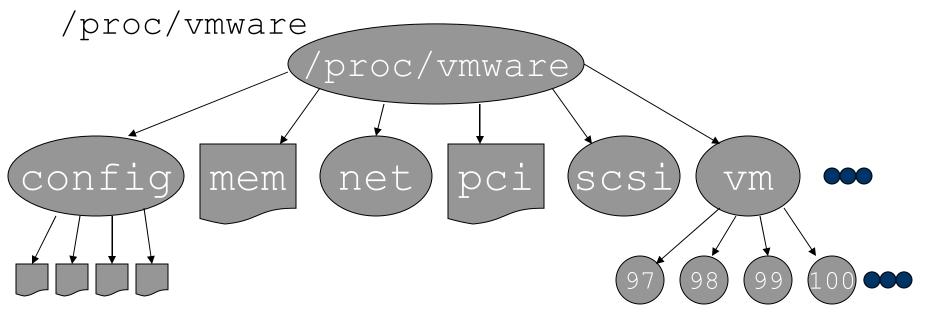
- •ps -ef reveals: susie 1360 1 [vmware-vmx] susie 1362 1360 [vmware-mks]
 - Subprocesses perform Service Console I/O on behalf of the VM
- These vmware binaries...
 - loads the monitor
 - Supplies the virtual mouse, keyboard, screen
 - Saves a monitor log to the Service Console's filesystem
 - Runs as long as either VM is powered on or a Remote Console session exists

ESX Server's concept of users

- A Service Console user is an ESX Server user
- Each file on disk has an owner
- Each virtual machine has an owner
 - As defined by the owner of its configuration file
 - Configuration files reside under users' home directories /home/susie/vmware/webserver/webserver.vmx
- Service Console stores known users in /etc/passwd susie:x:501:501:Susie Park:/home/susie:/bin/bash
 - One-way-encrypted passwords are stored in /etc/shadow susie:\$1\$YyÞsWÉFï\$mtPIp6NF32Fu5LG1MzBDV0: 120180:99999:7:::

Launching a virtual machine

- VMkernel's concept of a process is a *world*
 - Each VM occupies its own world
 - There are also non-VM helper worlds
 - Each world has an integer world id
- VMkernel to load an instance of the monitor for this VM into a new world
 - Monitor guarantees correct access to shared resources
 - Runs as owning user


A virtual machine under ESX Server

		world 102	
VMkernel space		VM onitor	 Accesses physical memory, chipset Accesses virtual devices
Service Console space	vmwa	are-vmx	 Manages initialization, power state
	application		 Manages mouse, kovboard scroop CD
		pid 784	keyboard, screen, CD- ROM and floppy

The /proc/vmware hierarchy

- Unix/Linux kernels publish status under /proc
 - Files and directories occupy no disk space
 - Offer an easy-to-use window into the kernel's state
- VMkernel publishes information under

ESX Server System Management II Module 2