

Java in Virtual Machines on VMware® ESX:
Best Practices

TABLE OF CONTENTS

1. SUMMARY OF BEST PRACTICES..1

1.1 Java in Virtual Machines on ESX ..1
1.2. Running Applications in ESX Virtual Machines ...2

2. INTRODUCTION ...2
3. JAVA AND SYSTEMS ARCHITECTURE ...3

3.1. Multi-Tiered Applications ..3
3.2. Instances of Java in Virtual Machines ..4

4. MEMORY ...4
4.1. Java Heap Memory...5
4.2. Virtual Machine Memory..6

4.2.1.Sizing Virtual Machine Memory ..6
4.2.2.Memory Reservation ...6
4.2.3.Large Memory Pages...7

4.3. ESX Memory..8
4.3.1.Memory Overhead...8

4.4. Examining Memory Consumption ...9
5. VIRTUAL CPUS AND THREADS ..10

5.1. Matching Threads and Virtual CPUs ... 10
5.2. Virtual CPU Recommendations .. 11

6. DISK I/O..11
6.1. Disk I/O Recommendation ... 11

7. TIMEKEEPING ...11
7.1. Timekeeping Recommendations... 11
7.2. Effects of Timer interrupts .. 12

8. MICRO-BENCHMARKS ..13
8.1. Warm-up Time .. 14

9. CONCLUSIONS ..14
10. REFERENCES...15
11. APPENDIX 1 : CHECKLIST FOR ISSUE RESOLUTION16

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 1

1. Summary of Best Practices
This paper discusses best practices for running Java-based software in VMware® ESX virtual
machines. These guidelines will help you to get the best from your Java applications and
application servers when you run them on VMware® Infrastructure 3. Java applications have
been found to perform very well in virtual machines on ESX, coming close to native
performance in many cases. The main difference between running Java applications in virtual
machines on ESX and running those same applications on physical systems essentially boils
down to

• the choice of memory size for the ESX virtual machine and
• the number of virtual CPUs used in the ESX virtual machine.

All the best practices that you use when running Java on physical systems apply equally in the
virtual machine case. We assume that you have tuned your Java application to run well on the
physical system from which you are redeploying it to a virtual machine (refs 1, 2 and 3). The
body of this paper provides the technical background and justification for the best practices
recommended here.

1.1 Java in Virtual Machines on ESX
This section summarizes the practices that apply specifically for Java applications in an ESX
virtual machine.

Memory
• Size the virtual machine memory to leave adequate space for

o the Java heap;
o the other memory demands of the Java Virtual Machine code and thread

stacks;
o any other concurrently executing process that needs memory;
o the guest operating system.

• Set the memory “Reservation” value using the VMware® Infrastructure Client to the size of
memory for the virtual machine.

• Use large memory pages by informing the Java virtual machine (JVM) and guest operating
system that they are being used. ESX 3.5 supplies large pages by default where possible
when the guest operating system requests them.

Virtual CPUs
• Determine the optimum number of virtual CPUs for a virtual machine that hosts a Java

application by testing the virtual machine configured with different numbers of virtual
CPUs with the same test load.

• If you are using multiple garbage collector (GC) threads in your JVM (such as those
occasions when you use a parallel garbage collector) , then the number of garbage
collector threads should be equal to or less than the number of virtual CPUs that are
configured in the virtual machine.

Management
• For easier monitoring and load balancing, use one JVM process per ESX virtual machine.
• Use the lower resolution timing Java options supplied by your JVM.

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 2

1.2. Running Applications in ESX Virtual Machines
The recommendations given in this section apply to all applications that are run in virtual
machines on ESX. Java applications are one important example of these.

Memory
• Use VMware® Distributed Resource Scheduler to balance the virtual machines’ memory

requirements across the cluster.

Virtual CPUs
• Use the lowest number of virtual CPUs that is practical for your application.

Disk I/O
• Check the guest average (GAVG) and disk average (DAVG) latency time columns in the

esxtop tool’s output to ensure that your I/O system is not causing bottlenecks due to disk
latencies.

Timing
• Synchronize the time on the ESX host with an external NTP source.
• Synchronize the time in the virtual machine with the ESX host’s timing using the facility

supplied in the VMware tools package.
• Use a lower clock interrupt rate in the guest operating system within the virtual machine.

2. Introduction
As a developer or deployer of systems, you can move your Java applications from physical
systems and run them very easily on VMware ESX, the virtualization layer of VMware
Infrastructure 3. The experiences of customers who have already virtualized their Java-based
systems in large numbers confirms that virtualized Java applications behave the same way
they do on operating systems that run on physical hardware (or “physical”).

You can re-create your current physical Java environment on one or more virtual machines
hosted on VMware ESX without making any changes to the application code. Java applications
perform well on ESX virtual machines without adjusting the arguments that you use when
they run on physical operating systems. To help you get started with redeploying Java
applications on to virtual machines, this document:

• gathers together a set of best practices based on experience deploying Java systems
on virtual machines.

• offers health checks and runtime options that you can use on your Java-based
application to ensure that it runs well on virtual platforms.

• makes recommendations that help you deploy Java on virtual machines.

The best practices described here require no changes to the application code.

Java-based software is being run on VMware Infrastructure in all kinds of industries, from
health care to insurance, banking and gaming. Companies have deployed into production
dozens or even hundreds of ESX virtual machines with Java as the main application platform
within them.

Computing resources such as CPU, memory and I/O devices are configured differently in
virtual machines than they are in physical systems. There may be different numbers of virtual
CPUs in a virtual machine than there are physical CPUs on the host system, for example – and

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 3

the number of virtual CPUs or the virtual machine memory size can be adjusted much more
rapidly.

 In order to get an accurate result when comparing the performance of your Java application
on physical and virtual machine implementations, it is important to assign the same number
of virtual CPUs to the ESX virtual machine as there are physical CPUs on the physical operating
system being tested. It is also necessary to assign the same amount of memory to the ESX
virtual machine as was used in the physical tests – otherwise the comparison is not a true one.
These and other considerations, described below, are important to bear in mind when moving
your Java application to a virtual environment.

Section 3 following contains background information on virtualizing Java applications.
Subsequent sections examine each computing resource in turn, starting with memory,
followed by threads and virtual CPUs, disk I/O, timekeeping and end with some advice on
benchmarking. These sections explain the differences in the use of these resources in their
virtualized form and include the recommended best practices. At the end of the document
you will find references and a checklist of items to look at when resolving issues with Java on
virtual machines on ESX.

3. Java and Systems Architecture
Java application performance tuning information is already covered in several books and
papers, as well as at the JVM suppliers’ websites. The references section at the end of this
document provides some sources for Java performance tuning techniques. The best practices
for achieving higher performance with Java applications on a physical system are also
applicable to a virtual implementation of a Java program. Since it is readily available
elsewhere, this performance tuning information is not repeated here.

3.1. Multi-Tiered Applications
Java applications and J2EE application servers often form one component of a multi-tiered
application. Such applications have several parts and dependencies among those parts. These
applications may depend on a web server tier, an application server tier, a database tier and
other tiers, such as a load balancer tier. System performance is often under scrutiny both in
physical and virtual implementations that depend on Java and Java is sometimes seen as the
culprit for any performance issues. Similarly, the virtualization platform is sometimes blamed
for performance concerns, although in many cases it is not the source of the issue.

The response times at the database tier often have a determining influence on the speed with
which the J2EE application server can send the results of a query back to the end user. On
some occasions, the bottleneck in performance is in the database access code (JDBC
connection pools) or in the SQL logic that is accessing the data - and not in the Java
application logic. At other times, problems with the networking between tiers or the disk I/O
configuration can cause a slower response time or lower throughput. It is a good practice to
check all parts of the system first before delving into the Java tier for the sources of problems.
A systems profiling tool to help with characterizing the parts of the system is invaluable.

The deployment or release engineering teams are often tasked with finding any bottlenecks in
performance, which is not always easy to do, since the team may not have been involved in
the architecture of the system or in the coding or testing phases. An application profiling tool
(such as VMware® AppSpeed) can help the engineers to look at the various latencies in the

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 4

whole system first, before delving into one part specifically. A profiling tool will identify where
the majority of the time is being spent, for any set of user transactions.

3.2. Instances of Java in Virtual Machines
In physical implementations it is not uncommon to see multiple instances of a Java process
running concurrently on the same operating system on one machine. This setup may be
replicated across many physical machines for scale-out reasons. Java is often the highest
consumer of CPU and memory resources on the machine -- it often appears at the top of the
list in the “top” output on Linux or in the Task Manager tool on Windows-based systems as the
top CPU user.

Installing VMware ESX on a physical machine makes it capable of running a number of virtual
machines, all of which are independent of each other from a performance monitoring
perspective. In the virtualized world, it is more common to run one instance of Java in any one
virtual machine. Nothing prevents you from running two or more instances of Java within a
guest operating system in a virtual machine; however, by separating Java instances on
individual virtual machines you gain more isolation of potential errors and performance
demands, so that you can more readily see the effect of the Java application on the whole
system. The equivalent arrangement to having multiple JVMs running on a physical system is
to place multiple virtual machines on an ESX host server, each with one JVM in it.

Additionally, the practice of using one JVM per ESX virtual machine also allows VMware®
Distributed Resource Scheduler (DRS) to make more intelligent decisions about balancing Java
workloads on the ESX host servers in a DRS cluster, since it looks at the resource consumption
of the virtual machines to make those decisions.

4. Memory
Java programs tend to be very intensive in their use of memory. This has implications for
virtualizing your Java process such that you will want to pay attention to

• the Java heap memory size,
• the virtual machine’s memory size (in which the Java process will run on the guest

operating system) and
• the overall ESX host server’s physical memory size.

Figure 1 provides a simplified depiction of the memory layout on an ESX host server running
Java within a virtual machine. The host server’s physical memory contains all the virtual
machines with their own memory, one of which in turn contains the JVM with its memory
segments.

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 5

Figure 1: Outline memory layouts with Java running in a virtual machine on an ESX host server

At the outer level, physical memory is managed by the ESX host. This level represents all of the
physical memory that is available on that server, containing the ESX executable code and
everything that it manages in the virtual machines. Within that ESX-managed memory there
are two virtual machines in this example, one of which is running a Java program. In the virtual
machine at the top of the diagram, Java is allocated two different portions of memory, a
code/stack section and a heap memory section. JVMs manage most of their objects in the
heap memory space. There are other areas of memory in the JVM process, such as the
“Permanent” space; these have been omitted here for the sake of clarity. The memory
allocations for the virtual machine itself and for the Java heap are determined by certain
parameters as described below.

4.1. Java Heap Memory
A certain amount of heap memory is allocated to the JVM at startup time and that memory is
accessed throughout the lifetime of the Java program. The starting size for the Java heap is
determined by the –Xms value and the maximum heap size is set to the –Xmx value, both
supplied to the JVM at invocation time.

There are different styles of organizing the JVM heap. Memory management algorithms vary
across the main Java vendors’ products, and even within one vendor’s JVM. Those objects that
no longer have references to them are removed from the heap on a regular basis, as the
garbage collector operates. Objects are moved around inside the heap in order to compact
the used space, for example, and the free and used heap spaces are adjusted and checked at
intervals – whenever the garbage collector runs within the JVM. For these reasons, it appears
to the memory management system within the guest operating system in the virtual machine
that random accesses are being made to memory addresses. In summary, the JVM needs its
entire heap space to be available to it in memory for all of the time it is executing.

As part of your application tuning on physical systems, you will have sized the JVM heap to
minimize the number of occurrences and the durations of garbage collection (GC) events, so
that both throughput and response times will be optimal. By profiling the runtime behavior of

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 6

your Java program under load conditions, you can determine what the working set size of
objects is. There are also tools that provide this information in graphical form, such as the Java
Monitor tool included with JDK 1.5 onwards.

4.2. Virtual Machine Memory
The JVM heap is one component of the overall Java process memory consumption. There is
also memory outside the JVM heap space that is occupied by the executable code for the JVM
and for the stack of Java methods that are active at any one time. These memory sizes are
often much smaller than the JVM heap memory, but they must be considered too.

The extra memory in the virtual machine, beyond the Java heap, is also used for the guest
operating system and for other processes that run in that virtual machine.

4.2.1. Sizing Virtual Machine Memory
Size the virtual machine memory to leave adequate space for the Java heap, the other
memory demands of the JVM code and thread stacks, along with any other concurrently
executing process that needs memory from the guest operating system. You will size the ESX
virtual machine’s memory when you first create it using the VMware Infrastructure® (VI) Client
tool. The memory size of the virtual machine can be changed at a later time if necessary. One
method for sizing the virtual machine’s memory is to take the sum of the following:

1. Space for the guest operating system (This can be 512Mb for a Linux operating system or 1Gb
for a Windows OS, for example)

2. Space for the JVM maximum heap size (i.e., the -Xmx value supplied to the JVM)
3. Space for the maximum number of Java threads multiplied by the thread stack size
4. Additional memory for any other programs that are running in the same guest operating

system

Default values for the thread stack size can be found by consulting your JVM documentation.
The default values depend on whether the JVM is 32-bit or 64-bit. If the application
development team wishes, they can override the defaults and specify the thread stack size
using the following JVM options:

-Xss<value> (Sun Hotspot JVM and JRockit JVM)
-Xiss<value> (IBM JVM)

Other JVM options exist that can be used to determine the thread stack size. An example of
this option for the Sun JVM is:

-XX:ThreadStackSize=<size in KB> where KB is 1024 bytes

By sizing the virtual machine memory correctly for the processes within it, you avoid the
occurrence of guest operating system swapping due to memory pressure. If the guest
operating system decides to swap out any part of the memory pages that make up the JVM
heap, then the Java application’s performance will be affected. If swapping is occurring, it can
be seen using the operating system’s own tools, such as “sar” or “vmstat” on Linux systems or
“perfmon” on Windows systems. Re-size your virtual machine until no swapping is occurring in
the guest operating system.

4.2.2. Memory Reservation
Set the memory “Reservation” value in the VI Client to the size of memory for the virtual
machine. In Figure 3, the memory reservation is set to 2480 MB – ensuring that this virtual
machine will always be allocated this amount of memory on any ESX server that it runs on.

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 7

Figure 3: Adjusting the memory reservation for a virtual machine in the VI Client tool.

You can also use the resource pool functionality in VMware DRS to safeguard the memory
allocated to your virtual machines that host Java processes. By placing the virtual machine in a
resource pool that has sufficient memory allocation to cater for the requirements, DRS will
ensure that the virtual machine is placed on the correct ESX host server within the cluster. Set
the memory reservation for the resource pool using the “Edit Settings” option on that item
as shown in Figure 4. Here, a resource pool named “User Acceptance Testing” has a memory
resource reservation of 6480 Mb, ensuring that it will have that much memory available for its
resident virtual machines across a number of servers in the DRS cluster.

Figure 4: Edit Settings for a Resource Pool

4.2.3. Large Memory Pages
Large memory pages help performance by optimizing the use of the Translation Lookaside
Buffer (TLB) where virtual to physical address translations are performed. Use large memory

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 8

pages as supported by your JVM and your guest operating system. The operating system and
the JVM must be informed that you wish to use large memory pages, as is the case when using
large pages in physical systems. Check the documentation for your guest operating system to
determine how large pages are enabled for it (see reference 8 for more detail). To enable large
memory pages in the JVM, use the following options:

-XX:+UseLargePages for Sun JVMs from version 5.0 onwards
-Xlp for the IBM JVM

4.3. ESX Memory
The hardware server controlled by ESX is equipped with a certain amount of physical memory,
or RAM. That memory is used to hold the ESX code itself as well as the virtual machines that
execute on it. Usually those virtual machines that host a Java process have a sizeable memory
allocation. If ESX cannot find enough free memory to accommodate the needs of its resident
virtual machines, it first invokes the balloon driver in the guest operating system of one or
more virtual machines. If this fails to free up enough memory, ESX itself begins to swap at the
host level, negatively impacting the overall performance of the system. This ESX level
swapping should be avoided by either adding more physical memory to the ESX host server or
by moving one or more virtual machines to other ESX hosts that have spare memory and CPU
capacity. The latter can be done automatically by organizing your DRS resource pools correctly
for your loads.

4.3.1. Memory Overhead
ESX has three separate areas of memory overhead:

• A fixed system-wide overhead for the service console (272 Mb for ESX 3.x).
• A fixed system-wide overhead for the VMkernel part of ESX. This overhead depends on

the number and size of the device drivers contained in it.
• An additional overhead for each virtual machine. The virtual machine monitor (one for

each virtual machine) requires a certain amount of memory for its code and data.

The fixed system-wide overhead for ESX can be seen in the VI Client tool. For a particular ESX
host, select the Configuration tab and choose the “Memory” menu item to see these values, as
shown in Figure 3. You can see the various memory components in the panel on the right-
hand side.

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 9

Figure 6: Memory values for an ESX host in the VI Client tool.

In the example in Figure 6, the host server’s total physical memory is 32Gb, of which 30Gb is
available for virtual machines to use after system overheads are subtracted. The additional
overhead for each virtual machine depends on the number of virtual CPUs assigned to it and
on whether it is a 32-bit or 64-bit virtual machine. Chapter 9 of the VMware Resource
Management Guide [Ref 9] provides details on these overhead values.

ESX Memory Summary:
• Appropriate sizing ensures that no swapping or memory contention occurs between each

of the virtual machines running Java and other virtual machines on the same server.
• Use VMware Distributed Resource Scheduler (DRS) to balance memory use across

machines.

4.4. Examining Memory Consumption
Two tools are very useful in looking at memory: the VI Client tool and “esxtop.” The VI Client
tool can use an individual ESX instance or vCenter Server as its source of performance data.
The esxtop tool is invoked from the ESX service console and it can be used interactively or in
batch mode. For ESX 3.5 onwards, the command

esxtop –a –b > outputfile.csv
generates esxtop data in the outputfile.csv file that captures all columns of data (-a) in batch
mode (-b). Use the –n <iterations> option to esxtop if you want to run it for a set number of
samples and then stop. The data can then be examined offline. Table 1 shows the main
memory-specific counters to examine to ensure the various memory areas are in a healthy
state.

Table 1: Measurements to monitor in the “esxtop” tool and the VI Client tool for memory issues

Activity esxtop columns VirtualCenter / VI client
ESX Host Swapping SWR/s (reads per second)

SWW/s (writes per second)
mem.swapin, average
mem.swapout, average

Guest OS Swapping MCTLSZ Mem.vmmemctl, average

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 10

Note on Memory Retention Problems
These types of problems arise when memory is consumed in the Java process by objects that
are not needed, but they are not garbage collected because there is an outstanding reference
to them. These retained objects in memory can grow to a point where the heap memory is
exhausted because of them, which can eventually cause an “OutOfMemoryException” at
runtime. Memory retention conditions (sometimes called “Memory Leaks”) are really caused
by an error in the application or application infrastructure implementation code. These
programs behave in the same manner on virtual as on physical machines. These types of errors
should be eliminated before the Java application system is deployed.

5. Virtual CPUs and Threads
Threads are part of the Java runtime environment that allow the parallel execution of
segments of code. Threads may be created for the JVM’s own purposes or by the user’s Java
code, or they may be created by a container technology such as a J2EE application server that
uses them on the user program’s behalf. Threads are often created in thread pools where they
may be re-used over time.

There may be many threads alive within a Java process at one time. It is not uncommon to
have over twenty threads at once in even small Java programs (as the JVM requires some
threads of it own, such as one or more garbage collector threads). Although there appear to
be many threads alive at the same time, often only a small subset of them are in the “running”
or “runnable” state at any one time. Many threads spend considerable time in the “idle,”
“waiting” or “blocked” state, where they may be waiting for data to appear on a socket or
some other condition before they are ready to run.

5.1. Matching Threads and Virtual CPUs
On physical operating systems, the collection of JVM threads can be spread out across all the
physical CPUs available to the operating system, if they need to operate in parallel. In virtual
machines with one virtual CPU configured, ESX will give each runnable thread a time-slice on
that virtual CPU. When multiple virtual CPUs are configured in a virtual machine, ESX can
distribute the runnable application threads to as many of the virtual CPUs as it needs to.

In the virtual machine implementation, if there are several threads that are ready to run at the
same time, then that application system may or may not benefit from having multiple virtual
CPUs present in the virtual machine. The nature of the work being done in the threads really
determines the performance gain from parallel thread execution. If each thread takes up only
a small portion of its allotted time slice, then a single virtual CPU may be as good as or better
than multiple virtual CPUs. This really needs to be thoroughly tested with your particular
application under suitable loads to establish the best virtual CPU configuration.

Virtual CPUs and Threads for Garbage Collection
JVMs have options that allow the user to determine the number of garbage collection threads
that may be active at any one time. This feature is determined by the following JVM runtime
options:

–Xgcthreads<n> (for the IBM JVM)
-XXgcthreads<n> (for the JRockit JVM)
-XX:ParallelGCThreads=<n> (for the Sun JVM)

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 11

where <n> represents the number of GC threads to be used by the JVM. If the number of
virtual CPUs configured in the virtual machine containing a Java program is not equal to or
greater than the number of Java GC threads, then the performance gains that are expected
from using multiple GC threads will be affected. Since in that case there are not enough virtual
CPUs to schedule all of the GC threads at once, then some of the GC threads will be held up
and the time to complete GC events will likely be longer.

5.2. Virtual CPU Recommendations
One thread may execute on one virtual CPU at any one time. Determine the optimum number
of virtual CPUs for a virtual machine that hosts a particular Java application by testing the
application in the virtual machine with one, two, or more virtual CPUs at different times. These
tests should each be executed with the same user load, while at the same time measuring
application throughput and response time. The best match of virtual CPU setup to the
application type is very difficult to predict without this application testing. Some multi-
threaded applications can behave better on a virtual machine with one virtual CPU, whereas
others gain performance benefits from having multiple virtual CPUs available.

6. Disk I/O
Java applications may perform considerable amounts of I/O, depending on the task that they
are carrying out. The performance of these operations will be limited by the latency of the I/O
device that is being written to or read from. In many cases, Java processes write to their log
files on disk – for example, to store error and warning messages. They may also write to other
data files on disk. Many J2EE applications make use of JDBC connection pools, via Enterprise
Java Beans (EJBs) or otherwise, to read and write data to remote databases. The use of these
JDBC connection pools cuts down on the amount of local I/O performed by the Java process
but increases its network I/O. You should check that the I/O latencies of your ESX host server
system are appropriate for the applications being hosted on them.

6.1. Disk I/O Recommendation
Check the guest average (GAVG) and disk average (DAVG) latency time columns in the esxtop
tool’s output. Ensure that these latencies are within the expected ranges.

7. Timekeeping
Timekeeping can be different in virtual machines than on physical machines for a variety of
reasons, as explained in reference 7. Timekeeping can have an effect on Java programs if they
are sensitive to accurate measurements over periods of time, or if they need a timestamp that
is within an exact tolerance (such as a timestamp on a shared document or data item). For this
reason, you will need to perform certain actions to synchronize the timing inside the guest
operating system in a virtual machine with that of the outside world. VMware Tools contains
features that are installable into the guest operating system to enable time synchronization
and the use of those tools is recommended. The effects of timer interrupts are also discussed
in this section as the frequency of those interrupts can have an effect on the performance of
your Java application.

7.1. Timekeeping Recommendations
1. Synchronize the time on the ESX host with an NTP source. See Ref. 7 for details on this.
2. Synchronize the time in the virtual machine’s guest operating system

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 12

-for Linux guest operating systems using an external NTP source (see Ref. 7)
-for Windows guest operating systems using w32time

3. Lower the clock interrupt rate on the virtual CPUs in your virtual machines by using a
guest operating system that allows lower timer interrupts (Examples of such operating
systems are RHEL 4.7 and later, RHEL 5.2 and later and the SuSE Linux Enterprise Server 10
SP2). See reference 15 for more information on timekeeping best practices for Linux.

4. Use the Java features for lower resolution timing that are supplied by your
JVM, such as the option for the Sun JVM on Windows guest operating systems:

-XX:+ForceTimeHighResolution
You can also set the _JAVA_OPTIONS variable to this value on Windows operating systems
using the technique given below (in cases where you cannot easily change the Java
command line, for example).

5. Use as few virtual CPUs as are practical for your application, based on the results for
application-specific performance testing as described in the “Virtual CPUs and Threads”
section above. The more virtual CPUs there are in your virtual machine, the harder ESX has
to work to provide regular timer interrupts to them.

Setting the Sun JVM Option

To set the _JAVA_OPTIONS enivronment variable:

1. Click Start > Settings > Control Panel > System > Advanced > Environment
Variables.

2. Click New under System Variables. The variable name is _JAVA_OPTIONS. The
variable value is -XX:+ForceTimeHighResolution.

3. Reboot the guest operating system to ensure the variable is propagated properly.

7.2. Effects of Timer interrupts
Higher resolution timer interrupts (e.g. 1000 Hz) cause more work to be done by ESX on behalf
of a virtual machine than lower resolution timers do (e.g. 100 Hz). The best practice for better
performance is to use the lowest acceptable timer interrupt resolution. The guest operating
system determines the timer interrupt rate in the virtual machine. Using the Sun JVM on
Windows operating systems, for example, a Java program that has a Thread.sleep() call with an
argument value that is not a multiple of 10ms will change the time resolution for that guest
OS to be 1ms. This higher resolution of timing interrupts causes more performance overhead.
The option for the Sun JVM named

-XX:+ForceTimeHighResolution
is designed to force this higher timer resolution behavior, but due to a bug in the JVM this
option causes the opposite behavior, i.e. the timer resolution is never set to 1ms. For more
details on this issue, see references 12 and 13.

Windows-based machines have a default timer interrupt period of 10ms, although some
systems have a 15.625 ms period. When running in a virtual machine, Windows almost always
uses the 15.625 ms period.

This timer interrupt period may be modified by programs using the Windows APIs. A program
such as the JVM can request a 1ms timer interrupt period. The Sun JVM uses this 1ms period to
allow for higher resolution Thread.sleep() calls than would otherwise be possible. The example
program given below causes this higher interrupt rate to be used. It invokes the

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 13

Thread.sleep(Integer.MAX_VALUE) method that causes the guest operating system to switch to
a 1ms period for the duration of the sleep (because the value is not a multiple of 10ms).

public class Sleeper {
 public static void main(String[] args) throws Throwable {
 Thread.sleep(Integer.MAX_VALUE);
 }
}
You can see the interrupt period being used in a Windows operating system using the
perfmon tool. Within perfmon, add a new item to monitor by clicking the + icon above the
graph image. Select the “interrupts/sec” item from the list and add it. Then right click on
“interrupts/sec” under the graph and edit its properties. On the "data" tab, change the "scale"
to 1 and on the graph tab change the “vertical scale” maximum to be 1000. Let the system run
for a few seconds and you will then see the graph drawing a steady line. If you have a 10ms
interrupt occurring then it will be approximately 100, for 1ms it will be close to 1000, for
15.625 ms it will be roughly 64, etc. All the above numbers are close approximations, as there
are other sources of interrupts present also.

Any application can change the timer interrupt period to affect the whole guest operating
system. Windows only allows the period to be shortened, thus ensuring that the shortest
requested period across all applications is the one that is used. If a process does not reset the
period then Windows resets it when the process terminates. The JVM does not arbitrarily
change the interrupt rate at start time – although it could do this. The reason it does not do so
is that there is a potential performance impact to everything on the system due to the
increase in clock interrupts. Other applications may also change the interrupt rate. A browser
running the JVM as a plug-in can also cause this change in interrupt rate if there is an applet
running that uses the Thread.sleep() method in a similar way to the example program.
Furthermore, after Windows suspends or hibernates, the timer interrupt is restored to the
default value, even if an application using a higher interrupt rate was running at the time of
suspension/hibernation.

If your Java program is executing on a Windows platform and it is doing timed waits or sleeps
at a resolution other than multiples of 10ms, then when using the Sun JVM you should
execute the JVM with the -XX:+ForceTimeHighResolution option. This option has a flaw in
its implementation that disables the internal attempts to use the high-resolution timer for
Thread.sleep() calls (i.e. it reverses the behavior that its name implies). If you omit this flag, and
if you set an interrupt period other than 1ms, where the requested delay is not a multiple of
10ms, then the internal sleep implementation will change it to 1ms. This higher resolution
clock timer interrupt period can decrease the performance of your application in a virtual
machine.

8. Micro-benchmarks
The phenomenon described here applies equally to running Java in virtual machines as it does
for running physical Java programs. However, since performance is often being examined very
closely on virtual machine platforms, it is worth repeating here. Running performance-related
tests on very small Java programs that may seem to represent your application’s code may not
deliver accurate results – either on physical implementations of Java or on virtual machines
running Java. These smaller programs are sometimes chosen as extracts from the main
application itself, but it is better to use the full application code for testing purposes.

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 14

8.1. Warm-up Time
Give your Java program an adequate period of time to “warm up” before you take any
performance-related measurements. The JVM takes some time to load classes. It also takes
time to iterate through the bytecodes and decide whether to compile certain sections using
the internal runtime compiler. For these reasons, we strongly recommend that you use your
actual application code and an initial warm-up period in sizing exercises, rather than using
representative subsets of your code, as the results from testing with these smaller subset
programs can be misleading.

9. Conclusions
In the majority of cases, no change to the setup of a Java process is required to achieve good
performance when running it on a virtual machine based on VMware ESX. There are many
examples of this in the user base today. To ensure best application performance, it is wise to
look at the memory, CPU, disk I/O and timekeeping configuration of the virtual machine to
ensure that the Java process is optimized for performance.

This paper suggests some health checks and configuration settings that can be done at the
ESX and virtual machine levels to ensure the correct setup. These checks should be performed
in concert with your regular Java tuning optimizations that apply on physical implementations
of Java processes – all the same rules that you use in the physical world still stand. VMware
customers who follow these guidelines are already experiencing the considerable benefits,
performance and cost savings that result from virtualizing their Java implementations today.

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 15

10. References

1. “Java Performance Tuning” , J. Shirazi, published by O’Reilly Press

2. “Performance Analysis for Java Web Sites” , S. Joines, R. Willenborg, K. Hygh, published
by Addison-Wesley

3. “Enterprise Java Performance” , S. Halter, S. Munro, published by Prentice Hall

4. The VMware Performance Community

http://communities.vmware.com/community/vmtn/general/performance

5. Java Support for Large Memory Pages
http://java.sun.com/javase/technologies/hotspot/largememory.jsp

6. Garbage Collection Policies for Java

http://www.ibm.com/developerworks/java/library/j-ibmjava2/

7. Timekeeping in VMware Virtual Machines
http://www.vmware.com/pdf/vmware_timekeeping.pdf

8. Large Page Performance: VMware Performance Study

http://www.vmware.com/files/pdf/large_pg_performance.pdf

9. VMware Resource Management Guide
http://www.vmware.com/pdf/vi3_35/esx_3/r35u2/vi3_35_25_u2_resource_mgmt.pdf

10. “Java Threads”, S. Oaks and H. Wong, published by O’ Reilly Press.

11. Sun JVM runtime options

http://blogs.sun.com/watt/resource/jvm-options-list.html

12. Sun Developer Network entry on –XX:ForceTimeHighResolution
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6435126

13. Inside the Hotspot VM: Clocks, Timers and Scheduling Events

http://blogs.sun.com/dholmes/entry/inside_the_hotspot_vm_clocks

14. VMware Performance Blog
http://blogs.vmware.com/performance/

15. Timekeeping Best Practices for Linux
http://kb.vmware.com (search for article number 1006427)

White Paper Java in Virtual Machines on VMware ESX: Best Practices

 16

11. Appendix 1 : Checklist for Issue Resolution

 What vendor’s Java technology is being used? What is the version of the JVM?
 Are there any special parameters being supplied to the JVM at runtime, such as

–Xms and –Xmx to specify heap sizes?
 Where Java is only one part of the system, have you profiled the entire system to uncover

system-wide causes of problems?
 Is there a measure of both throughput and response time for the system?
 Is more than one database being used at the back end of the system to answer any one

query or update?
 Is more than one Java process executing in one virtual machine?
 Is the virtual machine’s guest operating system swapping?
 Is the ESX host server swapping?
 How much memory is allocated to the Java heap?
 What is the frequency and duration of occurrences of each type of garbage collection?
 How much extra memory is available in the guest operating system beyond that given to

the Java heap?
 Is the application multi-threaded?
 Is there more than one thread that is ready to run at any one time?
 Does the number of concurrently running threads exceed the number of virtual CPUs

configured in the virtual machine (e.g. garbage collector threads)?
 What are the disk and network latencies for the virtual machine as seen in the “esxtop”

tool?
 Can the timer resolution in the guest operating system be lowered in value without

affecting the Java program?

VMware, Inc.
3401 Hillview Ave Palo Alto, CA 94304 USA
Tel 650-427-5000 Fax 650-427-5001 www.vmware.com
© 2009 VMware, Inc. All rights reserved. Protected by one or more of U.S. Patent Nos. 6,397,242, 6,496,847,
6,704,925, 6,711,672, 6,725,289, 6,735,601, 6,785,886, 6,789,156, 6,795,966, 6,880,022, 6,961,941, 6,961,806,
6,944,699, 7,069,413; 7,082,598 and 7,089,377; patents pending.

